Research Article
BibTex RIS Cite

On intrinsic rotational surfaces in the Lorentz-Minkowski space

Year 2025, Early Access, 1 - 24
https://doi.org/10.15672/hujms.1501999

Abstract

Spacelike intrinsic rotational surfaces with constant mean curvature in the Lorentz-Minkowski space $\E_1^3$ have been recently investigated by Brander et al., extending the known Smyth's surfaces in Euclidean space. In this paper, we give an approach to the analogue Smyth's surfaces of $\E_1^3$ . Assuming that the surface is intrinsic rotational with coordinates $(u,v)$ and conformal factor $\rho(u)^2$, we replace the constancy of the mean curvature by the property that the Weingarten endomorphism $A$ can be expressed as $\Phi_{-\alpha(v)}\left(\begin{array}{ll}\lambda_1(u)&0\\ 0&\lambda_2(u)\end{array}\right)\Phi_{\alpha(v)}$, where $\Phi_{\alpha(v)}$ is the (Euclidean or hyperbolic) rotation of angle $\alpha(v)$ at each tangent plane and $\lambda_i$ are the principal curvatures. Under these conditions, it is proved that the mean curvature is constant and $\alpha$ is a linear function. This result also covers the case that the surface is timelike. If the mean curvature is zero, we determine all spacelike and timelike intrinsic rotational surfaces with rotational angle $\alpha$. This family of surfaces includes the spacelike and timelike Enneper surfaces.

References

  • [1] S. Akamine, J. Cho and Y. Ogata, Analysis of timelike Thomsen surfaces, J. Geom. Anal. 30, 731–761, 2020
Year 2025, Early Access, 1 - 24
https://doi.org/10.15672/hujms.1501999

Abstract

References

  • [1] S. Akamine, J. Cho and Y. Ogata, Analysis of timelike Thomsen surfaces, J. Geom. Anal. 30, 731–761, 2020
There are 1 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Mathematics
Authors

Seher Kaya 0000-0002-7393-0458

Rafael Lopez 0000-0003-3108-7009

Early Pub Date April 11, 2025
Publication Date
Submission Date June 16, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2025 Early Access

Cite

APA Kaya, S., & Lopez, R. (2025). On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics1-24. https://doi.org/10.15672/hujms.1501999
AMA Kaya S, Lopez R. On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics. Published online April 1, 2025:1-24. doi:10.15672/hujms.1501999
Chicago Kaya, Seher, and Rafael Lopez. “On Intrinsic Rotational Surfaces in the Lorentz-Minkowski Space”. Hacettepe Journal of Mathematics and Statistics, April (April 2025), 1-24. https://doi.org/10.15672/hujms.1501999.
EndNote Kaya S, Lopez R (April 1, 2025) On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics 1–24.
IEEE S. Kaya and R. Lopez, “On intrinsic rotational surfaces in the Lorentz-Minkowski space”, Hacettepe Journal of Mathematics and Statistics, pp. 1–24, April 2025, doi: 10.15672/hujms.1501999.
ISNAD Kaya, Seher - Lopez, Rafael. “On Intrinsic Rotational Surfaces in the Lorentz-Minkowski Space”. Hacettepe Journal of Mathematics and Statistics. April 2025. 1-24. https://doi.org/10.15672/hujms.1501999.
JAMA Kaya S, Lopez R. On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics. 2025;:1–24.
MLA Kaya, Seher and Rafael Lopez. “On Intrinsic Rotational Surfaces in the Lorentz-Minkowski Space”. Hacettepe Journal of Mathematics and Statistics, 2025, pp. 1-24, doi:10.15672/hujms.1501999.
Vancouver Kaya S, Lopez R. On intrinsic rotational surfaces in the Lorentz-Minkowski space. Hacettepe Journal of Mathematics and Statistics. 2025:1-24.