Research Article
BibTex RIS Cite

$\mu$-paracompact and $g_\mu$-paracompact generalized topological spaces

Year 2016, Volume: 45 Issue: 2, 447 - 453, 01.04.2016

Abstract

This paper defines generalizations of paracompactness on generalized
topological spaces (GTS) and establishes that paracompactness, near
paracompactness and several other paracompact-like properties follow
as special cases, by choosing the GT suitably. Also, the generalizations
of locally finite and closure preserving collections in a GTS, have been
studied, pointing out their interrelations. Finally, it has been observed
that the celebrated theorem of E.Michael in the context of regular paracompact spaces follow as a corollary to a result achieved in this paper.

References

  • Á.Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4)(2002), 351 − 357.
  • J.Dieudonné, Une généralisation des espaces compacts, J.Math. Pures et. Appl. 23(1944), 65 − 76.
  • T.Noiri and B.Roy, Unification of generalized open sets on Topological spaces, Acta Math. Hunger., 130(4)(2011), 349 − 357.
  • M.N.Mukherjee and A.Debray, On nearly paracompact spaces via regular even covers, Matematnykn Bechnk, 50(1998), 23 − 29.
  • M.K.Singal and S.P.Arya, On nearly paracompact spaces. Matematicˇki Vesnik, 6(21)(1969), 3 − 16.
  • R.Shen, Remarks on Products of generalized topology, Acta Math Hunger., 124(4)(2009), 363 − 369.
  • N.V.Velicˇko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2)(1968)103 − 118.
Year 2016, Volume: 45 Issue: 2, 447 - 453, 01.04.2016

Abstract

References

  • Á.Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4)(2002), 351 − 357.
  • J.Dieudonné, Une généralisation des espaces compacts, J.Math. Pures et. Appl. 23(1944), 65 − 76.
  • T.Noiri and B.Roy, Unification of generalized open sets on Topological spaces, Acta Math. Hunger., 130(4)(2011), 349 − 357.
  • M.N.Mukherjee and A.Debray, On nearly paracompact spaces via regular even covers, Matematnykn Bechnk, 50(1998), 23 − 29.
  • M.K.Singal and S.P.Arya, On nearly paracompact spaces. Matematicˇki Vesnik, 6(21)(1969), 3 − 16.
  • R.Shen, Remarks on Products of generalized topology, Acta Math Hunger., 124(4)(2009), 363 − 369.
  • N.V.Velicˇko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2)(1968)103 − 118.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

A. Deb Ray

Rakesh Bhowmick

Publication Date April 1, 2016
Published in Issue Year 2016 Volume: 45 Issue: 2

Cite

APA Ray, A. D., & Bhowmick, R. (2016). $\mu$-paracompact and $g_\mu$-paracompact generalized topological spaces. Hacettepe Journal of Mathematics and Statistics, 45(2), 447-453.
AMA Ray AD, Bhowmick R. $\mu$-paracompact and $g_\mu$-paracompact generalized topological spaces. Hacettepe Journal of Mathematics and Statistics. April 2016;45(2):447-453.
Chicago Ray, A. Deb, and Rakesh Bhowmick. “$\mu$-Paracompact and $g_\mu$-Paracompact Generalized Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 45, no. 2 (April 2016): 447-53.
EndNote Ray AD, Bhowmick R (April 1, 2016) $\mu$-paracompact and $g_\mu$-paracompact generalized topological spaces. Hacettepe Journal of Mathematics and Statistics 45 2 447–453.
IEEE A. D. Ray and R. Bhowmick, “$\mu$-paracompact and $g_\mu$-paracompact generalized topological spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 2, pp. 447–453, 2016.
ISNAD Ray, A. Deb - Bhowmick, Rakesh. “$\mu$-Paracompact and $g_\mu$-Paracompact Generalized Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 45/2 (April 2016), 447-453.
JAMA Ray AD, Bhowmick R. $\mu$-paracompact and $g_\mu$-paracompact generalized topological spaces. Hacettepe Journal of Mathematics and Statistics. 2016;45:447–453.
MLA Ray, A. Deb and Rakesh Bhowmick. “$\mu$-Paracompact and $g_\mu$-Paracompact Generalized Topological Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 2, 2016, pp. 447-53.
Vancouver Ray AD, Bhowmick R. $\mu$-paracompact and $g_\mu$-paracompact generalized topological spaces. Hacettepe Journal of Mathematics and Statistics. 2016;45(2):447-53.