Year 2019,
Volume: 48 Issue: 4, 1156 - 1169, 08.08.2019
Absos Ali Shaikh
Chandan Kumar Mondal
Helaluddin Ahmad
References
- [1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math.,
Springer-Verlag, 1976.
- [2] É. Cartan, Sur une classe remarquable déspaces de Riemann, I, Bull. de la Soc. Math.
de France 54, 214-216, 1926.
- [3] É. Cartan, Sur une classe remarquable déspaces de Riemann, II, Bull. de la Soc.
Math. de France 55, 114-134, 1927.
- [4] É. Cartan, Lecons sur la geometrie des espaces de Riemann, 2nd ed., Paris, 1946.
- [5] M.C. Chaki and M. Tarafdar, On a type of Sasakian manifold, Soochow J. Math. 16,
23-28, 1990.
- [6] U.C. De, A.A. Shaikh and S. Biswas, On $\phi$-recurrent Sasakian manifolds, Novi Sad
J. Math. 33(2), 43-48, 2003.
- [7] K. Ogiue, On fiberings of almost contact manifolds, Kodai Math. Sem. Rep. 17, 53-62,
1965.
- [8] A.A. Shaikh and K.K. Baishya, On $\phi$-symmetric LP-Sasakian manifolds, Yokohama
Math. J. 52, 97-112, 2005.
- [9] A.A. Shaikh, K.K. Baishya and S. Eyasmin, On $\phi$-recurrent generalized $(k, \mu)$-contact
metric manifolds, Lobachevski J. Math. 27, 3-13, 2007.
- [10] A.A. Shaikh, K.K. Baishya and S. Eyasmin, On the existence of some types of LP-Sasakian
manifolds, Commun. Korean Math. Soc., 23 (1), 1-16, 2008.
- [11] A.A. Shaikh, T. Basu and S. Eyasmin, On locally $\phi$-symmetric $(LCS)_n$-manifolds,
Int. J. Pure Appl. Math. 41 (8), 1161-1170, 2007.
- [12] A.A. Shaikh, T. Basu and S. Eyasmin, On the existence of ϕ-recurrent $(LCS)_n$-
manifolds, Extracta Mathematica 23 (1), 71-83, 2008.
- [13] A.A. Shaikh and U.C. De, On 3-dimensional LP-Sasakian manifolds, Soochow J.
Math. 26 (4), 359-368, 2000.
- [14] A.A. Shaikh and S.K. Hui, On locally $\phi$-symmetric $\beta$-Kenmotsu manifolds, Extracta
Mathematica 24 (3), 301-316, 2010.
- [15] A.A. Shaikh and S.K. Hui, On extended $\phi$-recurrent $\beta$-Kenmotsu manifolds, Publi.
de l’ Inst. Math., Nouvelle serie, 89 (103), 77-88, 2011.
- [16] A.A. Shaikh and H. Kundu, On equivalency of various geometric structures, J. Geom.
105, 139-165, 2014.
- [17] Z.I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$, I,
The local version, J. Diff. Geom. 17, 531-582, 1982.
- [18] Z.I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$, II,
Global version, Geom. Dedicata 19, 65-108, 1983.
- [19] Z.I. Szabó, Classification and construction of complete hypersurfaces satisfying
$R(X,Y)\cdot R=0$, Acta. Sci. Math. 47, 321-348, 1984.
- [20] T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J. 29, 91-113, 1977.
- [21] S. Tanno, Isometric immersions of Sasakian manifold in spheres, Kodai Math. Sem.
Rep. 21, 448-458, 1969.
- [22] K. Yano and M. Kon, Structures on manifolds, World Scientific Publ., Singapore,
1984.
- [23] H. Weyl, Reine infinitesimal geometrie, Math. Zeitschrift 2, 384-411, 1918.
On locally $\phi$-semisymmetric Sasakian manifolds
Year 2019,
Volume: 48 Issue: 4, 1156 - 1169, 08.08.2019
Absos Ali Shaikh
Chandan Kumar Mondal
Helaluddin Ahmad
Abstract
Generalizing the notion of local $\phi$-symmetry of Takahashi [Sasakian $\phi$-symmetric spaces, Tohoku Math. J., 1977], in the present paper, we introduce the notion of \textit{local $\phi$-semisymmetry} of a Sasakian manifold along with its proper existence and characterization. We also study the notion of local Ricci (resp., projective, conformal) $\phi$-semisymmetry of a Sasakian manifold and obtain its characterization. It is shown that the local $\phi$-semisymmetry, local projective $\phi$-semisymmetry and local concircular $\phi$-semisymmetry are equivalent. It is also shown that local conformal $\phi$-semisymmetry and local conharmonical $\phi$-semisymmetry are equivalent.
References
- [1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math.,
Springer-Verlag, 1976.
- [2] É. Cartan, Sur une classe remarquable déspaces de Riemann, I, Bull. de la Soc. Math.
de France 54, 214-216, 1926.
- [3] É. Cartan, Sur une classe remarquable déspaces de Riemann, II, Bull. de la Soc.
Math. de France 55, 114-134, 1927.
- [4] É. Cartan, Lecons sur la geometrie des espaces de Riemann, 2nd ed., Paris, 1946.
- [5] M.C. Chaki and M. Tarafdar, On a type of Sasakian manifold, Soochow J. Math. 16,
23-28, 1990.
- [6] U.C. De, A.A. Shaikh and S. Biswas, On $\phi$-recurrent Sasakian manifolds, Novi Sad
J. Math. 33(2), 43-48, 2003.
- [7] K. Ogiue, On fiberings of almost contact manifolds, Kodai Math. Sem. Rep. 17, 53-62,
1965.
- [8] A.A. Shaikh and K.K. Baishya, On $\phi$-symmetric LP-Sasakian manifolds, Yokohama
Math. J. 52, 97-112, 2005.
- [9] A.A. Shaikh, K.K. Baishya and S. Eyasmin, On $\phi$-recurrent generalized $(k, \mu)$-contact
metric manifolds, Lobachevski J. Math. 27, 3-13, 2007.
- [10] A.A. Shaikh, K.K. Baishya and S. Eyasmin, On the existence of some types of LP-Sasakian
manifolds, Commun. Korean Math. Soc., 23 (1), 1-16, 2008.
- [11] A.A. Shaikh, T. Basu and S. Eyasmin, On locally $\phi$-symmetric $(LCS)_n$-manifolds,
Int. J. Pure Appl. Math. 41 (8), 1161-1170, 2007.
- [12] A.A. Shaikh, T. Basu and S. Eyasmin, On the existence of ϕ-recurrent $(LCS)_n$-
manifolds, Extracta Mathematica 23 (1), 71-83, 2008.
- [13] A.A. Shaikh and U.C. De, On 3-dimensional LP-Sasakian manifolds, Soochow J.
Math. 26 (4), 359-368, 2000.
- [14] A.A. Shaikh and S.K. Hui, On locally $\phi$-symmetric $\beta$-Kenmotsu manifolds, Extracta
Mathematica 24 (3), 301-316, 2010.
- [15] A.A. Shaikh and S.K. Hui, On extended $\phi$-recurrent $\beta$-Kenmotsu manifolds, Publi.
de l’ Inst. Math., Nouvelle serie, 89 (103), 77-88, 2011.
- [16] A.A. Shaikh and H. Kundu, On equivalency of various geometric structures, J. Geom.
105, 139-165, 2014.
- [17] Z.I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$, I,
The local version, J. Diff. Geom. 17, 531-582, 1982.
- [18] Z.I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$, II,
Global version, Geom. Dedicata 19, 65-108, 1983.
- [19] Z.I. Szabó, Classification and construction of complete hypersurfaces satisfying
$R(X,Y)\cdot R=0$, Acta. Sci. Math. 47, 321-348, 1984.
- [20] T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J. 29, 91-113, 1977.
- [21] S. Tanno, Isometric immersions of Sasakian manifold in spheres, Kodai Math. Sem.
Rep. 21, 448-458, 1969.
- [22] K. Yano and M. Kon, Structures on manifolds, World Scientific Publ., Singapore,
1984.
- [23] H. Weyl, Reine infinitesimal geometrie, Math. Zeitschrift 2, 384-411, 1918.