Non-linear mixed Jordan triple $1$-$*$-product on von Neumann algebras
Year 2025,
Volume: 54 Issue: 2, 378 - 388, 28.04.2025
Abdul Khan
,
Mohd Raza
,
Husain Alhazmi
Abstract
It is shown that if $M$ and $N$ are two von Neumann algebras, one of which has no central abelian projection with $\psi: M \rightarrow N$ satisfying mixed Jordan triple $1$-$*$-product, i.e., $$\psi(A \circ B \bullet C)=\psi(A) \circ \psi(B) \bullet \psi(C)$$ for all $A, B, C \in M$, then there exists a bijective map $\Psi: M \rightarrow N$ such that $\Psi(A)=\psi(I)\psi(A)$ with $\psi(I)^2=I$, whenever $\psi(I)$ is central, and there exist a central projection $\mathfrak{P} \in M $ such that the restriction of $\psi$ to $M \mathfrak{P}$ is a linear $*$-isomorphism, and to $M(I -\mathfrak{P})$ is a conjugate linear $*$-isomorphism.
Supporting Institution
Deanship of Scientific Research, King Abdulaziz University, Saudi Arabia
Project Number
G-212-662-1441
References
- [1] Z. Bai and S. Du, Maps preserving products $XY-YX^*$ on von Neumann algebras,
J. Math. Anal. Appl. 386, 103-109, 2012.
- [2] Z. Bai and S. Du, Multiplicative Lie isomorphism between prime rings, Comm. Algebra
36, 1626-1633, 2008.
- [3] Z. Bai and S. Du, Multiplicative $\ast$-Lie isomorphism between factors, J. Math. Anal.
Appl. 346, 327-335, 2008.
- [4] L. Dai and F. Lu, Nonlinear maps preserving Jordan ∗-products, J. Math. Anal. Appl.
409, 180-188, 2014.
- [5] D. Huo, B. Zheng and H. Liu, Nonlinear maps preserving Jordan triple $\eta$-$*$-products,
J. Math. Anal. App. 430 (2), 830-844, 2015.
- [6] D. Huo, B. Zheng, J. Xu and H. Liu, Nonlinear mappings preserving Jordan multiple
∗-product on factor von Neumann algebras, Linear Multilinear Algebra, 63 (5), 1026-
1036, 2015.
- [7] P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras,
Linear Algebra Appl., 430 (1), 335-343, 2009.
- [8] C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1-∗-product on von
Neumann algebras, Complex Anal. Oper. Theory, 11, 109-117, 2017.
- [9] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product $XY + Y X^*$ on
factor von Neumann algebras, Linear Algebra Appl. 438 (5), 2339-2345, 2013.
- [10] C. Li, F. Lu and T. Wang, Nonlinear maps preserving the Jordan triple $\ast$-product on
von Neumann algebras, Ann. Func. Anal. 7, 496-507, 2016.
- [11] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl.
357 (1-3), 123-131, 2002.
- [12] L. Yaoxian and Z. Jianhua, Nonlinear mixed Lie triple derivation on factor von Neumann
algebras, Acta Math. Sin. Chinese Ser. 62 (1), 13-24, 2019.
- [13] C.R. Miers, Lie homomorphisms of operator algebras, Pacific. J. Math. 38 (3), 717-
735, 1971.
- [14] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math.
Soc. 21, 695-698, 1969.
- [15] A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products $AP \pm PA^*$ on $C^*$-algebras, Math. Slovaca, 67, 213-220, 2017.
- [16] A. Taghavi, H. Rohi and V. Darvish, Additivity of maps preserving Jordan $\eta_{\ast}$-products
on $C^*$-algebras, Bull. Iranian Math. Soc. 41, 107-116, 2015.
- [17] P. Šmerl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119,
1105-1113, 1993.
- [18] Z. Yang and Y. Zhang, Nonlinear maps preserving the second mixed Lie triple products
on factor von Neumann algebras, Linear Multilinear Algebra, 68(2), 377-390, 2020.
- [19] Z. Yang and Y. Zhang, Nonlinear maps preserving mixed Lie triple products on factor
von Neumann algebras, Ann. Funct. Anal. 10, 325-336, 2019.
- [20] Y. Zhou, Z. Yang and J. Zhang, Nonlinear mixed Lie triple derivation on prime
∗-rings, Comm. Algebra, 47, 4791-4796, 2019.
Year 2025,
Volume: 54 Issue: 2, 378 - 388, 28.04.2025
Abdul Khan
,
Mohd Raza
,
Husain Alhazmi
Project Number
G-212-662-1441
References
- [1] Z. Bai and S. Du, Maps preserving products $XY-YX^*$ on von Neumann algebras,
J. Math. Anal. Appl. 386, 103-109, 2012.
- [2] Z. Bai and S. Du, Multiplicative Lie isomorphism between prime rings, Comm. Algebra
36, 1626-1633, 2008.
- [3] Z. Bai and S. Du, Multiplicative $\ast$-Lie isomorphism between factors, J. Math. Anal.
Appl. 346, 327-335, 2008.
- [4] L. Dai and F. Lu, Nonlinear maps preserving Jordan ∗-products, J. Math. Anal. Appl.
409, 180-188, 2014.
- [5] D. Huo, B. Zheng and H. Liu, Nonlinear maps preserving Jordan triple $\eta$-$*$-products,
J. Math. Anal. App. 430 (2), 830-844, 2015.
- [6] D. Huo, B. Zheng, J. Xu and H. Liu, Nonlinear mappings preserving Jordan multiple
∗-product on factor von Neumann algebras, Linear Multilinear Algebra, 63 (5), 1026-
1036, 2015.
- [7] P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras,
Linear Algebra Appl., 430 (1), 335-343, 2009.
- [8] C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1-∗-product on von
Neumann algebras, Complex Anal. Oper. Theory, 11, 109-117, 2017.
- [9] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product $XY + Y X^*$ on
factor von Neumann algebras, Linear Algebra Appl. 438 (5), 2339-2345, 2013.
- [10] C. Li, F. Lu and T. Wang, Nonlinear maps preserving the Jordan triple $\ast$-product on
von Neumann algebras, Ann. Func. Anal. 7, 496-507, 2016.
- [11] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl.
357 (1-3), 123-131, 2002.
- [12] L. Yaoxian and Z. Jianhua, Nonlinear mixed Lie triple derivation on factor von Neumann
algebras, Acta Math. Sin. Chinese Ser. 62 (1), 13-24, 2019.
- [13] C.R. Miers, Lie homomorphisms of operator algebras, Pacific. J. Math. 38 (3), 717-
735, 1971.
- [14] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math.
Soc. 21, 695-698, 1969.
- [15] A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products $AP \pm PA^*$ on $C^*$-algebras, Math. Slovaca, 67, 213-220, 2017.
- [16] A. Taghavi, H. Rohi and V. Darvish, Additivity of maps preserving Jordan $\eta_{\ast}$-products
on $C^*$-algebras, Bull. Iranian Math. Soc. 41, 107-116, 2015.
- [17] P. Šmerl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119,
1105-1113, 1993.
- [18] Z. Yang and Y. Zhang, Nonlinear maps preserving the second mixed Lie triple products
on factor von Neumann algebras, Linear Multilinear Algebra, 68(2), 377-390, 2020.
- [19] Z. Yang and Y. Zhang, Nonlinear maps preserving mixed Lie triple products on factor
von Neumann algebras, Ann. Funct. Anal. 10, 325-336, 2019.
- [20] Y. Zhou, Z. Yang and J. Zhang, Nonlinear mixed Lie triple derivation on prime
∗-rings, Comm. Algebra, 47, 4791-4796, 2019.