Research Article
BibTex RIS Cite

Non-linear mixed Jordan triple $1$-$*$-product on von Neumann algebras

Year 2025, Volume: 54 Issue: 2, 378 - 388, 28.04.2025
https://doi.org/10.15672/hujms.1311207

Abstract

It is shown that if $M$ and $N$ are two von Neumann algebras, one of which has no central abelian projection with $\psi: M \rightarrow N$ satisfying mixed Jordan triple $1$-$*$-product, i.e., $$\psi(A \circ B \bullet C)=\psi(A) \circ \psi(B) \bullet \psi(C)$$ for all $A, B, C \in M$, then there exists a bijective map $\Psi: M \rightarrow N$ such that $\Psi(A)=\psi(I)\psi(A)$ with $\psi(I)^2=I$, whenever $\psi(I)$ is central, and there exist a central projection $\mathfrak{P} \in M $ such that the restriction of $\psi$ to $M \mathfrak{P}$ is a linear $*$-isomorphism, and to $M(I -\mathfrak{P})$ is a conjugate linear $*$-isomorphism.

Supporting Institution

Deanship of Scientific Research, King Abdulaziz University, Saudi Arabia

Project Number

G-212-662-1441

References

  • [1] Z. Bai and S. Du, Maps preserving products $XY-YX^*$ on von Neumann algebras, J. Math. Anal. Appl. 386, 103-109, 2012.
  • [2] Z. Bai and S. Du, Multiplicative Lie isomorphism between prime rings, Comm. Algebra 36, 1626-1633, 2008.
  • [3] Z. Bai and S. Du, Multiplicative $\ast$-Lie isomorphism between factors, J. Math. Anal. Appl. 346, 327-335, 2008.
  • [4] L. Dai and F. Lu, Nonlinear maps preserving Jordan ∗-products, J. Math. Anal. Appl. 409, 180-188, 2014.
  • [5] D. Huo, B. Zheng and H. Liu, Nonlinear maps preserving Jordan triple $\eta$-$*$-products, J. Math. Anal. App. 430 (2), 830-844, 2015.
  • [6] D. Huo, B. Zheng, J. Xu and H. Liu, Nonlinear mappings preserving Jordan multiple ∗-product on factor von Neumann algebras, Linear Multilinear Algebra, 63 (5), 1026- 1036, 2015.
  • [7] P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl., 430 (1), 335-343, 2009.
  • [8] C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1-∗-product on von Neumann algebras, Complex Anal. Oper. Theory, 11, 109-117, 2017.
  • [9] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product $XY + Y X^*$ on factor von Neumann algebras, Linear Algebra Appl. 438 (5), 2339-2345, 2013.
  • [10] C. Li, F. Lu and T. Wang, Nonlinear maps preserving the Jordan triple $\ast$-product on von Neumann algebras, Ann. Func. Anal. 7, 496-507, 2016.
  • [11] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (1-3), 123-131, 2002.
  • [12] L. Yaoxian and Z. Jianhua, Nonlinear mixed Lie triple derivation on factor von Neumann algebras, Acta Math. Sin. Chinese Ser. 62 (1), 13-24, 2019.
  • [13] C.R. Miers, Lie homomorphisms of operator algebras, Pacific. J. Math. 38 (3), 717- 735, 1971.
  • [14] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21, 695-698, 1969.
  • [15] A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products $AP \pm PA^*$ on $C^*$-algebras, Math. Slovaca, 67, 213-220, 2017.
  • [16] A. Taghavi, H. Rohi and V. Darvish, Additivity of maps preserving Jordan $\eta_{\ast}$-products on $C^*$-algebras, Bull. Iranian Math. Soc. 41, 107-116, 2015.
  • [17] P. Šmerl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119, 1105-1113, 1993.
  • [18] Z. Yang and Y. Zhang, Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras, Linear Multilinear Algebra, 68(2), 377-390, 2020.
  • [19] Z. Yang and Y. Zhang, Nonlinear maps preserving mixed Lie triple products on factor von Neumann algebras, Ann. Funct. Anal. 10, 325-336, 2019.
  • [20] Y. Zhou, Z. Yang and J. Zhang, Nonlinear mixed Lie triple derivation on prime ∗-rings, Comm. Algebra, 47, 4791-4796, 2019.
Year 2025, Volume: 54 Issue: 2, 378 - 388, 28.04.2025
https://doi.org/10.15672/hujms.1311207

Abstract

Project Number

G-212-662-1441

References

  • [1] Z. Bai and S. Du, Maps preserving products $XY-YX^*$ on von Neumann algebras, J. Math. Anal. Appl. 386, 103-109, 2012.
  • [2] Z. Bai and S. Du, Multiplicative Lie isomorphism between prime rings, Comm. Algebra 36, 1626-1633, 2008.
  • [3] Z. Bai and S. Du, Multiplicative $\ast$-Lie isomorphism between factors, J. Math. Anal. Appl. 346, 327-335, 2008.
  • [4] L. Dai and F. Lu, Nonlinear maps preserving Jordan ∗-products, J. Math. Anal. Appl. 409, 180-188, 2014.
  • [5] D. Huo, B. Zheng and H. Liu, Nonlinear maps preserving Jordan triple $\eta$-$*$-products, J. Math. Anal. App. 430 (2), 830-844, 2015.
  • [6] D. Huo, B. Zheng, J. Xu and H. Liu, Nonlinear mappings preserving Jordan multiple ∗-product on factor von Neumann algebras, Linear Multilinear Algebra, 63 (5), 1026- 1036, 2015.
  • [7] P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl., 430 (1), 335-343, 2009.
  • [8] C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1-∗-product on von Neumann algebras, Complex Anal. Oper. Theory, 11, 109-117, 2017.
  • [9] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product $XY + Y X^*$ on factor von Neumann algebras, Linear Algebra Appl. 438 (5), 2339-2345, 2013.
  • [10] C. Li, F. Lu and T. Wang, Nonlinear maps preserving the Jordan triple $\ast$-product on von Neumann algebras, Ann. Func. Anal. 7, 496-507, 2016.
  • [11] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (1-3), 123-131, 2002.
  • [12] L. Yaoxian and Z. Jianhua, Nonlinear mixed Lie triple derivation on factor von Neumann algebras, Acta Math. Sin. Chinese Ser. 62 (1), 13-24, 2019.
  • [13] C.R. Miers, Lie homomorphisms of operator algebras, Pacific. J. Math. 38 (3), 717- 735, 1971.
  • [14] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21, 695-698, 1969.
  • [15] A. Taghavi, V. Darvish and H. Rohi, Additivity of maps preserving products $AP \pm PA^*$ on $C^*$-algebras, Math. Slovaca, 67, 213-220, 2017.
  • [16] A. Taghavi, H. Rohi and V. Darvish, Additivity of maps preserving Jordan $\eta_{\ast}$-products on $C^*$-algebras, Bull. Iranian Math. Soc. 41, 107-116, 2015.
  • [17] P. Šmerl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119, 1105-1113, 1993.
  • [18] Z. Yang and Y. Zhang, Nonlinear maps preserving the second mixed Lie triple products on factor von Neumann algebras, Linear Multilinear Algebra, 68(2), 377-390, 2020.
  • [19] Z. Yang and Y. Zhang, Nonlinear maps preserving mixed Lie triple products on factor von Neumann algebras, Ann. Funct. Anal. 10, 325-336, 2019.
  • [20] Y. Zhou, Z. Yang and J. Zhang, Nonlinear mixed Lie triple derivation on prime ∗-rings, Comm. Algebra, 47, 4791-4796, 2019.
There are 20 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Mathematics
Authors

Abdul Khan 0000-0002-5861-6137

Mohd Raza 0000-0001-6799-8969

Husain Alhazmi 0000-0001-7190-5884

Project Number G-212-662-1441
Early Pub Date August 27, 2024
Publication Date April 28, 2025
Published in Issue Year 2025 Volume: 54 Issue: 2

Cite

APA Khan, A., Raza, M., & Alhazmi, H. (2025). Non-linear mixed Jordan triple $1$-$*$-product on von Neumann algebras. Hacettepe Journal of Mathematics and Statistics, 54(2), 378-388. https://doi.org/10.15672/hujms.1311207
AMA Khan A, Raza M, Alhazmi H. Non-linear mixed Jordan triple $1$-$*$-product on von Neumann algebras. Hacettepe Journal of Mathematics and Statistics. April 2025;54(2):378-388. doi:10.15672/hujms.1311207
Chicago Khan, Abdul, Mohd Raza, and Husain Alhazmi. “Non-Linear Mixed Jordan Triple $1$-$*$-Product on Von Neumann Algebras”. Hacettepe Journal of Mathematics and Statistics 54, no. 2 (April 2025): 378-88. https://doi.org/10.15672/hujms.1311207.
EndNote Khan A, Raza M, Alhazmi H (April 1, 2025) Non-linear mixed Jordan triple $1$-$*$-product on von Neumann algebras. Hacettepe Journal of Mathematics and Statistics 54 2 378–388.
IEEE A. Khan, M. Raza, and H. Alhazmi, “Non-linear mixed Jordan triple $1$-$*$-product on von Neumann algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, pp. 378–388, 2025, doi: 10.15672/hujms.1311207.
ISNAD Khan, Abdul et al. “Non-Linear Mixed Jordan Triple $1$-$*$-Product on Von Neumann Algebras”. Hacettepe Journal of Mathematics and Statistics 54/2 (April 2025), 378-388. https://doi.org/10.15672/hujms.1311207.
JAMA Khan A, Raza M, Alhazmi H. Non-linear mixed Jordan triple $1$-$*$-product on von Neumann algebras. Hacettepe Journal of Mathematics and Statistics. 2025;54:378–388.
MLA Khan, Abdul et al. “Non-Linear Mixed Jordan Triple $1$-$*$-Product on Von Neumann Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, 2025, pp. 378-8, doi:10.15672/hujms.1311207.
Vancouver Khan A, Raza M, Alhazmi H. Non-linear mixed Jordan triple $1$-$*$-product on von Neumann algebras. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):378-8.