On arithmetical properties of degenerate Cauchy polynomials and numbers
Year 2025,
Volume: 54 Issue: 2, 457 - 469, 28.04.2025
Mehmet Cenkci
,
Takao Komatsu
Abstract
In this paper, we study the arithmetical properties of degenerate Cauchy polynomials and numbers. We present some basic properties and recurrence relations, determine all the coefficients of degenerate Cauchy polynomials, and give some convolution identities. These results are particularly useful to deduce interesting and new divisibility properties for degenerate Cauchy polynomials and numbers.
References
- [1] T. Agoh, Convolution identities for Bernoulli and Genocchi polynomials, The Electronic
Journal of Combinatorics 21, #P1.65, 2014.
- [2] T. Arakawa, T. Ibuyikama and M. Kaneko, Bernoulli Numbers and Zeta Functions,
Springer Verlag, New York, 2014.
- [3] L. Carlitz, A degenerate Staudt-Clausen theorem, Archiv der Mathematik 7, 28–33,
1956.
- [4] L. Carlitz, Degenerate Stirling, Bernoulli, and Eulerian numbers, Utilitas Mathematica
15, 51–88, 1979.
- [5] M. Cenkci and F.T. Howard, Notes on degenerate numbers, Discrete Mathematics
307, 2359–2375, 2007.
- [6] M. Cenkci and P.T. Young, Generalizations of poly-Bernoulli and poly-Cauchy numbers,
European Journal of Mathematics 1, 799–828, 2015.
- [7] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
- [8] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed.,
Addison-Wesley, Reading, 1994.
- [9] F.T. Howard, Degenerate weighted Stirling numbers, Discrete Mathematics 57, 45–58,
1985.
- [10] F.T. Howard, Extensions of congruences of Glaisher and Nielsen concerning Stirling
numbers, Fibonacci Quarterly 28, 355–362, 1990.
- [11] F.T. Howard, Congruences for the Stirling numbers and associated Stirling numbers,
Acta Arithmetica, 55, 29–41, 1990.
- [12] F.T. Howard, Nörlund’s number $B_{n}^{(n)}$, in: Applications of Fibonacci numbers, Vol.
5 (G. E. Bergum, A. N. Philippou and A. F. Horadam, eds.), Springer, Dordrecht,
355–366, 1993.
- [13] F.T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Mathematics
162, 175–185, 1996.
- [14] L.C. Hsu and P.J.-S. Shiue, On certain summation problems and generalizations of
Eulerian polynomials and numbers, Discrete Mathematics 204, 237–247, 1999.
- [15] L. Kargın, On Cauchy numbers and their generalizations, Gazi University Journal of
Science 33, 456–474, 2020.
- [16] L. Kargın and B. Çekim, Higher order generalized geometric polynomials, Turkish
Journal of Mathematics 42, 887-903, 2018.
- [17] T. Komatsu, Poly-Cauchy numbers, Kyushu Journal of Mathematics 67, 143–153,
2013.
- [18] T. Komatsu, Leaping Cauchy numbers, Filomat 32, 6167–6176, 2018.
- [19] T. Komatsu, Two types of hypergeometric degenerate Cauchy numbers, Open Mathematics
18, 417–433, 2020.
- [20] T. Komatsu and C. Pita-Ruiz, Shifted Cauchy numbers, Quaestiones Mathematicae
43, 213–226, 2020.
- [21] D. Merlini, R. Sprugnoli and M.C. Verri, The Cauchy numbers, Discrete Mathematics
306, 1906–1920, 2006.
- [22] N.E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, Germany,
1924, reprinted by Chelsea, Bronx, NY, USA, 1954.
- [23] M. Rahmani, On p-Cauchy numbers, Filomat 30, 2731–2742, 2016.
- [24] P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their
applications, Journal of Number Theory 128, 738–758, 2008.
Year 2025,
Volume: 54 Issue: 2, 457 - 469, 28.04.2025
Mehmet Cenkci
,
Takao Komatsu
References
- [1] T. Agoh, Convolution identities for Bernoulli and Genocchi polynomials, The Electronic
Journal of Combinatorics 21, #P1.65, 2014.
- [2] T. Arakawa, T. Ibuyikama and M. Kaneko, Bernoulli Numbers and Zeta Functions,
Springer Verlag, New York, 2014.
- [3] L. Carlitz, A degenerate Staudt-Clausen theorem, Archiv der Mathematik 7, 28–33,
1956.
- [4] L. Carlitz, Degenerate Stirling, Bernoulli, and Eulerian numbers, Utilitas Mathematica
15, 51–88, 1979.
- [5] M. Cenkci and F.T. Howard, Notes on degenerate numbers, Discrete Mathematics
307, 2359–2375, 2007.
- [6] M. Cenkci and P.T. Young, Generalizations of poly-Bernoulli and poly-Cauchy numbers,
European Journal of Mathematics 1, 799–828, 2015.
- [7] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
- [8] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed.,
Addison-Wesley, Reading, 1994.
- [9] F.T. Howard, Degenerate weighted Stirling numbers, Discrete Mathematics 57, 45–58,
1985.
- [10] F.T. Howard, Extensions of congruences of Glaisher and Nielsen concerning Stirling
numbers, Fibonacci Quarterly 28, 355–362, 1990.
- [11] F.T. Howard, Congruences for the Stirling numbers and associated Stirling numbers,
Acta Arithmetica, 55, 29–41, 1990.
- [12] F.T. Howard, Nörlund’s number $B_{n}^{(n)}$, in: Applications of Fibonacci numbers, Vol.
5 (G. E. Bergum, A. N. Philippou and A. F. Horadam, eds.), Springer, Dordrecht,
355–366, 1993.
- [13] F.T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Mathematics
162, 175–185, 1996.
- [14] L.C. Hsu and P.J.-S. Shiue, On certain summation problems and generalizations of
Eulerian polynomials and numbers, Discrete Mathematics 204, 237–247, 1999.
- [15] L. Kargın, On Cauchy numbers and their generalizations, Gazi University Journal of
Science 33, 456–474, 2020.
- [16] L. Kargın and B. Çekim, Higher order generalized geometric polynomials, Turkish
Journal of Mathematics 42, 887-903, 2018.
- [17] T. Komatsu, Poly-Cauchy numbers, Kyushu Journal of Mathematics 67, 143–153,
2013.
- [18] T. Komatsu, Leaping Cauchy numbers, Filomat 32, 6167–6176, 2018.
- [19] T. Komatsu, Two types of hypergeometric degenerate Cauchy numbers, Open Mathematics
18, 417–433, 2020.
- [20] T. Komatsu and C. Pita-Ruiz, Shifted Cauchy numbers, Quaestiones Mathematicae
43, 213–226, 2020.
- [21] D. Merlini, R. Sprugnoli and M.C. Verri, The Cauchy numbers, Discrete Mathematics
306, 1906–1920, 2006.
- [22] N.E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, Germany,
1924, reprinted by Chelsea, Bronx, NY, USA, 1954.
- [23] M. Rahmani, On p-Cauchy numbers, Filomat 30, 2731–2742, 2016.
- [24] P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their
applications, Journal of Number Theory 128, 738–758, 2008.