Research Article
BibTex RIS Cite
Year 2025, Volume: 54 Issue: 2, 368 - 377, 28.04.2025
https://doi.org/10.15672/hujms.1386151

Abstract

References

  • [1] Z. Abdulhadi, Typically real log-harmonic mappings, Int. J. Math. Math. Sci. 31, 1–9, 2002.
  • [2] Z. Abdulhadi, Close-to-starlike log-harmonic mappings, Int. J. Math. Math. Sci. 19, 563–574, 1996.
  • [3] Z. Abdulhadi and D. Bshouty, Univalent functions in $H\overline{H}(\mathbb{D})$, Tran. Amer. Math. Soc. 305, 841–849, 1988.
  • [4] Z. Abdulhadi and Y. Abu Muhanna, Starlike log-harmonic mappings of order alpha, J. Inequal. Pure Appl. Math. 7, Article 123, 2006.
  • [5] Z. Abdulhadi and W. Hengartner, Spirallike log-harmonic mappings, Complex Variables: Theory Appl. 9, 121–130, 1987.
  • [6] Z. Abdulhadi and W. Hengartner, One pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203 , 333–351, 1996.
  • [7] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45, 213–232, 2019.
  • [8] P. L. Duren, Univalent functions, Springer, New York, 1983.
  • [9] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28, 297–326, 1973.
  • [10] Z. Liu and S. Ponnusamy, Some properties of univalent log-harmonic mappings, Filomat, 32, 5275–5288, 2018.
  • [11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.

Log-Harmonic mappings associated with the sine function

Year 2025, Volume: 54 Issue: 2, 368 - 377, 28.04.2025
https://doi.org/10.15672/hujms.1386151

Abstract

In this paper, we define new subclasses $\mathcal{ST}_{lh}(s)$ and $\mathcal{CST}_{lh}(s)$ of sine starlike log-harmonic mappings and sine close-to-starlike log-harmonic mappings, respectively, defined in the open unit disc ${\mathbb D}$. We investigate representation theorem and integral representation theorem for functions in the class $\mathcal{ST}_{lh}(s)$. Further, we determine radius of starlikeness for functions in the classes $\mathcal{ST}_{lh}(s)$ and $\mathcal{CST}_{lh}(s)$.

References

  • [1] Z. Abdulhadi, Typically real log-harmonic mappings, Int. J. Math. Math. Sci. 31, 1–9, 2002.
  • [2] Z. Abdulhadi, Close-to-starlike log-harmonic mappings, Int. J. Math. Math. Sci. 19, 563–574, 1996.
  • [3] Z. Abdulhadi and D. Bshouty, Univalent functions in $H\overline{H}(\mathbb{D})$, Tran. Amer. Math. Soc. 305, 841–849, 1988.
  • [4] Z. Abdulhadi and Y. Abu Muhanna, Starlike log-harmonic mappings of order alpha, J. Inequal. Pure Appl. Math. 7, Article 123, 2006.
  • [5] Z. Abdulhadi and W. Hengartner, Spirallike log-harmonic mappings, Complex Variables: Theory Appl. 9, 121–130, 1987.
  • [6] Z. Abdulhadi and W. Hengartner, One pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203 , 333–351, 1996.
  • [7] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45, 213–232, 2019.
  • [8] P. L. Duren, Univalent functions, Springer, New York, 1983.
  • [9] W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28, 297–326, 1973.
  • [10] Z. Liu and S. Ponnusamy, Some properties of univalent log-harmonic mappings, Filomat, 32, 5275–5288, 2018.
  • [11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.
There are 11 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Mathematics
Authors

Sushil Kumar Kumar 0000-0003-4665-8011

Asena Çetinkaya 0000-0002-8815-5642

Hatice Esra Özkan Uçar 0000-0003-3787-5989

Early Pub Date April 14, 2024
Publication Date April 28, 2025
Submission Date November 4, 2023
Acceptance Date March 12, 2024
Published in Issue Year 2025 Volume: 54 Issue: 2

Cite

APA Kumar, S. K., Çetinkaya, A., & Özkan Uçar, H. E. (2025). Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics, 54(2), 368-377. https://doi.org/10.15672/hujms.1386151
AMA Kumar SK, Çetinkaya A, Özkan Uçar HE. Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics. April 2025;54(2):368-377. doi:10.15672/hujms.1386151
Chicago Kumar, Sushil Kumar, Asena Çetinkaya, and Hatice Esra Özkan Uçar. “Log-Harmonic Mappings Associated With the Sine Function”. Hacettepe Journal of Mathematics and Statistics 54, no. 2 (April 2025): 368-77. https://doi.org/10.15672/hujms.1386151.
EndNote Kumar SK, Çetinkaya A, Özkan Uçar HE (April 1, 2025) Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics 54 2 368–377.
IEEE S. K. Kumar, A. Çetinkaya, and H. E. Özkan Uçar, “Log-Harmonic mappings associated with the sine function”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, pp. 368–377, 2025, doi: 10.15672/hujms.1386151.
ISNAD Kumar, Sushil Kumar et al. “Log-Harmonic Mappings Associated With the Sine Function”. Hacettepe Journal of Mathematics and Statistics 54/2 (April 2025), 368-377. https://doi.org/10.15672/hujms.1386151.
JAMA Kumar SK, Çetinkaya A, Özkan Uçar HE. Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics. 2025;54:368–377.
MLA Kumar, Sushil Kumar et al. “Log-Harmonic Mappings Associated With the Sine Function”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, 2025, pp. 368-77, doi:10.15672/hujms.1386151.
Vancouver Kumar SK, Çetinkaya A, Özkan Uçar HE. Log-Harmonic mappings associated with the sine function. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):368-77.