Double phase variable exponent problems with nonlinear matrices diffusion
Year 2025,
Volume: 54 Issue: 2, 445 - 456, 28.04.2025
Abderrahim Charkaoui
,
Jinlan Pan
Abstract
This work tackles a class of double phase elliptic problems with variable exponents and matrices diffusion. Under suitable assumptions on the data, we use critical point theory to establish both the existence and uniqueness of weak solutions to the double phase problem under consideration.
References
- [1] H. Alaa, N. E. Alaa, A. Bouchriti and A. Charkaoui, An improved nonlinear
anisotropic model with $p(x)$-growth conditions applied to image restoration and enhancement,
Math. Meth. Appl. Sci. 47 (9), 7546–7575, 2024.
- [2] H. Alaa, N. E. Alaa and A. Charkaoui, Time periodic solutions for strongly nonlinear
parabolic systems with $p(x)$-growth conditions, J. Elliptic Parabol. Equ. 7, 815–839,
2021.
- [3] N. E. Alaa, A. Charkaoui, M. El Ghabi and M. El Hathout, Integral Solution for a
Parabolic Equation Driven by the $p(x)$-Laplacian Operator with Nonlinear Boundary
Conditions and L1 Data, Mediterr. J. Math. 20 (5), 244, 2023.
- [4] A. Alvino, V. Ferone and G. Trombetti, On the properties of some nonlinear eigenvalues,
SIAM J. Math. Anal. 29, 437–451, 1998.
- [5] A. Bahrouni, V. D. Rˇadulescu and D.D. Repovš, Double phase transonic flow problems
with variable growth: nonlinear patterns and stationary waves, Nonlinearity, 32,
2481–2495, 2019.
- [6] A. Bahrouni, V. D. Rˇadulescu and D. D. Repovš, A weighted anisotropic variant of the
Caffarelli-Kohn-Nirenberg inequality and applications, Nonlinearity, 31, 1516–1534,
2018.
- [7] P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals,
Nonlinear Anal. 121, 206–222, 2015.
- [8] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with
double phase, Calc. Var. PDEs 57, 48 pp. 2018.
- [9] S. S. Byun, J. Ok, K. Song, Hölder regularity for weak solutions to nonlocal double
phase problems, J. Math. Pures Appl. 168, 110–142, 2022.
- [10] J. X. Cen, S. J. Kim, Y. H. Kim and S. Zeng, Multiplicity results of solutions to
the double phase anisotropic variational problems involving variable exponent, Adv.
Differential Equ. 28, 467–504, 2023.
- [11] M. Cencelj, V. D. Radulescu and D. D. Repov˘s, Double phase problems with variable
growth, Nonlinear Anal. 177, 270–287, 2018.
- [12] A. Charkaoui, A. Ben-Loghfyry and S. Zeng, A Novel Parabolic Model Driven by
Double Phase Flux Operator with Variable Exponents: Application to Image Decomposition
and Denoising, Available at SSRN 4682810.
- [13] A. Charkaoui, Periodic solutions for nonlinear evolution equations with $p(x)$-growth
structure, Evol. Equ. Control Theory 13 (3), 877-892, 2024.
- [14] A. Charkaoui and N. E. Alaa, Existence and uniqueness of renormalized periodic
solution to a nonlinear parabolic problem with variable exponent and L1 data. J. Math.
Anal. Appl. 506 (2), 125674, 2022.
- [15] A. Charkaoui and N. E. Alaa, An $L^1$-theory for a nonlinear temporal periodic problem
involving $p(x)$-growth structure with a strong dependence on gradients, J. Evol. Equ.
23, 73, 2023.
- [16] A. Charkaoui, A. Ben-Loghfyry and S. Zeng, Nonlinear Parabolic Double Phase Variable
Exponent Systems with Applications in Image Noise Removal, Applied Mathematical
Modelling, 132, 495–530, 2024.
- [17] A. Charkaoui, H. Fahim and N. E. Alaa, Nonlinear parabolic equation having nonstandard
growth condition with respect to the gradient and variable exponent, Opuscula
Math. 41, 25–53, 2021.
- [18] Y. Chen, S. Levineand and M. Rao, Variable exponent linear growth functionals in
image restoration, SIAM J. Appl. Math. 66, 1383–1406, 2006.
- [19] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch.
Ration. Mech. Anal. 215, 443–496, 2015.
- [20] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals,
Arch. Ration. Mech. Anal. 218, 219–273, 2015.
- [21] A. Crespo-Blanco, L. Gasinski, P. Harjulehto and P. Winkert, A new class of double
phase variable exponent problems: existence and uniqueness, J. Differerential Equ.
323, 182–228, 2022.
- [22] C. De Filippis and G. Mingione, Regularity for double phase problems at nearly linear
growth, Arch. Ration. Mecha. Anal. 247, 50 pp. 2023.
- [23] A. El Khalil, P. Lindqvist and A. Touzani, On the stability of the first eigenvalue of
the problem: $A_{p}u+\lambda g(x)|u|^{p-2}u=0$ with varying p, Rend. Mat. 24, 321–336, 2004.
- [24] H. Fahim, A. Charkaoui and N. E. Alaa, Parabolic systems driven by general differential
operators with variable exponents and strong nonlinearities with respect to the
gradient. J Elliptic Parabol. Equ. 7, 199–219, 2021.
- [25] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl.
263, 424–446, 2001.
- [26] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations,
J. Math. Anal. Appl. 367, 204–228, 2010.
- [27] L. Gasinski and P. Winkert, Existence and uniqueness results for double phase problems
with convection term, J. Differ. Equ. 268, 4183–4193, 2020.
- [28] K. Ho and P. Winkert, New embedding results for double phase problems with variable
exponents and a priori bounds for corresponding generalized double phase problems,
Calc. Var. PDEs 62, 38 pp. 2023.
- [29] I. H. Kim, Y. H. Kim, M. W. Oh and S. Zeng, Existence and multiplicity of solutions
to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal.
67, 103627, 2022.
- [30] O. Kovácik and J. Rákosník, On spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$, Czechoslovak Math.
J. 41, 592–618, 1991.
- [31] W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J.
Differ. Equ. 265, 4311–4334, 2018.
- [32] W. Liu and G. Dai, Three ground state solutions for double phase problem, J. Math.
Phys. 59, 121503, 2018.
- [33] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with
non standard growth conditions, Arch. Ration. Mech. Anal. 105, 267–284, 1989.
- [34] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, qgrowth
conditions, J. Differ. Equ. 90, 1–30, 1991.
- [35] M. Mihˇailescu and V. Rˇadulescu, A multiplicity result for a nonlinear degenerate problem
arising in the theory of electrorheological fluids, Proc. R. Soc. A 462, 2625–2641,
2006.
- [36] M. Mihˇailescu and D. Repovš, On a PDE involving the $\mathcal{A}_{p(\cdot)}$-Laplace operator, Nonlinear
Anal. 75, 975–981, 2012.
- [37] N. S. Papageorgiou, V. D. Radulescu and D. D. Repov˘s, Double-phase problems and
a discontinuity property of the spectrum, P. Am. Math. Soc. 147, 2899–2910, 2019.
- [38] V. D. Radulescu and D. D. Repov˘s, Partial Differential Equations with Variable Exponents:
Variational Methods and Qualitative Analysis, CRC Press Taylor and Francis
Group, 2015.
- [39] K. Rajagopal, Mathematical modelling of electrorheological fluids, Contin. Mech.
Thermodyn. 13, 59–78, 2001.
- [40] Y. G. Reshetnyak, Set of singular points of solutions of certain nonlinear elliptic
equations, Sibirsk. Mat. Zh. 9, 354–368, 1968. (in Russian).
- [41] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer
Science and Business Media, 2000.
- [42] S. Zeng, N. S. Papageorgiou and P. Winkert, Inverse problems for double-phase obstacle
problems with variable exponents, J. Optim. Theory Appl. 196, 666–699, 2023.
- [43] S. Zeng, V. D. Radulescu and P. Winkert, Double phase obstacle problems with variable
exponent, Adv. Differential Equ. 27, 611–645, 2022.
- [44] S. Zeng, V. D. Radulescu and P. Winkert, Double phase implicit obstacle problems
with convection and multivalued mixed boundary value conditions, SIAM J. Math.
Anal. 54, 1898–1926, 2022.
- [45] Q. Zhang and V. D. Rˇadulescu, Double phase anisotropic variational problems and
combined effects of reaction and absorption terms, J. Math. Pures Appl. 118, 159–203,
2018.
- [46] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity
theory, Izv. Ros. Akadem. Nauk. 50, 675–710, 1986.
- [47] V. V. Zhikov, On Lavrentiev’s phenomenon, Russian J. Math. Phy. 3, 2 pp. 1995.
- [48] V. V. Zhikov, On some variational problems, Russian J. Math. Phys. 5, 105 pp. 1997.
Year 2025,
Volume: 54 Issue: 2, 445 - 456, 28.04.2025
Abderrahim Charkaoui
,
Jinlan Pan
References
- [1] H. Alaa, N. E. Alaa, A. Bouchriti and A. Charkaoui, An improved nonlinear
anisotropic model with $p(x)$-growth conditions applied to image restoration and enhancement,
Math. Meth. Appl. Sci. 47 (9), 7546–7575, 2024.
- [2] H. Alaa, N. E. Alaa and A. Charkaoui, Time periodic solutions for strongly nonlinear
parabolic systems with $p(x)$-growth conditions, J. Elliptic Parabol. Equ. 7, 815–839,
2021.
- [3] N. E. Alaa, A. Charkaoui, M. El Ghabi and M. El Hathout, Integral Solution for a
Parabolic Equation Driven by the $p(x)$-Laplacian Operator with Nonlinear Boundary
Conditions and L1 Data, Mediterr. J. Math. 20 (5), 244, 2023.
- [4] A. Alvino, V. Ferone and G. Trombetti, On the properties of some nonlinear eigenvalues,
SIAM J. Math. Anal. 29, 437–451, 1998.
- [5] A. Bahrouni, V. D. Rˇadulescu and D.D. Repovš, Double phase transonic flow problems
with variable growth: nonlinear patterns and stationary waves, Nonlinearity, 32,
2481–2495, 2019.
- [6] A. Bahrouni, V. D. Rˇadulescu and D. D. Repovš, A weighted anisotropic variant of the
Caffarelli-Kohn-Nirenberg inequality and applications, Nonlinearity, 31, 1516–1534,
2018.
- [7] P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals,
Nonlinear Anal. 121, 206–222, 2015.
- [8] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with
double phase, Calc. Var. PDEs 57, 48 pp. 2018.
- [9] S. S. Byun, J. Ok, K. Song, Hölder regularity for weak solutions to nonlocal double
phase problems, J. Math. Pures Appl. 168, 110–142, 2022.
- [10] J. X. Cen, S. J. Kim, Y. H. Kim and S. Zeng, Multiplicity results of solutions to
the double phase anisotropic variational problems involving variable exponent, Adv.
Differential Equ. 28, 467–504, 2023.
- [11] M. Cencelj, V. D. Radulescu and D. D. Repov˘s, Double phase problems with variable
growth, Nonlinear Anal. 177, 270–287, 2018.
- [12] A. Charkaoui, A. Ben-Loghfyry and S. Zeng, A Novel Parabolic Model Driven by
Double Phase Flux Operator with Variable Exponents: Application to Image Decomposition
and Denoising, Available at SSRN 4682810.
- [13] A. Charkaoui, Periodic solutions for nonlinear evolution equations with $p(x)$-growth
structure, Evol. Equ. Control Theory 13 (3), 877-892, 2024.
- [14] A. Charkaoui and N. E. Alaa, Existence and uniqueness of renormalized periodic
solution to a nonlinear parabolic problem with variable exponent and L1 data. J. Math.
Anal. Appl. 506 (2), 125674, 2022.
- [15] A. Charkaoui and N. E. Alaa, An $L^1$-theory for a nonlinear temporal periodic problem
involving $p(x)$-growth structure with a strong dependence on gradients, J. Evol. Equ.
23, 73, 2023.
- [16] A. Charkaoui, A. Ben-Loghfyry and S. Zeng, Nonlinear Parabolic Double Phase Variable
Exponent Systems with Applications in Image Noise Removal, Applied Mathematical
Modelling, 132, 495–530, 2024.
- [17] A. Charkaoui, H. Fahim and N. E. Alaa, Nonlinear parabolic equation having nonstandard
growth condition with respect to the gradient and variable exponent, Opuscula
Math. 41, 25–53, 2021.
- [18] Y. Chen, S. Levineand and M. Rao, Variable exponent linear growth functionals in
image restoration, SIAM J. Appl. Math. 66, 1383–1406, 2006.
- [19] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch.
Ration. Mech. Anal. 215, 443–496, 2015.
- [20] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals,
Arch. Ration. Mech. Anal. 218, 219–273, 2015.
- [21] A. Crespo-Blanco, L. Gasinski, P. Harjulehto and P. Winkert, A new class of double
phase variable exponent problems: existence and uniqueness, J. Differerential Equ.
323, 182–228, 2022.
- [22] C. De Filippis and G. Mingione, Regularity for double phase problems at nearly linear
growth, Arch. Ration. Mecha. Anal. 247, 50 pp. 2023.
- [23] A. El Khalil, P. Lindqvist and A. Touzani, On the stability of the first eigenvalue of
the problem: $A_{p}u+\lambda g(x)|u|^{p-2}u=0$ with varying p, Rend. Mat. 24, 321–336, 2004.
- [24] H. Fahim, A. Charkaoui and N. E. Alaa, Parabolic systems driven by general differential
operators with variable exponents and strong nonlinearities with respect to the
gradient. J Elliptic Parabol. Equ. 7, 199–219, 2021.
- [25] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl.
263, 424–446, 2001.
- [26] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations,
J. Math. Anal. Appl. 367, 204–228, 2010.
- [27] L. Gasinski and P. Winkert, Existence and uniqueness results for double phase problems
with convection term, J. Differ. Equ. 268, 4183–4193, 2020.
- [28] K. Ho and P. Winkert, New embedding results for double phase problems with variable
exponents and a priori bounds for corresponding generalized double phase problems,
Calc. Var. PDEs 62, 38 pp. 2023.
- [29] I. H. Kim, Y. H. Kim, M. W. Oh and S. Zeng, Existence and multiplicity of solutions
to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal.
67, 103627, 2022.
- [30] O. Kovácik and J. Rákosník, On spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$, Czechoslovak Math.
J. 41, 592–618, 1991.
- [31] W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J.
Differ. Equ. 265, 4311–4334, 2018.
- [32] W. Liu and G. Dai, Three ground state solutions for double phase problem, J. Math.
Phys. 59, 121503, 2018.
- [33] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with
non standard growth conditions, Arch. Ration. Mech. Anal. 105, 267–284, 1989.
- [34] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, qgrowth
conditions, J. Differ. Equ. 90, 1–30, 1991.
- [35] M. Mihˇailescu and V. Rˇadulescu, A multiplicity result for a nonlinear degenerate problem
arising in the theory of electrorheological fluids, Proc. R. Soc. A 462, 2625–2641,
2006.
- [36] M. Mihˇailescu and D. Repovš, On a PDE involving the $\mathcal{A}_{p(\cdot)}$-Laplace operator, Nonlinear
Anal. 75, 975–981, 2012.
- [37] N. S. Papageorgiou, V. D. Radulescu and D. D. Repov˘s, Double-phase problems and
a discontinuity property of the spectrum, P. Am. Math. Soc. 147, 2899–2910, 2019.
- [38] V. D. Radulescu and D. D. Repov˘s, Partial Differential Equations with Variable Exponents:
Variational Methods and Qualitative Analysis, CRC Press Taylor and Francis
Group, 2015.
- [39] K. Rajagopal, Mathematical modelling of electrorheological fluids, Contin. Mech.
Thermodyn. 13, 59–78, 2001.
- [40] Y. G. Reshetnyak, Set of singular points of solutions of certain nonlinear elliptic
equations, Sibirsk. Mat. Zh. 9, 354–368, 1968. (in Russian).
- [41] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer
Science and Business Media, 2000.
- [42] S. Zeng, N. S. Papageorgiou and P. Winkert, Inverse problems for double-phase obstacle
problems with variable exponents, J. Optim. Theory Appl. 196, 666–699, 2023.
- [43] S. Zeng, V. D. Radulescu and P. Winkert, Double phase obstacle problems with variable
exponent, Adv. Differential Equ. 27, 611–645, 2022.
- [44] S. Zeng, V. D. Radulescu and P. Winkert, Double phase implicit obstacle problems
with convection and multivalued mixed boundary value conditions, SIAM J. Math.
Anal. 54, 1898–1926, 2022.
- [45] Q. Zhang and V. D. Rˇadulescu, Double phase anisotropic variational problems and
combined effects of reaction and absorption terms, J. Math. Pures Appl. 118, 159–203,
2018.
- [46] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity
theory, Izv. Ros. Akadem. Nauk. 50, 675–710, 1986.
- [47] V. V. Zhikov, On Lavrentiev’s phenomenon, Russian J. Math. Phy. 3, 2 pp. 1995.
- [48] V. V. Zhikov, On some variational problems, Russian J. Math. Phys. 5, 105 pp. 1997.