Research Article
BibTex RIS Cite

Exploration of multivalent harmonic functions: Investigating essential properties

Year 2025, Volume: 54 Issue: 2, 562 - 574, 28.04.2025
https://doi.org/10.15672/hujms.1428478

Abstract

Within this manuscript, we introduce an innovative subclass of multivalent harmonic functions, encompassing higher-order derivatives within the confines of an open unit disk. Our investigation extends to the analysis of coefficient bounds, growth estimates, starlikeness, and convexity radii uniquely associated with this particular class. Furthermore, we scrutinize the property of closure under convolution operations for this subclass.

References

  • [1] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions with missing coefficients, Math. Sci. Res. J. 7, 347-352, 2003.
  • [2] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic convex functions, Math. Sci. Res. J. 11 (9), 537, 2007.
  • [3] O. Al-Refai, Some properties for a class of analytic functions defined by a higher-order differential inequality, Turk. J. Math. 43 (5), 2473-2493, 2019.
  • [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3-25, 1984.
  • [5] S. Çakmak, E. Yasar, and S. Yalçn, New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacet. J. Math. Stat. 51 (1), 172-186, 2022.
  • [6] M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Elliptic Equ. 45 (3), 263-271, 2001.
  • [7] P.L. Duren, Univalent Functions, in: Grundlehren Der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
  • [8] L. Fejér, Über die Positivität von Summen, Acta Sci. Szeged, 75-86, 1925.
  • [9] M.R. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2), 81-92, 2004.
  • [10] G.I. Oros, S. Yalçn, and H. Bayram, Some Properties of Certain Multivalent Harmonic Functions, Mathematics 11 (11), 2416, 2023.
  • [11] S. Owa, T. Hayami, K. Kuroki, Some properties of certain analytic functions, Int. J. Math. Math. Sci. 2007, Hindawi.
  • [12] M. A. Rosihan, S.K. Lee, K.G. Subramanian, A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Abstr. Appl. Anal. 2011.
  • [13] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Am. Math. Soc. 106 (1), 145-152, 1989.
  • [14] E. Yasar and S.Y. Tokgöz, Close-to-convexity of a class of harmonic mappings defined by a third-order differential inequality, Turk. J. Math. 45 (2), 678-694, 2021.
Year 2025, Volume: 54 Issue: 2, 562 - 574, 28.04.2025
https://doi.org/10.15672/hujms.1428478

Abstract

References

  • [1] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions with missing coefficients, Math. Sci. Res. J. 7, 347-352, 2003.
  • [2] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic convex functions, Math. Sci. Res. J. 11 (9), 537, 2007.
  • [3] O. Al-Refai, Some properties for a class of analytic functions defined by a higher-order differential inequality, Turk. J. Math. 43 (5), 2473-2493, 2019.
  • [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3-25, 1984.
  • [5] S. Çakmak, E. Yasar, and S. Yalçn, New subclass of the class of close-to-convex harmonic mappings defined by a third-order differential inequality, Hacet. J. Math. Stat. 51 (1), 172-186, 2022.
  • [6] M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Elliptic Equ. 45 (3), 263-271, 2001.
  • [7] P.L. Duren, Univalent Functions, in: Grundlehren Der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
  • [8] L. Fejér, Über die Positivität von Summen, Acta Sci. Szeged, 75-86, 1925.
  • [9] M.R. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2), 81-92, 2004.
  • [10] G.I. Oros, S. Yalçn, and H. Bayram, Some Properties of Certain Multivalent Harmonic Functions, Mathematics 11 (11), 2416, 2023.
  • [11] S. Owa, T. Hayami, K. Kuroki, Some properties of certain analytic functions, Int. J. Math. Math. Sci. 2007, Hindawi.
  • [12] M. A. Rosihan, S.K. Lee, K.G. Subramanian, A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Abstr. Appl. Anal. 2011.
  • [13] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Am. Math. Soc. 106 (1), 145-152, 1989.
  • [14] E. Yasar and S.Y. Tokgöz, Close-to-convexity of a class of harmonic mappings defined by a third-order differential inequality, Turk. J. Math. 45 (2), 678-694, 2021.
There are 14 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Mathematics
Authors

Serkan Çakmak 0000-0003-0368-7672

Early Pub Date August 27, 2024
Publication Date April 28, 2025
Submission Date January 30, 2024
Acceptance Date June 9, 2024
Published in Issue Year 2025 Volume: 54 Issue: 2

Cite

APA Çakmak, S. (2025). Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics, 54(2), 562-574. https://doi.org/10.15672/hujms.1428478
AMA Çakmak S. Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics. April 2025;54(2):562-574. doi:10.15672/hujms.1428478
Chicago Çakmak, Serkan. “Exploration of Multivalent Harmonic Functions: Investigating Essential Properties”. Hacettepe Journal of Mathematics and Statistics 54, no. 2 (April 2025): 562-74. https://doi.org/10.15672/hujms.1428478.
EndNote Çakmak S (April 1, 2025) Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics 54 2 562–574.
IEEE S. Çakmak, “Exploration of multivalent harmonic functions: Investigating essential properties”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, pp. 562–574, 2025, doi: 10.15672/hujms.1428478.
ISNAD Çakmak, Serkan. “Exploration of Multivalent Harmonic Functions: Investigating Essential Properties”. Hacettepe Journal of Mathematics and Statistics 54/2 (April 2025), 562-574. https://doi.org/10.15672/hujms.1428478.
JAMA Çakmak S. Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics. 2025;54:562–574.
MLA Çakmak, Serkan. “Exploration of Multivalent Harmonic Functions: Investigating Essential Properties”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, 2025, pp. 562-74, doi:10.15672/hujms.1428478.
Vancouver Çakmak S. Exploration of multivalent harmonic functions: Investigating essential properties. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):562-74.