Research Article
BibTex RIS Cite

Differentiating under $q$-integral sign

Year 2025, Volume: 54 Issue: 3, 921 - 927, 24.06.2025
https://doi.org/10.15672/hujms.1406520

Abstract

The Leibniz integral rule enables us to interchange the order of differentiation and integration under some differentiability conditions on the functions. It can be very useful in the computing the exact value of certain integrals. In this paper, we will present analogs of such rule for $q$-integrals with functional borders and their properties.

Supporting Institution

Ministry of Education, Science and Technological Development of the Republic of Serbia.

References

  • [1] G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge, England, Cambridge University Press, 2004.
  • [2] R.P. Feynman, A Different Set of Tools, In ’Surely You’re Joking, Mr. Feynman!’: Adventures of a Curious Character, New York, W. W. Norton, 1997.
  • [3] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed. Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, 2004.
  • [4] W. Hahn, Lineare Geometrische Differenzengleichungen, Berichte der Mathematisch- Statistischen Section im Forschungszentrum Graz, 1981.
  • [5] I.T. Huseynov, A. Ahmadova and N.I. Mahmudov, Fractional Leibniz integral rules for Riemann–Liouville and Caputo fractional derivatives and their applications, arXiv:2012.11360v1 [math.CA].
  • [6] V. Kac and P. Cheung, Quantum Calculus, Springer–Verlag, New York, 2002.
  • [7] W. Koepf, Hypergeometric Summation, Advanced Lectures in Mathematics, Vieweg, Braunschweig/Wiesbaden, 1998.
  • [8] P.M. Rajkovic, M.S. Stankovic and S.D. Marinkovic, Mean value theorems in q–calculus, Matematicki vesnik 54, 171–178, 2002.
  • [9] F.S. Woods, Differentiation of a Definite Integral, Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics, 141–144, Boston, Ginn, 1926.
Year 2025, Volume: 54 Issue: 3, 921 - 927, 24.06.2025
https://doi.org/10.15672/hujms.1406520

Abstract

References

  • [1] G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge, England, Cambridge University Press, 2004.
  • [2] R.P. Feynman, A Different Set of Tools, In ’Surely You’re Joking, Mr. Feynman!’: Adventures of a Curious Character, New York, W. W. Norton, 1997.
  • [3] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed. Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, 2004.
  • [4] W. Hahn, Lineare Geometrische Differenzengleichungen, Berichte der Mathematisch- Statistischen Section im Forschungszentrum Graz, 1981.
  • [5] I.T. Huseynov, A. Ahmadova and N.I. Mahmudov, Fractional Leibniz integral rules for Riemann–Liouville and Caputo fractional derivatives and their applications, arXiv:2012.11360v1 [math.CA].
  • [6] V. Kac and P. Cheung, Quantum Calculus, Springer–Verlag, New York, 2002.
  • [7] W. Koepf, Hypergeometric Summation, Advanced Lectures in Mathematics, Vieweg, Braunschweig/Wiesbaden, 1998.
  • [8] P.M. Rajkovic, M.S. Stankovic and S.D. Marinkovic, Mean value theorems in q–calculus, Matematicki vesnik 54, 171–178, 2002.
  • [9] F.S. Woods, Differentiation of a Definite Integral, Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics, 141–144, Boston, Ginn, 1926.
There are 9 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables), Mathematical Methods and Special Functions
Journal Section Mathematics
Authors

Predrag Rajković 0000-0002-2914-0985

Sladjana D. Marinkovic 0000-0002-7752-4393

Early Pub Date January 27, 2025
Publication Date June 24, 2025
Submission Date December 18, 2023
Acceptance Date August 19, 2024
Published in Issue Year 2025 Volume: 54 Issue: 3

Cite

APA Rajković, P., & Marinkovic, S. D. (2025). Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics, 54(3), 921-927. https://doi.org/10.15672/hujms.1406520
AMA Rajković P, Marinkovic SD. Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics. June 2025;54(3):921-927. doi:10.15672/hujms.1406520
Chicago Rajković, Predrag, and Sladjana D. Marinkovic. “Differentiating under $q$-Integral Sign”. Hacettepe Journal of Mathematics and Statistics 54, no. 3 (June 2025): 921-27. https://doi.org/10.15672/hujms.1406520.
EndNote Rajković P, Marinkovic SD (June 1, 2025) Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics 54 3 921–927.
IEEE P. Rajković and S. D. Marinkovic, “Differentiating under $q$-integral sign”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 3, pp. 921–927, 2025, doi: 10.15672/hujms.1406520.
ISNAD Rajković, Predrag - Marinkovic, Sladjana D. “Differentiating under $q$-Integral Sign”. Hacettepe Journal of Mathematics and Statistics 54/3 (June 2025), 921-927. https://doi.org/10.15672/hujms.1406520.
JAMA Rajković P, Marinkovic SD. Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics. 2025;54:921–927.
MLA Rajković, Predrag and Sladjana D. Marinkovic. “Differentiating under $q$-Integral Sign”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 3, 2025, pp. 921-7, doi:10.15672/hujms.1406520.
Vancouver Rajković P, Marinkovic SD. Differentiating under $q$-integral sign. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):921-7.