Research Article
BibTex RIS Cite

Another perspective on Kannan contraction

Year 2025, Volume: 54 Issue: 3, 972 - 983, 24.06.2025
https://doi.org/10.15672/hujms.1528252

Abstract

Inspired by the well-known result stating that if any iterate of a mapping is a Banach contraction on a complete metric space, then the mapping itself possesses a unique fixed point, we investigate that claim for a Kannan contraction but by retaining the left-hand side of the inequality as per the mapping itself. With an additional assumption of $k$-continuity, the existence and uniqueness of a fixed point is obtained for a new class of contractions, $m$-Kannan contraction, on a complete metric space. Several examples are given in order to substantiate many theoretical claims such as discontinuity at the unique limit point of the iterative sequence or the ones testifying that this class is wider than the class of Kannan mappings.

Supporting Institution

Ministry of Science, Technological Development and Innovation, Republic of Serbia

Project Number

451-03-65/2024-03/200124

References

  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3, 133-181, 1922.
  • [2] R. Batra, R. Gupta and P. Sahni, A new extension of Kannan contractions and related fixed point results, J. Anal. 28, 1143-1154, 2020.
  • [3] V. Berinde and M. Pacurar, Kannan’s fixed point appoxim.tion for solving split feasibility and variational inequality problems, J. Comput. Appl. Math. 386, Article ID: 113217, 2021.
  • [4] V. Berinde, A. Petrusel and I. A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric spaces, Fixed Point Theory, 24 (2), 525-540, 2023.
  • [5] E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10, 974-979, 1959.
  • [6] J. Gornicki, Fixed point theorems for Kannan type mappings, J. Fixed Point Theory Appl. 19, 2145-2152, 2017.
  • [7] R. Kannan, Some remarks on fixed points, Bull. Calcutta Math. Soc. 60, 71-76, 1968.
  • [8] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis, Volume I, Metric and Normed Spaces, Graylock Press, Rochester, New York, 1957.
  • [9] H. Lakzian, V. Rakočević and H. Aydi, Extensions of Kannan contraction via wdistances, Aequat. Math. 93, 1231-1244, 2019.
  • [10] P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math. 80, 325-330, 1975.
  • [11] S. Som, A. Petruel, H. Garai and L. K. Dey, Some characterizations of Reich and Chatterjea type nonexpansive mappings, J. Fixed Point Theory Appl. 21 (4), 2019.
Year 2025, Volume: 54 Issue: 3, 972 - 983, 24.06.2025
https://doi.org/10.15672/hujms.1528252

Abstract

Project Number

451-03-65/2024-03/200124

References

  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3, 133-181, 1922.
  • [2] R. Batra, R. Gupta and P. Sahni, A new extension of Kannan contractions and related fixed point results, J. Anal. 28, 1143-1154, 2020.
  • [3] V. Berinde and M. Pacurar, Kannan’s fixed point appoxim.tion for solving split feasibility and variational inequality problems, J. Comput. Appl. Math. 386, Article ID: 113217, 2021.
  • [4] V. Berinde, A. Petrusel and I. A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric spaces, Fixed Point Theory, 24 (2), 525-540, 2023.
  • [5] E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10, 974-979, 1959.
  • [6] J. Gornicki, Fixed point theorems for Kannan type mappings, J. Fixed Point Theory Appl. 19, 2145-2152, 2017.
  • [7] R. Kannan, Some remarks on fixed points, Bull. Calcutta Math. Soc. 60, 71-76, 1968.
  • [8] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis, Volume I, Metric and Normed Spaces, Graylock Press, Rochester, New York, 1957.
  • [9] H. Lakzian, V. Rakočević and H. Aydi, Extensions of Kannan contraction via wdistances, Aequat. Math. 93, 1231-1244, 2019.
  • [10] P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math. 80, 325-330, 1975.
  • [11] S. Som, A. Petruel, H. Garai and L. K. Dey, Some characterizations of Reich and Chatterjea type nonexpansive mappings, J. Fixed Point Theory Appl. 21 (4), 2019.
There are 11 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Marija Cvetković 0000-0003-0691-3428

Project Number 451-03-65/2024-03/200124
Early Pub Date January 27, 2025
Publication Date June 24, 2025
Submission Date August 5, 2024
Acceptance Date October 3, 2024
Published in Issue Year 2025 Volume: 54 Issue: 3

Cite

APA Cvetković, M. (2025). Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics, 54(3), 972-983. https://doi.org/10.15672/hujms.1528252
AMA Cvetković M. Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics. June 2025;54(3):972-983. doi:10.15672/hujms.1528252
Chicago Cvetković, Marija. “Another Perspective on Kannan Contraction”. Hacettepe Journal of Mathematics and Statistics 54, no. 3 (June 2025): 972-83. https://doi.org/10.15672/hujms.1528252.
EndNote Cvetković M (June 1, 2025) Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics 54 3 972–983.
IEEE M. Cvetković, “Another perspective on Kannan contraction”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 3, pp. 972–983, 2025, doi: 10.15672/hujms.1528252.
ISNAD Cvetković, Marija. “Another Perspective on Kannan Contraction”. Hacettepe Journal of Mathematics and Statistics 54/3 (June 2025), 972-983. https://doi.org/10.15672/hujms.1528252.
JAMA Cvetković M. Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics. 2025;54:972–983.
MLA Cvetković, Marija. “Another Perspective on Kannan Contraction”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 3, 2025, pp. 972-83, doi:10.15672/hujms.1528252.
Vancouver Cvetković M. Another perspective on Kannan contraction. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):972-83.