Review
BibTex RIS Cite

The Importance of the Rumen in Ruminants

Year 2025, Volume: 14 Issue: 1, 95 - 103, 19.06.2025
https://doi.org/10.31196/huvfd.1589847

Abstract

In this study, it is aimed to reveal how important the rumens of the ruminants are for these animals. Milk and meat obtained from ruminants are very important sources of nutrition. The rumen, which is the fore stomach of ruminants, is very important for ruminants. However, when ruminants are born, their rumens cannot function. Ruminants, along with the microorganisms in their rumen, can digest substances such as cellulose. As a result of the digestive activities of rumen microorganisms, all foods are transformed into Volatile Fatty Acids (VFA), which provide a large part of the energy needs of ruminants. In addition, nitrogen sources are converted into microbial proteins after the activities of rumen microorganisms. Rumen microorganisms also synthesize B group vitamins, enabling ruminants to benefit from them.
In order for rumen microorganisms to survive, the inside of the rumen must remain in balance. The rumen's internal values such as temperature, nutrients and pH should be kept within standard ranges. In addition to the feeds in the rations, adding additives such as live microorganisms and aromatic oils to the ration helps to ensure rumen standards. Instant measurements of values such as rumen pH and temperature can be made with sensors placed inside the rumen. In this way, animals are kept under constant observation and are raised healthier and more efficiently.

References

  • Acharya S, Pretz JP, Yoon, I, Scott MF, Casper DP, 2017: Effects of Saccharomyces cerevisiae fermentation products on the lactational performance of mid-lactation dairy cows. Transl Anim Sci, 1(2), 221-228.
  • Alataş M, Umucalılar H, 2011: Rumenin mikrobiyel ekosistemindeki bakteriler ve rolleri. Ataturk Univ Vet Bilim Derg, 6(1), 71-83.
  • Alugongo, GM, Xiao JX, Chung YH, Dong SZ, Li SL, Yoon I, Wu ZH, Cao ZJ, 2017: Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Performance and health. J Dairy Sci, 100(2), 1189-1199.
  • Argov-Argaman N, Eshel O, Moallem U, Lehrer H, Uni Z, Arieli A, 2012: Effects of dietary carbohydrates on rumen epithelial metabolism of nonlactating heifers. J Dairy Sci, 95(7), 3977-3986.
  • Baldwin RL, McLeod KR, Klotz JL, Heitmann RN, 2004: Rumen Development, Intestinal Growth and Hepatic Metabolism in the Pre- and Postweaning Ruminant. J. Dairy Sci, 87, E55-E65.
  • Bannink A, France J, Lopez S, Gerrits WJJ, Kebreab E, Tamminga S, Dijkstra J, 2008: Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim Feed Sci Technol, 143(1-4), 3-26.
  • Beauchemin KA, 2018: Invited review: Current perspectives on eating and rumination activity in dairy cows. J Dairy Sci, 101(6), 4762-4784.
  • Benchaar C, Chaves AV, Fraser GR, Beauchemin KA, McAllister TA, 2007: Effects of essential oils and their components on in vitro rumen microbial fermentation. Can J Anim Sci, 87(3), 413-419.
  • Busquet M, Calsamiglia S, Ferret A, Kamel C, 2005: Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim Feed Sci Technol, 123, 597-613.
  • Canbolat O, Kalkan H, Karaman S, Filya İ, 2011: Esansiyel yağların sindirim, rumen fermantasyonu ve mikrobiyal protein üretimi üzerine etkileri. Kafkas Univ Vet Fak Derg, 17(4).
  • Canbolat Ö, 2012: Bazı esansiyel yağların in vitro sindirim, rumen fermantasyonu ve metan gazı üretimi üzerine etkileri. J Inst Sci Technol, 2(1), 91-98.
  • Canbolat Ö, Karaman Ş, Filya İ, 2010: Farklı kekik yağı dozlarının mısır silajının sindirimi ve rumen fermantasyonu üzerine etkileri.16(6), 933-939.
  • Chaucheyras-Durand F, Fonty G, 2001: Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reproduction Nutrition Development, 41(1), 57-68.
  • Cobellis G, Trabalza-Marinucci M, Marcotullio MC, Yu Z, 2016: Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim Feed Sci Technol, 215, 25-36.
  • Cunningham JG, Klein BG, 2008: Tratado de Fisiologia Veterinária. 4ª edição. Rio de Janeiro, Brasil. Curabay B, Filya İ, Canbolat Ö, 2019: Bazı esansiyel yağların yonca kuru otunun in vitro sindirilebilirliği, rumen fermentasyonu ve metan gazı üretimi üzerine etkileri. Bursa Uludag Univ Ziraat Fak Derg, 34(1), 19-35.
  • De Boever JL, Andries JI, De Brabander DL, Cottyn BG, Buysse FX, 1990: Chewing activity of ruminants as a measure of physical structure. A review of factors affecting it. Anim Feed Sci Technol, 27(4), 281-291.
  • Deters EL, Stokes RS, Genther-Schroeder ON, Hansen SL, 2018: Effects of a Saccharomyces cerevisiae fermentation product in receiving diets of newly weaned beef steers. II. Digestibility and response to a vaccination challenge. J Anim Sci, 96(9), 3906-3915.
  • Dijkstra J, France J, Davies DR, 1998: Different mathematical approaches to estimating microbial protein supply in ruminants. J Dairy Sci, 81(12), 3370-3384.
  • Erasmus LJ, Botha PM, Kistner A, 1992: Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J Dairy Sci, 75(11), 3056-3065.
  • Fan Q, Wanapat M, Yan T, Hou F, 2020: Altitude influences microbial diversity and herbage fermentation in the rumen of yaks. BMC Microbiol, 20(1), 1-13.
  • Garipoğlu AV, Sarıçiçek BZ, 2000: Rumen bakterileri. Ondokuz Mayıs Univ Ziraat Fak Derg, 15 (3), 131-137.
  • Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH, 2021: Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME J, 15(4), 1108-1120.
  • Górka P, Kowalski ZM, Pietrzak P, Kotunia A, Jagusiak W, Zabielski R, (2011): Is rumen development in newborn calves affected by different liquid feeds and small intestine development?. J Dairy Sci, 94(6), 3002-3013.
  • Gruninger RJ, Ribeiro GO, Cameron A, McAllister TA, 2019: Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal, 13(9), 1843-1854.
  • Guzman CE, Bereza-Malcolm LT, De Groef B, Franks AE, 2015: Presence of selected methanogens, fibrolytic bacteria, and proteobacteria in the gastrointestinal tract of neonatal dairy calves from birth to 72 hours. PLoS ONE,10(7), e0133048.
  • Gümüş H, Şehu A, 2016: Besi sığırı rasyonlarına maya kültürü ilavesinin besi performansı ile bazı rumen ve kan parametreleri üzerine etkisi. Ankara Univ Vet Fak Derg, 63(1), 39-46.
  • Gümüş E, Küçükersan S, 2018: Buzağılarda preruminant dönem beslenmesinin rumen gelişimi üzerine etkisi. Ankara Univ Vet Fak Derg, 13(1), 98-105.
  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH, 2015: Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep, 5(1), 14567.
  • Islam M, Lee SS, 2019: Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. J Anim Sci Technol, 61(3), 122.
  • Jami E, Israel A, Kotser A, Mizrahi I, 2013: Exploring the bovine rumen bacterial community from birth to adulthood. ISME J, 7(6), 1069-1079.
  • Jami E, White BA, Mizrahi I, 2014: Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE, 9(1), e85423. Jayaprakasha GK, Selvi T, Sakariah KK, 2003, Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int, 36(2), 117-122.
  • Ji X, Tong H, Settlage R, Yao W, Jiang,H, 2021: Establishment of a bovine rumen epithelial cell line. J Anim Sci, 99(10), skab273.
  • Jia P, Cui K, Ma T, Wan F, Wang W, Yang D, Wang Y, Guo B, Zhao L, Diao Q, 2018: Influence of dietary supplementation with Bacillus licheniformis and Saccharomyces cerevisiae as alternatives to monensin on growth performance, antioxidant, immunity, ruminal fermentation and microbial diversity of fattening lambs. Sci Rep, 8(1), 16712.
  • Kim H, Min Y, Choi B, 2019: Real-time temperature monitoring for the early detection of mastitis in dairy cattle: Methods and case researches. Comput Electron Agric, 162, 119-125.
  • Kumar U, Sareen VK, Singh S, 1997: Effect of yeast culture supplement on ruminal microbial populations and metabolism in buffalo calves fed a high roughage diet. J Sci Food Agric, 73(2), 231-236.
  • Lan W, Yang C, 2019: Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci Total Environ, 654, 1270-1283. Lederberg J, 1992: Encyclopedia of Microbiology. Academic press. Inc. Harcourt Brace Jovanovich Publishers, New York, USA.
  • Liebe DL, Hall MB, White RR, 2020: Contributions of dairy products to environmental impacts and nutritional supplies from United States agriculture. J Dairy Sci, 103(11), 10867-10881.
  • Liu C, Wu H, Liu S, Chai S, Meng Q, Zhou Z, 2019: Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front Microbiol, 10, 1116.
  • Maia MR, Chaudhary LC, Figueres L, Wallace RJ, 2007: Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Leeuwenhoek, 91, 303-314.
  • Meale SJ, Li S, Azevedo P, Derakhshani H, Plaizier JC, Khafipour E, Steele MA, 2016: Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front Microbiol, 7, 582.
  • Millen DD, Arrigoni MDB, Pacheco RDL, (Eds.). 2016: Rumenology (pp. 39-40). Cham, Switzerland: Springer International Publishing.
  • Miron J, Ben-Ghedalia D, Morrison M, 2001: Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci, 84(6), 1294-1309.
  • Moe PW, Tyrrell HF, 1979: Methane production in dairy cows. J. Dairy Sci., 62:1583–1586.
  • Mottram T, 2010: Detecting sensor drift in rumen pH data. 1st International Conference on Precision Dairy Farming. Leeuwarden, The Netherlands, 12(3),481- 490.
  • Mullins CR, Mamedova LK, Carpenter AJ, Ying Y, Allen MS, Yoon I, Bradford BJ, 2013: Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product. J Dairy Sci, 96, 5872–5881.
  • Murphy MR, Baldwin RL, Koong LJ, 1982: Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J Dairy Sci, 55(2), 411-421.
  • O'Hara E, Kenny DA, McGovern E, Byrne CJ, McCabe MS, Guan LL, Waters SM, 2020: Investigating temporal microbial dynamics in the rumen of beef calves raised on two farms during early life. FEMS Microbiol Ecol, 96(2), fiz203
  • Orpin CG, Joblin KN, 1997: The rumen anaerobic fungi. In The rumen microbial ecosystem 140-195, Dordrecht: Springer Netherlands.
  • Orskov ER,1992: Protein Nutrition in Ruminants. 2nd Edition. Academic Press. London, UK.
  • Özel O, Sarıçiçek B, 2009: Ruminantlarda rumen mikroorganizmalarının varlığı ve önemi (derleme). TUBAV Bilim Derg, 2(3), 277-285.
  • Öztürk H, 2008: Ruminant beslemesinde probiyotik mayalar. Vet Hekim Der Derg, 79(3), 37-42.
  • Öztürk H, Demirtaş A, Salgırlı Y, Meral Ö, Pişkin İ, Emre B, Fidancı UR, 2011: Üzüm çekirdeği ekstratının rumen mikroorganizmalarının fermentasyon aktivitesi üzerine in vitro etkileri. Etlik Vet Mikrobiyol Derg, 22, 1-6.
  • Patterson JA, 1992: Rumen microbiology. in-Chief Lederberg, J. Encyclopedıa of Microbiology. Academic press. Inc. Harcourt Brace Jovanovich Publishers. New York, 3, 623-542.
  • Phakachoed N, Lounglawan P, Suksombat W, 2012: Effects of xylanase supplementation on ruminal digestibility in fistulated non-lactating dairy cows fed rice straw. Livest Sci, 149(1-2), 104-108.
  • Regensbogenova M, Kisidayova S, Michalowski T, Javorsky P, Moon-Van Der Staay SY, Hackstein JHP, McEwan NR, Jouany JP, Newbold JC, Pristas P, 2004: İdentification of rumen protozoa by restriction analysis of amplified 18s Rrna gene. Acta Protozool, 43, 219– 224.
  • Russell JB, Rychlik JL, 2001: Factors that alter rumen microbial ecology. Science, 292, 1119-1122
  • Steele MA, Croom J, Kahler M, AlZahal O, Hook SE, Plaizier K, McBride BW, 2011: Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am. J Physiol-Regul Integr Comp Physiol, 300(6), 1515-1523.
  • Tekce E, Gül M, 2014: Ruminant Beslemede NDF ve ADF nin önemi. Ataturk Univ Vet Bilim Derg, (9)-1, 63-73.
  • Theodorou MK, France J, 1993: Rumen microorganisms and their interactions. Quantitative aspects of ruminant digestion and metabolism, 145-163.
  • TÜİK, https://data.tuik.gov.tr/Bulten/Index?p=Kirmizi-Et-Uretim-Istatistikleri-2023-53540; 10.10.2024.
  • Wang Y, McAllister TA, 2002: Rumen microbes, enzymes and feed digestion-a review. Asian-Australasian J Anim Sci, 15(11), 1659-1676.
  • Xu Q, Qiao Q, Gao Y, Hou J, Hu M, Du Y, Zhao K, Li X, 2021: Gut microbiota and their role in health and metabolic disease of dairy cow. Front Nutr, 8, 701511.
  • Yu J, Cai L, Zhang J, Yang A, Wang Y, Zhang L, Guan LL, Qi D, 2020: Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro, Microorganisms, 8(8), 1160.
  • Zebeli Q, Metzler-Zebeli BU, 2012: Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Res Vet Sci, 93(3), 1099-1108.
  • Zhang L, Lu J, Okada H, Nogami H, Itoh T, Arai S, 2016: Low-power and high-sensitive pH sensor for monitoring of cow-rumen in real time. In 2016 IEEE SENSORS, Japan, pp. 1-3.
  • Zhou Z, Fang L, Meng Q, Li S, Chai S, Liu S, Schonewille JT, 2017: Assessment of ruminal bacterial and archaeal community structure in yak (Bos grunniens). Frontiers in Microbiology, 8, 179.

Ruminantlarda Rumenin Önemi

Year 2025, Volume: 14 Issue: 1, 95 - 103, 19.06.2025
https://doi.org/10.31196/huvfd.1589847

Abstract

Çalışmada ruminantların rumenlerinin bu hayvanlar için ne kadar önemli olduğunu ortaya koymak amaçlanmıştır. Ruminantlardan elde edilen süt ve et insanların beslenme kaynakları açısından oldukça önemlidir. Ruminantların ön midelerinden olan rumen ruminantlar için çok önemlidir. Fakat ruminantların doğduklarında rumenleri faaliyet gösterememektedir. Rumen içerisindeki mikroorganizmalar ile birlikte ruminantlar selüloz gibi maddeleri sindirebilirler. Rumen mikroorganizmaları tüm gıdaların sindirim faaliyetleri neticesinde ruminantların büyük ölçüde enerji ihtiyacını sağlayan Uçucu Yağ Asitlerine (UYA) dönüşürler. Ayrıca azot kaynakları da rumen mikroorganizmalarının faaliyetleri sonrasında mikrobiyel proteinlere dönüştürülmektedir. Rumen mikroorganizmaları B grubu vitaminleri de sentezleyerek ruminantların faydalanmasını sağlamaktadır.
Rumen mikroorganizmaların yasayabilmeleri için rumenin içerisinin dengede kalması gerekir. Rumenin içerisinin sıcaklık, besin, pH gibi değerliliklerinin standart aralıklarda tutulmalıdır. Rasyonlarda bulunan yemlere ek olarak rasyona canlı mikroorganizmalar ve aromatik yağlar gibi katkı maddeleri eklemek rumen standartlarını sağlamaya yardımcı olur. Rumen içerisine yerleştirilen sensörlerle rumenin pH, sıcaklık gibi değerlerin anlık ölçümleri yapılabilmektedir. Böylece hayvanlar sürekli gözlem altında tutularak daha sağlıklı ve verimli yetiştirilmektedir.

References

  • Acharya S, Pretz JP, Yoon, I, Scott MF, Casper DP, 2017: Effects of Saccharomyces cerevisiae fermentation products on the lactational performance of mid-lactation dairy cows. Transl Anim Sci, 1(2), 221-228.
  • Alataş M, Umucalılar H, 2011: Rumenin mikrobiyel ekosistemindeki bakteriler ve rolleri. Ataturk Univ Vet Bilim Derg, 6(1), 71-83.
  • Alugongo, GM, Xiao JX, Chung YH, Dong SZ, Li SL, Yoon I, Wu ZH, Cao ZJ, 2017: Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Performance and health. J Dairy Sci, 100(2), 1189-1199.
  • Argov-Argaman N, Eshel O, Moallem U, Lehrer H, Uni Z, Arieli A, 2012: Effects of dietary carbohydrates on rumen epithelial metabolism of nonlactating heifers. J Dairy Sci, 95(7), 3977-3986.
  • Baldwin RL, McLeod KR, Klotz JL, Heitmann RN, 2004: Rumen Development, Intestinal Growth and Hepatic Metabolism in the Pre- and Postweaning Ruminant. J. Dairy Sci, 87, E55-E65.
  • Bannink A, France J, Lopez S, Gerrits WJJ, Kebreab E, Tamminga S, Dijkstra J, 2008: Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim Feed Sci Technol, 143(1-4), 3-26.
  • Beauchemin KA, 2018: Invited review: Current perspectives on eating and rumination activity in dairy cows. J Dairy Sci, 101(6), 4762-4784.
  • Benchaar C, Chaves AV, Fraser GR, Beauchemin KA, McAllister TA, 2007: Effects of essential oils and their components on in vitro rumen microbial fermentation. Can J Anim Sci, 87(3), 413-419.
  • Busquet M, Calsamiglia S, Ferret A, Kamel C, 2005: Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim Feed Sci Technol, 123, 597-613.
  • Canbolat O, Kalkan H, Karaman S, Filya İ, 2011: Esansiyel yağların sindirim, rumen fermantasyonu ve mikrobiyal protein üretimi üzerine etkileri. Kafkas Univ Vet Fak Derg, 17(4).
  • Canbolat Ö, 2012: Bazı esansiyel yağların in vitro sindirim, rumen fermantasyonu ve metan gazı üretimi üzerine etkileri. J Inst Sci Technol, 2(1), 91-98.
  • Canbolat Ö, Karaman Ş, Filya İ, 2010: Farklı kekik yağı dozlarının mısır silajının sindirimi ve rumen fermantasyonu üzerine etkileri.16(6), 933-939.
  • Chaucheyras-Durand F, Fonty G, 2001: Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reproduction Nutrition Development, 41(1), 57-68.
  • Cobellis G, Trabalza-Marinucci M, Marcotullio MC, Yu Z, 2016: Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim Feed Sci Technol, 215, 25-36.
  • Cunningham JG, Klein BG, 2008: Tratado de Fisiologia Veterinária. 4ª edição. Rio de Janeiro, Brasil. Curabay B, Filya İ, Canbolat Ö, 2019: Bazı esansiyel yağların yonca kuru otunun in vitro sindirilebilirliği, rumen fermentasyonu ve metan gazı üretimi üzerine etkileri. Bursa Uludag Univ Ziraat Fak Derg, 34(1), 19-35.
  • De Boever JL, Andries JI, De Brabander DL, Cottyn BG, Buysse FX, 1990: Chewing activity of ruminants as a measure of physical structure. A review of factors affecting it. Anim Feed Sci Technol, 27(4), 281-291.
  • Deters EL, Stokes RS, Genther-Schroeder ON, Hansen SL, 2018: Effects of a Saccharomyces cerevisiae fermentation product in receiving diets of newly weaned beef steers. II. Digestibility and response to a vaccination challenge. J Anim Sci, 96(9), 3906-3915.
  • Dijkstra J, France J, Davies DR, 1998: Different mathematical approaches to estimating microbial protein supply in ruminants. J Dairy Sci, 81(12), 3370-3384.
  • Erasmus LJ, Botha PM, Kistner A, 1992: Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J Dairy Sci, 75(11), 3056-3065.
  • Fan Q, Wanapat M, Yan T, Hou F, 2020: Altitude influences microbial diversity and herbage fermentation in the rumen of yaks. BMC Microbiol, 20(1), 1-13.
  • Garipoğlu AV, Sarıçiçek BZ, 2000: Rumen bakterileri. Ondokuz Mayıs Univ Ziraat Fak Derg, 15 (3), 131-137.
  • Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH, 2021: Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. ISME J, 15(4), 1108-1120.
  • Górka P, Kowalski ZM, Pietrzak P, Kotunia A, Jagusiak W, Zabielski R, (2011): Is rumen development in newborn calves affected by different liquid feeds and small intestine development?. J Dairy Sci, 94(6), 3002-3013.
  • Gruninger RJ, Ribeiro GO, Cameron A, McAllister TA, 2019: Invited review: Application of meta-omics to understand the dynamic nature of the rumen microbiome and how it responds to diet in ruminants. Animal, 13(9), 1843-1854.
  • Guzman CE, Bereza-Malcolm LT, De Groef B, Franks AE, 2015: Presence of selected methanogens, fibrolytic bacteria, and proteobacteria in the gastrointestinal tract of neonatal dairy calves from birth to 72 hours. PLoS ONE,10(7), e0133048.
  • Gümüş H, Şehu A, 2016: Besi sığırı rasyonlarına maya kültürü ilavesinin besi performansı ile bazı rumen ve kan parametreleri üzerine etkisi. Ankara Univ Vet Fak Derg, 63(1), 39-46.
  • Gümüş E, Küçükersan S, 2018: Buzağılarda preruminant dönem beslenmesinin rumen gelişimi üzerine etkisi. Ankara Univ Vet Fak Derg, 13(1), 98-105.
  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH, 2015: Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep, 5(1), 14567.
  • Islam M, Lee SS, 2019: Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. J Anim Sci Technol, 61(3), 122.
  • Jami E, Israel A, Kotser A, Mizrahi I, 2013: Exploring the bovine rumen bacterial community from birth to adulthood. ISME J, 7(6), 1069-1079.
  • Jami E, White BA, Mizrahi I, 2014: Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE, 9(1), e85423. Jayaprakasha GK, Selvi T, Sakariah KK, 2003, Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int, 36(2), 117-122.
  • Ji X, Tong H, Settlage R, Yao W, Jiang,H, 2021: Establishment of a bovine rumen epithelial cell line. J Anim Sci, 99(10), skab273.
  • Jia P, Cui K, Ma T, Wan F, Wang W, Yang D, Wang Y, Guo B, Zhao L, Diao Q, 2018: Influence of dietary supplementation with Bacillus licheniformis and Saccharomyces cerevisiae as alternatives to monensin on growth performance, antioxidant, immunity, ruminal fermentation and microbial diversity of fattening lambs. Sci Rep, 8(1), 16712.
  • Kim H, Min Y, Choi B, 2019: Real-time temperature monitoring for the early detection of mastitis in dairy cattle: Methods and case researches. Comput Electron Agric, 162, 119-125.
  • Kumar U, Sareen VK, Singh S, 1997: Effect of yeast culture supplement on ruminal microbial populations and metabolism in buffalo calves fed a high roughage diet. J Sci Food Agric, 73(2), 231-236.
  • Lan W, Yang C, 2019: Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci Total Environ, 654, 1270-1283. Lederberg J, 1992: Encyclopedia of Microbiology. Academic press. Inc. Harcourt Brace Jovanovich Publishers, New York, USA.
  • Liebe DL, Hall MB, White RR, 2020: Contributions of dairy products to environmental impacts and nutritional supplies from United States agriculture. J Dairy Sci, 103(11), 10867-10881.
  • Liu C, Wu H, Liu S, Chai S, Meng Q, Zhou Z, 2019: Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front Microbiol, 10, 1116.
  • Maia MR, Chaudhary LC, Figueres L, Wallace RJ, 2007: Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Leeuwenhoek, 91, 303-314.
  • Meale SJ, Li S, Azevedo P, Derakhshani H, Plaizier JC, Khafipour E, Steele MA, 2016: Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front Microbiol, 7, 582.
  • Millen DD, Arrigoni MDB, Pacheco RDL, (Eds.). 2016: Rumenology (pp. 39-40). Cham, Switzerland: Springer International Publishing.
  • Miron J, Ben-Ghedalia D, Morrison M, 2001: Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci, 84(6), 1294-1309.
  • Moe PW, Tyrrell HF, 1979: Methane production in dairy cows. J. Dairy Sci., 62:1583–1586.
  • Mottram T, 2010: Detecting sensor drift in rumen pH data. 1st International Conference on Precision Dairy Farming. Leeuwarden, The Netherlands, 12(3),481- 490.
  • Mullins CR, Mamedova LK, Carpenter AJ, Ying Y, Allen MS, Yoon I, Bradford BJ, 2013: Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product. J Dairy Sci, 96, 5872–5881.
  • Murphy MR, Baldwin RL, Koong LJ, 1982: Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J Dairy Sci, 55(2), 411-421.
  • O'Hara E, Kenny DA, McGovern E, Byrne CJ, McCabe MS, Guan LL, Waters SM, 2020: Investigating temporal microbial dynamics in the rumen of beef calves raised on two farms during early life. FEMS Microbiol Ecol, 96(2), fiz203
  • Orpin CG, Joblin KN, 1997: The rumen anaerobic fungi. In The rumen microbial ecosystem 140-195, Dordrecht: Springer Netherlands.
  • Orskov ER,1992: Protein Nutrition in Ruminants. 2nd Edition. Academic Press. London, UK.
  • Özel O, Sarıçiçek B, 2009: Ruminantlarda rumen mikroorganizmalarının varlığı ve önemi (derleme). TUBAV Bilim Derg, 2(3), 277-285.
  • Öztürk H, 2008: Ruminant beslemesinde probiyotik mayalar. Vet Hekim Der Derg, 79(3), 37-42.
  • Öztürk H, Demirtaş A, Salgırlı Y, Meral Ö, Pişkin İ, Emre B, Fidancı UR, 2011: Üzüm çekirdeği ekstratının rumen mikroorganizmalarının fermentasyon aktivitesi üzerine in vitro etkileri. Etlik Vet Mikrobiyol Derg, 22, 1-6.
  • Patterson JA, 1992: Rumen microbiology. in-Chief Lederberg, J. Encyclopedıa of Microbiology. Academic press. Inc. Harcourt Brace Jovanovich Publishers. New York, 3, 623-542.
  • Phakachoed N, Lounglawan P, Suksombat W, 2012: Effects of xylanase supplementation on ruminal digestibility in fistulated non-lactating dairy cows fed rice straw. Livest Sci, 149(1-2), 104-108.
  • Regensbogenova M, Kisidayova S, Michalowski T, Javorsky P, Moon-Van Der Staay SY, Hackstein JHP, McEwan NR, Jouany JP, Newbold JC, Pristas P, 2004: İdentification of rumen protozoa by restriction analysis of amplified 18s Rrna gene. Acta Protozool, 43, 219– 224.
  • Russell JB, Rychlik JL, 2001: Factors that alter rumen microbial ecology. Science, 292, 1119-1122
  • Steele MA, Croom J, Kahler M, AlZahal O, Hook SE, Plaizier K, McBride BW, 2011: Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am. J Physiol-Regul Integr Comp Physiol, 300(6), 1515-1523.
  • Tekce E, Gül M, 2014: Ruminant Beslemede NDF ve ADF nin önemi. Ataturk Univ Vet Bilim Derg, (9)-1, 63-73.
  • Theodorou MK, France J, 1993: Rumen microorganisms and their interactions. Quantitative aspects of ruminant digestion and metabolism, 145-163.
  • TÜİK, https://data.tuik.gov.tr/Bulten/Index?p=Kirmizi-Et-Uretim-Istatistikleri-2023-53540; 10.10.2024.
  • Wang Y, McAllister TA, 2002: Rumen microbes, enzymes and feed digestion-a review. Asian-Australasian J Anim Sci, 15(11), 1659-1676.
  • Xu Q, Qiao Q, Gao Y, Hou J, Hu M, Du Y, Zhao K, Li X, 2021: Gut microbiota and their role in health and metabolic disease of dairy cow. Front Nutr, 8, 701511.
  • Yu J, Cai L, Zhang J, Yang A, Wang Y, Zhang L, Guan LL, Qi D, 2020: Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro, Microorganisms, 8(8), 1160.
  • Zebeli Q, Metzler-Zebeli BU, 2012: Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Res Vet Sci, 93(3), 1099-1108.
  • Zhang L, Lu J, Okada H, Nogami H, Itoh T, Arai S, 2016: Low-power and high-sensitive pH sensor for monitoring of cow-rumen in real time. In 2016 IEEE SENSORS, Japan, pp. 1-3.
  • Zhou Z, Fang L, Meng Q, Li S, Chai S, Liu S, Schonewille JT, 2017: Assessment of ruminal bacterial and archaeal community structure in yak (Bos grunniens). Frontiers in Microbiology, 8, 179.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Animal Feeding, Animal Nutrition
Journal Section Review
Authors

Süleyman Hacısalihoğlu 0000-0001-9853-3312

İbrahim Sadi Çetingül 0000-0002-7608-6176

Publication Date June 19, 2025
Submission Date December 9, 2024
Acceptance Date May 20, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Hacısalihoğlu, S., & Çetingül, İ. S. (2025). Ruminantlarda Rumenin Önemi. Harran University Journal of the Faculty of Veterinary Medicine, 14(1), 95-103. https://doi.org/10.31196/huvfd.1589847
AMA Hacısalihoğlu S, Çetingül İS. Ruminantlarda Rumenin Önemi. Harran Univ Vet Fak Derg. June 2025;14(1):95-103. doi:10.31196/huvfd.1589847
Chicago Hacısalihoğlu, Süleyman, and İbrahim Sadi Çetingül. “Ruminantlarda Rumenin Önemi”. Harran University Journal of the Faculty of Veterinary Medicine 14, no. 1 (June 2025): 95-103. https://doi.org/10.31196/huvfd.1589847.
EndNote Hacısalihoğlu S, Çetingül İS (June 1, 2025) Ruminantlarda Rumenin Önemi. Harran University Journal of the Faculty of Veterinary Medicine 14 1 95–103.
IEEE S. Hacısalihoğlu and İ. S. Çetingül, “Ruminantlarda Rumenin Önemi”, Harran Univ Vet Fak Derg, vol. 14, no. 1, pp. 95–103, 2025, doi: 10.31196/huvfd.1589847.
ISNAD Hacısalihoğlu, Süleyman - Çetingül, İbrahim Sadi. “Ruminantlarda Rumenin Önemi”. Harran University Journal of the Faculty of Veterinary Medicine 14/1 (June 2025), 95-103. https://doi.org/10.31196/huvfd.1589847.
JAMA Hacısalihoğlu S, Çetingül İS. Ruminantlarda Rumenin Önemi. Harran Univ Vet Fak Derg. 2025;14:95–103.
MLA Hacısalihoğlu, Süleyman and İbrahim Sadi Çetingül. “Ruminantlarda Rumenin Önemi”. Harran University Journal of the Faculty of Veterinary Medicine, vol. 14, no. 1, 2025, pp. 95-103, doi:10.31196/huvfd.1589847.
Vancouver Hacısalihoğlu S, Çetingül İS. Ruminantlarda Rumenin Önemi. Harran Univ Vet Fak Derg. 2025;14(1):95-103.