Research Article
BibTex RIS Cite

Nano Çinko Oksit ile Zenginleştirilmiş Diyetlerin Japon Bıldırcınlarında Kemik Morfometrisi ve Biyomekanik Dayanıklılık Üzerindeki Etkileri

Year 2025, Volume: 14 Issue: 1, 52 - 59, 19.06.2025
https://doi.org/10.31196/huvfd.1644260

Abstract

Çinko, kemik gelişimi, enzim aktivitesi ve bağışıklık yanıtı da dahil olmak üzere birçok biyolojik fonksiyon için kritik olan temel bir eser elementtir. Bu çalışma, çinko oksit (ZnO) ve nano çinko oksit (NZn) takviyesinin Japon bıldırcınlarında (Coturnix coturnix japonica) tibiotarsus kemiğinin morfometrisi ve biyomekanik özellikleri üzerindeki etkilerini araştırmıştır. Toplam 118 adet bir günlük bıldırcın, kontrol (C), çinko oksit (Zn) ve nano çinko oksit (NZn) olmak üzere üç gruba ayrılmış ve her grup kendi içinde alt gruplara bölünmüştür. Diyetler, 75 mg/kg çinko sağlayacak şekilde formüle edilmiş ve belirlenen düzeylere ulaşmak için ek çinko kaynakları kullanılmıştır. Morfometrik ve biyomekanik analizler, kemik dayanıklılığı ve yapısal özellikleri değerlendirmek amacıyla üç nokta eğme testi kullanılarak gerçekleştirilmiştir. Sonuçlar, NZn grubunun dış mediolateral çapının (ExtMLD) Zn ve C gruplarına kıyasla anlamlı derecede daha yüksek olduğunu (P = 0,003) göstermiştir, bu da NZn takviyesinin periosteal kemik büyümesini artırabileceğini düşündürmektedir. Ancak, gruplar arasında iç çaplar veya kırılma kuvveti, atalet momenti, mukavemet, rijitlik ve elastik modül gibi biyomekanik parametrelerde anlamlı bir farklılık gözlenmemiştir (P > 0,05). Cinsiyete bağlı karşılaştırmalarda, Zn ve C gruplarındaki dişi bıldırcınların kırılma kuvveti ve atalet momenti değerlerinin erkeklere kıyasla anlamlı derecede daha yüksek olduğu tespit edilmiştir (P < 0,05), ancak NZn grubunda benzer bir fark bulunmamıştır. Bu bulgular, NZn’nun belirli morfometrik parametreler üzerinde olumlu etkiler gösterebileceğini ancak biyomekanik dayanıklılık üzerindeki etkisinin sınırlı olduğunu ortaya koymaktadır. Çalışma, çinkonun kemik gelişimi üzerindeki etkilerini açıklığa kavuşturmak amacıyla daha ileri araştırmalara ihtiyaç olduğunu vurgulamaktadır.

References

  • Abbasi M, Dastar B, Afzali N, Shams Shargh M, Hashemi SR. 2017: Zinc requirements of Japanese quails (Coturnix coturnix japonica) by assessing dose-evaluating response of zinc oxide nano-particle supplementation. Poult Sci., 5(2), 131-143.
  • Ammerman CB, Baker DH, Lewis AS. 1995: Bioavailability of nutrients for animals: Amino acid, minerals, and vitamins. Academic Press.
  • An YH, Barfield WR, Draughn RA. 2000: Basic concepts of mechanical property measurement and bone biomechanics. In Mechanical testing of bone and the bone-implant interface, CRC Press, Londan, 23-40p.
  • Bahtiyarca Y, Kolaş A, Uyaner M. 2007: Çeşitli kaynaklardan farklı seviyelerde çinko içeren rasyonlarla beslene japon bıldırcınlarının kemik biyomekanik özellikleri. 8. Uluslararası Kırılma Konferansı Bildiriler Kitabı, 7-9 Kasım 2007.
  • Bunglavan SJ, Garg AK, Dass RS, Shrivastava S, 2014: Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest Res Int., 2, 36-47.
  • Burrell AL, Dozier WA, Davis AJ, Compton MM, Freeman ME, Vendrell F, Ward TL, 2004: Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. Br Poult Sci, 45(2), 225-263.
  • Cao J, Henry PR, Guo R, Holwerda RA, Troth JP, Littell RC, Miles RD, Ammerman C B, 2000: Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J Anim Sci, 78, 2039-2054.
  • Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I, 2021: The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules, 11(4), 506. https://doi.org/10.3390/biom11040506
  • Cousins RJ, Liuzz JP, Lichten LA, 2006: Mammalian zinc transport, trafficking, and signals. J Biol Chem, 281, 24085-24089.
  • Donaldson J, Pillay K, Madziva MT, Erlwanger KH, 2015: The effect of different high-fat diets on erythrocyte osmotic fragility, growth performance and serum lipid concentrations in male, Japanese quail (Coturnix coturnix japonica). J Anim Physiol Anim Nutr, 99: 281–289.
  • El-Kholy MS, El-Gawad Ibrahim ZA, El-Mekkawy MM, Alagawany M. 2019: Influence of in ovo administration of some water-soluble vitamins on hatchability traits, growth, carcass traits and blood chemistry of Japanese quails. Ann Anim Sci, 19, 97–111.
  • Feng M, Wang ZS, Zhou AG. Ai D W, 2009: The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. Pak J Nutr, 8, 1164-1166.
  • Hiyama S, Yokoi M, Akagi Y, Kadoyama Y, Nakamori K, Tsuga K, Uchida T, Terayama R, 2019: Osteoclastogenesis from bone marrow cells during estrogen-induced medullary bone formation in Japanese quails. J Mol Histol, 50, 389–404. https://doi.org/10.1007/s10735-019-09835-x PMID: 31214852
  • Iolascon G, Napolano R, Gioia M, Moretti A, Riccio I, Gimigliano F, 2013: The contribution of cortical and trabecular tissues to bone strength: insights from denosumab studies. Clin Cases Miner Bone Metab, 10(1), 47–51. https://doi.org/10.11138/ccmbm/2013.10.1.047
  • Kawai M, Suzuki N, Sekiguchi T, Yamamoto T, Ohura K, 2018: Cloning of the parathyroid hormone receptor in Japanese quail. J Hard Tissue Biol, 27, 17–22.
  • Kolaş A, Koçbeker VD, Kara M A, Bahtiyarca Y, 2013: Genç Japon Bıldırcınlarında Organik Çinko Kaynaklarının Performans ve Kemik Mineralizasyonuna Etkisi. Tarım Bilimleri Araştırma Dergisi, 6(1), 178-182.
  • Korver D, Saunders-Blades J, Nadeau K, 2004: Assessing bone mineral density in vivo: Quantitative computed tomography. Poult Sci, 83(2), 222-229.
  • Kralick AE, Zemel BS, 2020: Evolutionary Perspectives on the Developing Skeleton and Implications for Lifelong Health. Frontiers in Endocrinology, 11, 99. https://doi.org/10.3389/fendo.2020.00099
  • McDowell LR, 2003: Minerals in animals and human nutrition (2nd ed.). Elsevier Science.
  • Miller SC, Bowman BM, 1981: Medullary bone osteogenesis following estrogen administration to mature male Japanese quail. Develop Biol, 87, 52-63. https://doi.org/10.1016/0012-1606(81)90060-9 PMID: 7286421
  • Minvielle F, 2004: The future of Japanese quail for research and production. Worlds Poult Sci J, 60, 500–507.
  • Muszyński S, Tomaszewska E, Kwiecień M, Dobrowolski P, Tomczyk-Warunek A, 2018: Subsequent somatic axis and bone tissue metabolism responses to a low-zinc diet with or without phytase inclusion in broiler chickens. PLOS One, 13(1), e0191964.
  • Ohashi T, Kusuhara S, 1991: Effects of estrogen on the proliferation and differentiation of osteogenic cells during the early stage of medullary bone formation in cultured quail bones. J Bone Miner Metab, 9, 15–20.
  • Ovesen J, Møller-Madsen B, Thomsen JS, Danscher G, Mosekilde L, 2001: The positive effects of zinc on skeletal strength in growing rats. Bone, 29(6), 565–570.
  • Padgett CS, Ivey WD, 1959: Coturnix quail as a laboratory research animal. Science. 129, 267–268. https://doi.org/10.1126/science.129.3344.267 PMID: 13624713
  • Patil SS, Kore BB, Kumar P, 2012: Nanotechnology and its applications in veterinary and animal science. Veterinary World, 2, 475-477.
  • Pourlis AF, Magras IN, Petridis D. 1998: Ossification and growth rates of the limb long bones during the prehatching period in the quail (Coturnix cotumix japonica). Anat Histol Embryol, 27, 61–63. https:// doi.org/10.1111/j.1439-0264. 1998.tb00157.x PMID: 9505448
  • Rothbaum RJ, Maur PR, Farrell MK, 1982: Serum alkaline phosphatase and zinc undernutrition in infants with chronic diarrhea. AJCN, 35(3), 595-598.
  • Sharir A, Barak MM, Shahar R. 2008: Whole bone mechanics and mechanical testing. Vet J (London, England: 1997), 177(1), 8–17.
  • Simmons DJ, Pankovich AM, 1963: Bone development in Japanese quail. Anat Rec, 147, 325–335. https://doi.org/10.1002/ar.1091470304 PMID: 14077645
  • Skrob ́anek P, Baranovska ́ M, Jur ́ani N, ˇS ́arnikov ́a B, 2005: Influence of simulated microgravity on leg bone development in Japanese quail chicks. Acta Vet Brno, 74, 475–481.
  • Suttle NF, 2010: Mineral nutrition of livestock (4th ed.). CABI.
  • Swain SS, Rajendran D, Rao SBN, Dominic G. 2015: Preparation and effects of nano mineral particle feeding in livestock: A review. Veterinary World, 8, 888-891.
  • Tomaszewska E, Dobrowolski P, Muszyński S, Kwiecień M, Kasperek K, Knaga S, Tomczyk-Warunek A, Kowalik S, Jeżewska-Witkowska G, Grela ER, 2018: Intestinal mucosa develops in a sex-dependent manner in Japanese quail (Coturnix japonica) fed Saccharomyces cerevisiae. Br Poult Sci, 59, 689–697. https://doi.org/10.1080/00071668.2018. 1523536 PMID: 30229673
  • Turner CH, Burr DB, 1993: Basic biomechanical measurements of bone: A tutorial. Bone, 14(4), 595-608.
  • Wang ZL, 2000: Characterization of nanophase material. Wiley-VCH Verlag GmbH.
  • Wedekind K J, Baker DH. 1990: Zinc bioavailability in feed-grade sources of zinc. JAS, 68(3), 684-689.
  • Yazgan O, 1990: Çiftlik Hayvanlarının Mineral Beslenmesi. Doktora Ders Notları.
  • Zibrín M, Boìa K, Cigánková V, Koãiová J, Tomajková E, Komorová T, Sabo V, Pivko J, 2003: Long-term experimental hypodynamy affects the structure of spongy bone and osteoclasts in Japanese quail. Acta Vet Brno, 72: 143–149.

Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails

Year 2025, Volume: 14 Issue: 1, 52 - 59, 19.06.2025
https://doi.org/10.31196/huvfd.1644260

Abstract

Zinc is an essential trace element critical for numerous biological functions, including bone development, enzyme activity, and immune response. This study investigated the effects of zinc oxide (ZnO) and nano zinc oxide (NZn) supplementation on bone morphometry and biomechanical properties in Japanese quails (Coturnix coturnix japonica). A total of 118 one-day-old quails were divided into three groups: control (C), zinc oxide (Zn), and nano zinc oxide (NZn), with each group further subdivided into replicates. Diets were formulated to provide 75 mg/kg zinc, with additional zinc sources added to achieve the desired levels. Morphometric and biomechanical analyses were conducted using a 3-point bending test to evaluate tibiotarsus bone strength and structural properties. Results indicated that the NC group exhibited a significantly higher external mediolateral diameter (ExtMLD) compared to the Zn and C groups (P = 0.003), suggesting enhanced periosteal bone growth with NZn supplementation. However, no significant differences were observed in internal diameters or biomechanical parameters such as breaking force, moment of inertia, strength, stiffness, and elastic modulus among the groups (P>0.05). Sex-based comparisons revealed that female quails in the Zn and C groups had significantly higher breaking force and moment of inertia compared to males (P < 0.05). Still, no such differences were observed in the NZn group. These findings suggest that while NZn may positively influence specific morphometric parameters, its impact on biomechanical strength remains limited. The study highlights the need for further research to elucidate the mechanisms underlying zinc's effects on bone development.

Ethical Statement

his study was carried out with the permission of Aydın Adnan Menderes University, Animal Experiments Local Ethics Committee, number 64583101/2023/46.

Supporting Institution

This research received no external funding.

References

  • Abbasi M, Dastar B, Afzali N, Shams Shargh M, Hashemi SR. 2017: Zinc requirements of Japanese quails (Coturnix coturnix japonica) by assessing dose-evaluating response of zinc oxide nano-particle supplementation. Poult Sci., 5(2), 131-143.
  • Ammerman CB, Baker DH, Lewis AS. 1995: Bioavailability of nutrients for animals: Amino acid, minerals, and vitamins. Academic Press.
  • An YH, Barfield WR, Draughn RA. 2000: Basic concepts of mechanical property measurement and bone biomechanics. In Mechanical testing of bone and the bone-implant interface, CRC Press, Londan, 23-40p.
  • Bahtiyarca Y, Kolaş A, Uyaner M. 2007: Çeşitli kaynaklardan farklı seviyelerde çinko içeren rasyonlarla beslene japon bıldırcınlarının kemik biyomekanik özellikleri. 8. Uluslararası Kırılma Konferansı Bildiriler Kitabı, 7-9 Kasım 2007.
  • Bunglavan SJ, Garg AK, Dass RS, Shrivastava S, 2014: Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest Res Int., 2, 36-47.
  • Burrell AL, Dozier WA, Davis AJ, Compton MM, Freeman ME, Vendrell F, Ward TL, 2004: Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. Br Poult Sci, 45(2), 225-263.
  • Cao J, Henry PR, Guo R, Holwerda RA, Troth JP, Littell RC, Miles RD, Ammerman C B, 2000: Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J Anim Sci, 78, 2039-2054.
  • Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I, 2021: The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules, 11(4), 506. https://doi.org/10.3390/biom11040506
  • Cousins RJ, Liuzz JP, Lichten LA, 2006: Mammalian zinc transport, trafficking, and signals. J Biol Chem, 281, 24085-24089.
  • Donaldson J, Pillay K, Madziva MT, Erlwanger KH, 2015: The effect of different high-fat diets on erythrocyte osmotic fragility, growth performance and serum lipid concentrations in male, Japanese quail (Coturnix coturnix japonica). J Anim Physiol Anim Nutr, 99: 281–289.
  • El-Kholy MS, El-Gawad Ibrahim ZA, El-Mekkawy MM, Alagawany M. 2019: Influence of in ovo administration of some water-soluble vitamins on hatchability traits, growth, carcass traits and blood chemistry of Japanese quails. Ann Anim Sci, 19, 97–111.
  • Feng M, Wang ZS, Zhou AG. Ai D W, 2009: The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. Pak J Nutr, 8, 1164-1166.
  • Hiyama S, Yokoi M, Akagi Y, Kadoyama Y, Nakamori K, Tsuga K, Uchida T, Terayama R, 2019: Osteoclastogenesis from bone marrow cells during estrogen-induced medullary bone formation in Japanese quails. J Mol Histol, 50, 389–404. https://doi.org/10.1007/s10735-019-09835-x PMID: 31214852
  • Iolascon G, Napolano R, Gioia M, Moretti A, Riccio I, Gimigliano F, 2013: The contribution of cortical and trabecular tissues to bone strength: insights from denosumab studies. Clin Cases Miner Bone Metab, 10(1), 47–51. https://doi.org/10.11138/ccmbm/2013.10.1.047
  • Kawai M, Suzuki N, Sekiguchi T, Yamamoto T, Ohura K, 2018: Cloning of the parathyroid hormone receptor in Japanese quail. J Hard Tissue Biol, 27, 17–22.
  • Kolaş A, Koçbeker VD, Kara M A, Bahtiyarca Y, 2013: Genç Japon Bıldırcınlarında Organik Çinko Kaynaklarının Performans ve Kemik Mineralizasyonuna Etkisi. Tarım Bilimleri Araştırma Dergisi, 6(1), 178-182.
  • Korver D, Saunders-Blades J, Nadeau K, 2004: Assessing bone mineral density in vivo: Quantitative computed tomography. Poult Sci, 83(2), 222-229.
  • Kralick AE, Zemel BS, 2020: Evolutionary Perspectives on the Developing Skeleton and Implications for Lifelong Health. Frontiers in Endocrinology, 11, 99. https://doi.org/10.3389/fendo.2020.00099
  • McDowell LR, 2003: Minerals in animals and human nutrition (2nd ed.). Elsevier Science.
  • Miller SC, Bowman BM, 1981: Medullary bone osteogenesis following estrogen administration to mature male Japanese quail. Develop Biol, 87, 52-63. https://doi.org/10.1016/0012-1606(81)90060-9 PMID: 7286421
  • Minvielle F, 2004: The future of Japanese quail for research and production. Worlds Poult Sci J, 60, 500–507.
  • Muszyński S, Tomaszewska E, Kwiecień M, Dobrowolski P, Tomczyk-Warunek A, 2018: Subsequent somatic axis and bone tissue metabolism responses to a low-zinc diet with or without phytase inclusion in broiler chickens. PLOS One, 13(1), e0191964.
  • Ohashi T, Kusuhara S, 1991: Effects of estrogen on the proliferation and differentiation of osteogenic cells during the early stage of medullary bone formation in cultured quail bones. J Bone Miner Metab, 9, 15–20.
  • Ovesen J, Møller-Madsen B, Thomsen JS, Danscher G, Mosekilde L, 2001: The positive effects of zinc on skeletal strength in growing rats. Bone, 29(6), 565–570.
  • Padgett CS, Ivey WD, 1959: Coturnix quail as a laboratory research animal. Science. 129, 267–268. https://doi.org/10.1126/science.129.3344.267 PMID: 13624713
  • Patil SS, Kore BB, Kumar P, 2012: Nanotechnology and its applications in veterinary and animal science. Veterinary World, 2, 475-477.
  • Pourlis AF, Magras IN, Petridis D. 1998: Ossification and growth rates of the limb long bones during the prehatching period in the quail (Coturnix cotumix japonica). Anat Histol Embryol, 27, 61–63. https:// doi.org/10.1111/j.1439-0264. 1998.tb00157.x PMID: 9505448
  • Rothbaum RJ, Maur PR, Farrell MK, 1982: Serum alkaline phosphatase and zinc undernutrition in infants with chronic diarrhea. AJCN, 35(3), 595-598.
  • Sharir A, Barak MM, Shahar R. 2008: Whole bone mechanics and mechanical testing. Vet J (London, England: 1997), 177(1), 8–17.
  • Simmons DJ, Pankovich AM, 1963: Bone development in Japanese quail. Anat Rec, 147, 325–335. https://doi.org/10.1002/ar.1091470304 PMID: 14077645
  • Skrob ́anek P, Baranovska ́ M, Jur ́ani N, ˇS ́arnikov ́a B, 2005: Influence of simulated microgravity on leg bone development in Japanese quail chicks. Acta Vet Brno, 74, 475–481.
  • Suttle NF, 2010: Mineral nutrition of livestock (4th ed.). CABI.
  • Swain SS, Rajendran D, Rao SBN, Dominic G. 2015: Preparation and effects of nano mineral particle feeding in livestock: A review. Veterinary World, 8, 888-891.
  • Tomaszewska E, Dobrowolski P, Muszyński S, Kwiecień M, Kasperek K, Knaga S, Tomczyk-Warunek A, Kowalik S, Jeżewska-Witkowska G, Grela ER, 2018: Intestinal mucosa develops in a sex-dependent manner in Japanese quail (Coturnix japonica) fed Saccharomyces cerevisiae. Br Poult Sci, 59, 689–697. https://doi.org/10.1080/00071668.2018. 1523536 PMID: 30229673
  • Turner CH, Burr DB, 1993: Basic biomechanical measurements of bone: A tutorial. Bone, 14(4), 595-608.
  • Wang ZL, 2000: Characterization of nanophase material. Wiley-VCH Verlag GmbH.
  • Wedekind K J, Baker DH. 1990: Zinc bioavailability in feed-grade sources of zinc. JAS, 68(3), 684-689.
  • Yazgan O, 1990: Çiftlik Hayvanlarının Mineral Beslenmesi. Doktora Ders Notları.
  • Zibrín M, Boìa K, Cigánková V, Koãiová J, Tomajková E, Komorová T, Sabo V, Pivko J, 2003: Long-term experimental hypodynamy affects the structure of spongy bone and osteoclasts in Japanese quail. Acta Vet Brno, 72: 143–149.
There are 39 citations in total.

Details

Primary Language English
Subjects Veterinary Anatomy and Physiology
Journal Section Research
Authors

Firuze Türker Yavaş 0000-0001-8651-945X

İsmail Gökçe Yıldırım 0000-0003-3458-0827

Figen Sevil Kilimci 0000-0002-2291-0545

Publication Date June 19, 2025
Submission Date February 21, 2025
Acceptance Date April 7, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Türker Yavaş, F., Yıldırım, İ. G., & Sevil Kilimci, F. (2025). Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails. Harran University Journal of the Faculty of Veterinary Medicine, 14(1), 52-59. https://doi.org/10.31196/huvfd.1644260
AMA Türker Yavaş F, Yıldırım İG, Sevil Kilimci F. Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails. Harran Univ Vet Fak Derg. June 2025;14(1):52-59. doi:10.31196/huvfd.1644260
Chicago Türker Yavaş, Firuze, İsmail Gökçe Yıldırım, and Figen Sevil Kilimci. “Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails”. Harran University Journal of the Faculty of Veterinary Medicine 14, no. 1 (June 2025): 52-59. https://doi.org/10.31196/huvfd.1644260.
EndNote Türker Yavaş F, Yıldırım İG, Sevil Kilimci F (June 1, 2025) Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails. Harran University Journal of the Faculty of Veterinary Medicine 14 1 52–59.
IEEE F. Türker Yavaş, İ. G. Yıldırım, and F. Sevil Kilimci, “Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails”, Harran Univ Vet Fak Derg, vol. 14, no. 1, pp. 52–59, 2025, doi: 10.31196/huvfd.1644260.
ISNAD Türker Yavaş, Firuze et al. “Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails”. Harran University Journal of the Faculty of Veterinary Medicine 14/1 (June 2025), 52-59. https://doi.org/10.31196/huvfd.1644260.
JAMA Türker Yavaş F, Yıldırım İG, Sevil Kilimci F. Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails. Harran Univ Vet Fak Derg. 2025;14:52–59.
MLA Türker Yavaş, Firuze et al. “Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails”. Harran University Journal of the Faculty of Veterinary Medicine, vol. 14, no. 1, 2025, pp. 52-59, doi:10.31196/huvfd.1644260.
Vancouver Türker Yavaş F, Yıldırım İG, Sevil Kilimci F. Effects of Nano Zinc Oxide-Enriched Diets on Bone Morphometry and Biomechanical Strength in Japanese Quails. Harran Univ Vet Fak Derg. 2025;14(1):52-9.