Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 43 - 49
https://doi.org/10.35860/iarej.1585507

Abstract

Project Number

2019-056

References

  • 1. Qiu, J.H., T.X. Zhao, Z.H. Chen, X.Q. Wang, N.Y. Yuan, and J.N. Ding, Phase diagram and physical properties of (110) oriented Ba(Zr0.08Ti0.92)O3 thin film. Solid State Communications, 2019. 289: p. 1–4.
  • 2. Kaur, R., M. Singh, and A. Singh, Influence of samarium and iron substitution on structural and electrical properties of barium zirconate titanate solid solutions. Journal of Asian Ceramic Societies, 2019. 7(3): p. 284–297.
  • 3. Maiti, T., R. Guo, and A.S. Bhalla, Enhanced electric field tunable dielectric properties of BaZrxTi1-xO3 relaxor ferroelectrics. Applied Physics Letters, 2007. 90(18): p.182901.
  • 4. Delibaş, N. C., S. B. Gharamaleki, M. Mansouri, and A. Niaie, Reduction of operation temperature in SOFCs utilizing perovskites: Review, International Advanced Researches and Engineering Journal, 2022. 6(1): p. 56–67.
  • 5. Ciomaga, C.E., M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, Preparation and dielectric properties of BaZr0.1Ti0.9O3 ceramics with different grain sizes. Phase Transitions, 2006. 79(6–7): p. 389–397.
  • 6. Mangaiyarkkarasi, J., S. Sasikumar, O.V. Saravanan, and R. Saravanan, Electronic structure and bonding interactions in Ba1−xSrxZr0.1Ti0.9O3 ceramics. Frontiers of Materials Science, 2017. 11(2): p. 182–189.
  • 7. Dong, L., D.S. Stone, and R.S. Lakes, Enhanced dielectric and piezoelectric properties of xBaZrO3-(1-x)BaTiO3 ceramics. Journal of Applied Physics, 2012. 111(8): p.084107.
  • 8. Fahad, M., R. Thangavel, and P.M. Sarun, Scaling behavior of the BaZr0.1Ti0.9O3 (BZT) dielectric ceramic at the elevated temperatures (400 °C – 540 °C). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022. 283: p.115837.
  • 9. Bhargavi, G.N., T. Badapanda, M.S. Anwar, M. Tlija, H. Joardar, and S.N. Tripathy, Understanding the impact of gadolinium substitution on the impedance and conduction mechanism of barium zirconium titanate ceramics. Journal of Materials Science: Materials in Electronics, 2024. 35(1991): p. 1-28.
  • 10. Salem, M.M., M.A. Darwish, A.M. Altarawneh, Y.A. Alibwaini, R. Ghazy, O.M. Hemeda, D. Zhou, E.L. Trukhanova, A.V. Trukhanov, S.V. Trukhanov and M. Mostafa, Investigation of the structure and dielectric properties of doped barium titanates. RSC Advances, 2024. 14(5): p. 3335–3345.
  • 11. Kholodkova, A.A., A. V. Reznichenko, A.A. Vasin, and A. V. Smirnov, Methods for the synthesis of barium titanate as a component of functional dielectric ceramics. Tonkie Khimicheskie Tekhnologii, 2024. 19: p. 72–87.
  • 12. Jia, Q., B. Shen, X. Hao, J. Zhai, and X. Yao, Enhanced dielectric property from highly (100)-oriented barium zirconate titanate compositional gradient films. Thin Solid Films, 2010. 518: p. e89–e92.
  • 13. Jha, P.A., and A.K. Jha, Influence of processing conditions on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics. Journal of Alloys and Compounds, 2012. 513: p. 580–585.
  • 14. Binhayeeniyi, N., P. Sukvisut, C. Thanachayanont, and S. Muensit, Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature. Materials Letters, 2010. 64(3): p. 305–308.
  • 15. Liu, L., S. Zheng, Y. Huang, D. Shi, S. Wu, L. Fang, C. Hu, B. Elouadi, Structure and piezoelectric properties of (1−0.5x)BaTiO3–0.5x (0.4BaZrO3–0.6CaTiO3) ceramics. Journal of Physics D: Applied Physics, 2012. 45(29): p. 295403.
  • 16. Jain, A., A.K. Panwar, and A.K. Jha, Effect of ZnO doping on structural, dielectric, ferroelectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics. Ceramics International, 2017. 43(2): p 1948–1955.
  • 17. Kumar, D., R. Sagar Yadav, Monika, A. Kumar Singh, and S. Bahadur Rai, Synthesis Techniques and Applications of Perovskite Material. Perovskite Materials, Devices and Integration. 2020, IntechOpen.
  • 18. Islam, S., M. R. Molla, N. Khatun, N. I. Tanvir, M. Hakim and Md. S. Islam, Exploring the effects of zirconium doping on barium titanate ceramics: structural, electrical, and optical properties. Material Advances, 2025. 6: p. 1403-1413.
  • 19. Hao, T., J. Shen, Q. Peng, J. Liu, W. Hu, C. Zhong, Solid-State Synthesis for High-Tetragonality, Small-Particle Barium Titanate. Materials, 2024. 17: p. 5655.
  • 20. Dzunuzovic, A.S., M.M.V. Petrovic, J.D. Bobic, N. I. Ilic and B. D. Stojanovicet, Influence of ferrite phase on electrical properties of the barium zirconium titanate based multiferroic composites. Journal of Electroceramics,2021. 46: p. 57–71.
  • 21. Reddy, S.B., K.P. Rao, and M.S.R. Rao, Nanocrystalline barium zirconate titanate synthesized at low temperature by an aqueous co-precipitation technique. Scripta Materialia, 2007. 57(7): p. 591–594.
  • 22. Deluca, M., C.A. Vasilescu, A.C. Ianculescu, D. C. Berger, C. E. Ciomaga, L. P. Curecheriu, L. Stoleriu, A. Gajovic, L. Mitoseriu, C. Galassi, Investigation of the composition-dependent properties of BaTi 1-xZr xO 3 ceramics prepared by the modified Pechini method. Journal of the European Ceramic Society, 2012. 32(13): p. 3551–3566.
  • 23. Veith, M., S. Mathur, N. Lecerf, V. Huch and T. Decker, Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes. Journal of Sol-Gel Science and Technology, 2000. 17(2): p. 145–158.
  • 24. Yoshimura, M., M. Kakihana, and K. Sardar, A review on the designing of homogeneous multicomponent oxides via polymer complex method. Materials and Design, 2024. 244: p. 113118.
  • 25. Nicollet, C., and A.J. Carrillo, Back to basics: synthesis of metal oxides. Journal of Electroceramics, 2023. 52: p.10-28 .
  • 26. Aktaş, P., Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. Celal Bayar University Journal of Science, 2020. 16(3): p. 293-300.
  • 27. Upadhyay, R.H., A.P. Argekar, and R.R. Deshmukh, Characterization, dielectric and electrical behaviour of BaTiO3 nanoparticles prepared via titanium(IV) triethanolaminato isopropoxide and hydrated barium hydroxide. Bulletin of Material Sciences, 2014. 37(3): p.481-489.
  • 28. Upadhyay, R.H., and R.R. Deshmukh, A new low dielectric constant barium titanate - poly (methyl methacrylate) nanocomposite films. Advances in Materials Research, 2013. 2(2): p. 99–109.
  • 29. Kong, L., I. Karatchevtseva, M. Blackford, I. Chironi, and G. Triani, Synthesis and characterization of rutile nanocrystals prepared in aqueous media at low temperature. Journal of the American Ceramic Society, 2012. 95(2): p. 816–822.
  • 30. Kong, L., I. Karatchevtseva, R. Holmes, J. Davis, Y. Zhang, and G. Triani, New synthesis route for lead zirconate titanate powder. Ceramics International, 2016. 42(6): p. 6782–6790.
  • 31. Match! - Phase Identification from Powder Diffraction, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match.
  • 32. F. Menges, Spectragryph-optical spectroscopy software, Version 1.2.16.1., 2022.
  • 33. Bernardi, M.I.B., E. Antonelli, A.B. Lourenço, C.A.C. Feitosa, L.J.Q. Maia, and A.C. Hernandes, BaTi1-xZrxO3 nanopowders prepared by the modified Pechini method. Journal of Thermal Analysis and Calorimetry, 2007. 87(3): p. 725–730.
  • 34. Chen, X., X. Chao, and Z. Yang, Submicron barium calcium zirconium titanate ceramic for energy storage synthesised via the co-precipitation method. Materials Research Bulletin, 2019. 111: p. 259–266.
  • 35. Reda, M., S.I. El-Dek, and M.M. Arman, Improvement of ferroelectric properties via Zr doping in barium titanate nanoparticles. Journal of Materials Sciences: Materials in Electronics, 2022. 33: p. 16753–16776.

Study of synthesis, structure and temperature-dependent phase evolution of Barium Zirconium Titanate

Year 2025, Volume: 9 Issue: 1, 43 - 49
https://doi.org/10.35860/iarej.1585507

Abstract

In this study, Barium Zirconium Titanate (BaZrxTi1-xO3) (where x=0.1 and 0.2) structures were synthesized using starting materials of barium acetate, titanium (triethanolaminato) isopropoxide (80% w/w in isopropanol), and Zr(IV)propoxide (70% 1-propanol solution) through the Pechini method. The significance of this synthesis lies in its novel application of commercially available, air-stable organic titanate precursors. The BZT structures were characterized using X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Thermal Gravimetric Analysis (TGA), and Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) analyses. XRD patterns of the resultant samples, taken after calcination processes at temperatures ranging from 800°C to 1200 °C, support the hypothesis that zirconium is integrated into the structure. SEM results demonstrated that as the amount of Zr increased, the grain size of BZT decreased, with BZT2 particles exhibiting a spherical morphology. The grain sizes of the BZT2 sample ranged approximately from 180 to 50 nm. Furthermore, EDX analyses confirmed the substitution of Zr within the BZT structure.

Project Number

2019-056

References

  • 1. Qiu, J.H., T.X. Zhao, Z.H. Chen, X.Q. Wang, N.Y. Yuan, and J.N. Ding, Phase diagram and physical properties of (110) oriented Ba(Zr0.08Ti0.92)O3 thin film. Solid State Communications, 2019. 289: p. 1–4.
  • 2. Kaur, R., M. Singh, and A. Singh, Influence of samarium and iron substitution on structural and electrical properties of barium zirconate titanate solid solutions. Journal of Asian Ceramic Societies, 2019. 7(3): p. 284–297.
  • 3. Maiti, T., R. Guo, and A.S. Bhalla, Enhanced electric field tunable dielectric properties of BaZrxTi1-xO3 relaxor ferroelectrics. Applied Physics Letters, 2007. 90(18): p.182901.
  • 4. Delibaş, N. C., S. B. Gharamaleki, M. Mansouri, and A. Niaie, Reduction of operation temperature in SOFCs utilizing perovskites: Review, International Advanced Researches and Engineering Journal, 2022. 6(1): p. 56–67.
  • 5. Ciomaga, C.E., M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, Preparation and dielectric properties of BaZr0.1Ti0.9O3 ceramics with different grain sizes. Phase Transitions, 2006. 79(6–7): p. 389–397.
  • 6. Mangaiyarkkarasi, J., S. Sasikumar, O.V. Saravanan, and R. Saravanan, Electronic structure and bonding interactions in Ba1−xSrxZr0.1Ti0.9O3 ceramics. Frontiers of Materials Science, 2017. 11(2): p. 182–189.
  • 7. Dong, L., D.S. Stone, and R.S. Lakes, Enhanced dielectric and piezoelectric properties of xBaZrO3-(1-x)BaTiO3 ceramics. Journal of Applied Physics, 2012. 111(8): p.084107.
  • 8. Fahad, M., R. Thangavel, and P.M. Sarun, Scaling behavior of the BaZr0.1Ti0.9O3 (BZT) dielectric ceramic at the elevated temperatures (400 °C – 540 °C). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022. 283: p.115837.
  • 9. Bhargavi, G.N., T. Badapanda, M.S. Anwar, M. Tlija, H. Joardar, and S.N. Tripathy, Understanding the impact of gadolinium substitution on the impedance and conduction mechanism of barium zirconium titanate ceramics. Journal of Materials Science: Materials in Electronics, 2024. 35(1991): p. 1-28.
  • 10. Salem, M.M., M.A. Darwish, A.M. Altarawneh, Y.A. Alibwaini, R. Ghazy, O.M. Hemeda, D. Zhou, E.L. Trukhanova, A.V. Trukhanov, S.V. Trukhanov and M. Mostafa, Investigation of the structure and dielectric properties of doped barium titanates. RSC Advances, 2024. 14(5): p. 3335–3345.
  • 11. Kholodkova, A.A., A. V. Reznichenko, A.A. Vasin, and A. V. Smirnov, Methods for the synthesis of barium titanate as a component of functional dielectric ceramics. Tonkie Khimicheskie Tekhnologii, 2024. 19: p. 72–87.
  • 12. Jia, Q., B. Shen, X. Hao, J. Zhai, and X. Yao, Enhanced dielectric property from highly (100)-oriented barium zirconate titanate compositional gradient films. Thin Solid Films, 2010. 518: p. e89–e92.
  • 13. Jha, P.A., and A.K. Jha, Influence of processing conditions on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics. Journal of Alloys and Compounds, 2012. 513: p. 580–585.
  • 14. Binhayeeniyi, N., P. Sukvisut, C. Thanachayanont, and S. Muensit, Physical and electromechanical properties of barium zirconium titanate synthesized at low-sintering temperature. Materials Letters, 2010. 64(3): p. 305–308.
  • 15. Liu, L., S. Zheng, Y. Huang, D. Shi, S. Wu, L. Fang, C. Hu, B. Elouadi, Structure and piezoelectric properties of (1−0.5x)BaTiO3–0.5x (0.4BaZrO3–0.6CaTiO3) ceramics. Journal of Physics D: Applied Physics, 2012. 45(29): p. 295403.
  • 16. Jain, A., A.K. Panwar, and A.K. Jha, Effect of ZnO doping on structural, dielectric, ferroelectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics. Ceramics International, 2017. 43(2): p 1948–1955.
  • 17. Kumar, D., R. Sagar Yadav, Monika, A. Kumar Singh, and S. Bahadur Rai, Synthesis Techniques and Applications of Perovskite Material. Perovskite Materials, Devices and Integration. 2020, IntechOpen.
  • 18. Islam, S., M. R. Molla, N. Khatun, N. I. Tanvir, M. Hakim and Md. S. Islam, Exploring the effects of zirconium doping on barium titanate ceramics: structural, electrical, and optical properties. Material Advances, 2025. 6: p. 1403-1413.
  • 19. Hao, T., J. Shen, Q. Peng, J. Liu, W. Hu, C. Zhong, Solid-State Synthesis for High-Tetragonality, Small-Particle Barium Titanate. Materials, 2024. 17: p. 5655.
  • 20. Dzunuzovic, A.S., M.M.V. Petrovic, J.D. Bobic, N. I. Ilic and B. D. Stojanovicet, Influence of ferrite phase on electrical properties of the barium zirconium titanate based multiferroic composites. Journal of Electroceramics,2021. 46: p. 57–71.
  • 21. Reddy, S.B., K.P. Rao, and M.S.R. Rao, Nanocrystalline barium zirconate titanate synthesized at low temperature by an aqueous co-precipitation technique. Scripta Materialia, 2007. 57(7): p. 591–594.
  • 22. Deluca, M., C.A. Vasilescu, A.C. Ianculescu, D. C. Berger, C. E. Ciomaga, L. P. Curecheriu, L. Stoleriu, A. Gajovic, L. Mitoseriu, C. Galassi, Investigation of the composition-dependent properties of BaTi 1-xZr xO 3 ceramics prepared by the modified Pechini method. Journal of the European Ceramic Society, 2012. 32(13): p. 3551–3566.
  • 23. Veith, M., S. Mathur, N. Lecerf, V. Huch and T. Decker, Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes. Journal of Sol-Gel Science and Technology, 2000. 17(2): p. 145–158.
  • 24. Yoshimura, M., M. Kakihana, and K. Sardar, A review on the designing of homogeneous multicomponent oxides via polymer complex method. Materials and Design, 2024. 244: p. 113118.
  • 25. Nicollet, C., and A.J. Carrillo, Back to basics: synthesis of metal oxides. Journal of Electroceramics, 2023. 52: p.10-28 .
  • 26. Aktaş, P., Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. Celal Bayar University Journal of Science, 2020. 16(3): p. 293-300.
  • 27. Upadhyay, R.H., A.P. Argekar, and R.R. Deshmukh, Characterization, dielectric and electrical behaviour of BaTiO3 nanoparticles prepared via titanium(IV) triethanolaminato isopropoxide and hydrated barium hydroxide. Bulletin of Material Sciences, 2014. 37(3): p.481-489.
  • 28. Upadhyay, R.H., and R.R. Deshmukh, A new low dielectric constant barium titanate - poly (methyl methacrylate) nanocomposite films. Advances in Materials Research, 2013. 2(2): p. 99–109.
  • 29. Kong, L., I. Karatchevtseva, M. Blackford, I. Chironi, and G. Triani, Synthesis and characterization of rutile nanocrystals prepared in aqueous media at low temperature. Journal of the American Ceramic Society, 2012. 95(2): p. 816–822.
  • 30. Kong, L., I. Karatchevtseva, R. Holmes, J. Davis, Y. Zhang, and G. Triani, New synthesis route for lead zirconate titanate powder. Ceramics International, 2016. 42(6): p. 6782–6790.
  • 31. Match! - Phase Identification from Powder Diffraction, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match.
  • 32. F. Menges, Spectragryph-optical spectroscopy software, Version 1.2.16.1., 2022.
  • 33. Bernardi, M.I.B., E. Antonelli, A.B. Lourenço, C.A.C. Feitosa, L.J.Q. Maia, and A.C. Hernandes, BaTi1-xZrxO3 nanopowders prepared by the modified Pechini method. Journal of Thermal Analysis and Calorimetry, 2007. 87(3): p. 725–730.
  • 34. Chen, X., X. Chao, and Z. Yang, Submicron barium calcium zirconium titanate ceramic for energy storage synthesised via the co-precipitation method. Materials Research Bulletin, 2019. 111: p. 259–266.
  • 35. Reda, M., S.I. El-Dek, and M.M. Arman, Improvement of ferroelectric properties via Zr doping in barium titanate nanoparticles. Journal of Materials Sciences: Materials in Electronics, 2022. 33: p. 16753–16776.
There are 35 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Research Articles
Authors

Pelin Aktaş 0000-0003-2140-2650

Project Number 2019-056
Early Pub Date April 29, 2025
Publication Date
Submission Date November 14, 2024
Acceptance Date April 11, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Aktaş, P. (2025). Study of synthesis, structure and temperature-dependent phase evolution of Barium Zirconium Titanate. International Advanced Researches and Engineering Journal, 9(1), 43-49. https://doi.org/10.35860/iarej.1585507
AMA Aktaş P. Study of synthesis, structure and temperature-dependent phase evolution of Barium Zirconium Titanate. Int. Adv. Res. Eng. J. April 2025;9(1):43-49. doi:10.35860/iarej.1585507
Chicago Aktaş, Pelin. “Study of Synthesis, Structure and Temperature-Dependent Phase Evolution of Barium Zirconium Titanate”. International Advanced Researches and Engineering Journal 9, no. 1 (April 2025): 43-49. https://doi.org/10.35860/iarej.1585507.
EndNote Aktaş P (April 1, 2025) Study of synthesis, structure and temperature-dependent phase evolution of Barium Zirconium Titanate. International Advanced Researches and Engineering Journal 9 1 43–49.
IEEE P. Aktaş, “Study of synthesis, structure and temperature-dependent phase evolution of Barium Zirconium Titanate”, Int. Adv. Res. Eng. J., vol. 9, no. 1, pp. 43–49, 2025, doi: 10.35860/iarej.1585507.
ISNAD Aktaş, Pelin. “Study of Synthesis, Structure and Temperature-Dependent Phase Evolution of Barium Zirconium Titanate”. International Advanced Researches and Engineering Journal 9/1 (April 2025), 43-49. https://doi.org/10.35860/iarej.1585507.
JAMA Aktaş P. Study of synthesis, structure and temperature-dependent phase evolution of Barium Zirconium Titanate. Int. Adv. Res. Eng. J. 2025;9:43–49.
MLA Aktaş, Pelin. “Study of Synthesis, Structure and Temperature-Dependent Phase Evolution of Barium Zirconium Titanate”. International Advanced Researches and Engineering Journal, vol. 9, no. 1, 2025, pp. 43-49, doi:10.35860/iarej.1585507.
Vancouver Aktaş P. Study of synthesis, structure and temperature-dependent phase evolution of Barium Zirconium Titanate. Int. Adv. Res. Eng. J. 2025;9(1):43-9.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.