Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 15
https://doi.org/10.24330/ieja.1640842

Abstract

References

  • M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra, 320(3) (2008), 1275-1287.
  • M. Asgharzadeh and M.Tousi, A unified approach to local cohomology modules using Serre classes, Canad. Math. Bull., 53(4) (2010), 577-586.
  • N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, Math. Proc. Cambridge Philos. Soc., 131(1) (2001), 61-72.
  • N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules, J. Algebra, 319(11) (2008), 4712-4737.
  • K. Divaani-Aazar and A. Hajikarimi, Generalized local cohomology modules and homological Gorenstein dimensions, Comm. Algebra, 39(6) (2011), 2051-2067.
  • Y. N. Do, T. M. Nguyen and N. T. Tran, Some finiteness results for co-associated primes of generalized local homology modules and applications, J. Korean Math. Soc., 57(5) (2020), 1061-1078.
  • S. O. Faramarzi and Z. Barghsouz, Serre subcategory, local homology and local cohomology, J. Algebr. Syst., 7(2) (2020), 301-314.
  • J. Herzog, Komplexe, Auosungen und Dualitat in der Localen Algebra, Habilitationschrift Univ. Regensburg, 1970.
  • C. U. Jensen, Les Foncteurs Derives de $\varprojlim$ et Leurs Applications en Theorie des Modules, Lecture Notes in Mathematics, 254, Springer-Verlag, Berlin-New York, 1972.
  • I. G. Macdonald, Duality over complete local rings, Topology, 1 (1962), 213-235.
  • L. Melkersson and P. Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. Soc., 38(1) (1995), 121-131.
  • T. T. Nam, A finiteness result for co-associated and associated primes of generalized local homology and cohomology modules, Comm. Algebra, 37(5) (2009), 1748-1757.
  • T. T. Nam, Generalized local homology for Artinian modules, Algebra Colloq., 19(1) (2012), 1205-1212.
  • R. N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford Ser. (2), 26(103) (1975), 269-273.
  • S. Yassemi, Generalized section functors, J. Pure Appl. Algebra, 95(1) (1994), 103-119.
  • D. N. Yen and T. T. Nam, Generalized local homology and duality, Internat. J. Algebra Comput., 29(3) (2019), 581-601.
  • H. Zoschinger, Minimax-moduln, J. Algebra, 102(1) (1986), 1-32.

Serre subcategory, generalized local homology and generalized local cohomology modules

Year 2025, Early Access, 1 - 15
https://doi.org/10.24330/ieja.1640842

Abstract

This paper deals with generalized local homology and generalized local cohomology modules belong to a Serre category of the category of $R$-modules under some conditions. For an ideal $I$ of $R$, the concept of the condition $C^I$ on a Serre category which is dual to the condition $C_I$ of Melkersson is defined. As a main result, it is shown that for a finitely generated $R$-module $M$ with $pd(M) <\infty$ and a minimax $R$-module $N$ of any Serre category $\mathcal{S}$ satisfying the condition $C^I$, the generalized local homology $\text{H}^I_i(M,N)$ belongs to $\mathcal{S}$ for all $i>pd(M)$. Also, if $\mathcal{S}$ satisfies the condition $C_I$, then the generalized local cohomology module
$\text{H}^i_I(M,N)\in \mathcal{S}$ for all $i>pd(M)$.

References

  • M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra, 320(3) (2008), 1275-1287.
  • M. Asgharzadeh and M.Tousi, A unified approach to local cohomology modules using Serre classes, Canad. Math. Bull., 53(4) (2010), 577-586.
  • N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, Math. Proc. Cambridge Philos. Soc., 131(1) (2001), 61-72.
  • N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules, J. Algebra, 319(11) (2008), 4712-4737.
  • K. Divaani-Aazar and A. Hajikarimi, Generalized local cohomology modules and homological Gorenstein dimensions, Comm. Algebra, 39(6) (2011), 2051-2067.
  • Y. N. Do, T. M. Nguyen and N. T. Tran, Some finiteness results for co-associated primes of generalized local homology modules and applications, J. Korean Math. Soc., 57(5) (2020), 1061-1078.
  • S. O. Faramarzi and Z. Barghsouz, Serre subcategory, local homology and local cohomology, J. Algebr. Syst., 7(2) (2020), 301-314.
  • J. Herzog, Komplexe, Auosungen und Dualitat in der Localen Algebra, Habilitationschrift Univ. Regensburg, 1970.
  • C. U. Jensen, Les Foncteurs Derives de $\varprojlim$ et Leurs Applications en Theorie des Modules, Lecture Notes in Mathematics, 254, Springer-Verlag, Berlin-New York, 1972.
  • I. G. Macdonald, Duality over complete local rings, Topology, 1 (1962), 213-235.
  • L. Melkersson and P. Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. Soc., 38(1) (1995), 121-131.
  • T. T. Nam, A finiteness result for co-associated and associated primes of generalized local homology and cohomology modules, Comm. Algebra, 37(5) (2009), 1748-1757.
  • T. T. Nam, Generalized local homology for Artinian modules, Algebra Colloq., 19(1) (2012), 1205-1212.
  • R. N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford Ser. (2), 26(103) (1975), 269-273.
  • S. Yassemi, Generalized section functors, J. Pure Appl. Algebra, 95(1) (1994), 103-119.
  • D. N. Yen and T. T. Nam, Generalized local homology and duality, Internat. J. Algebra Comput., 29(3) (2019), 581-601.
  • H. Zoschinger, Minimax-moduln, J. Algebra, 102(1) (1986), 1-32.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Marziyeh Hatamkhani

Early Pub Date February 16, 2025
Publication Date
Submission Date October 13, 2024
Acceptance Date January 20, 2025
Published in Issue Year 2025 Early Access

Cite

APA Hatamkhani, M. (2025). Serre subcategory, generalized local homology and generalized local cohomology modules. International Electronic Journal of Algebra1-15. https://doi.org/10.24330/ieja.1640842
AMA Hatamkhani M. Serre subcategory, generalized local homology and generalized local cohomology modules. IEJA. Published online February 1, 2025:1-15. doi:10.24330/ieja.1640842
Chicago Hatamkhani, Marziyeh. “Serre Subcategory, Generalized Local Homology and Generalized Local Cohomology Modules”. International Electronic Journal of Algebra, February (February 2025), 1-15. https://doi.org/10.24330/ieja.1640842.
EndNote Hatamkhani M (February 1, 2025) Serre subcategory, generalized local homology and generalized local cohomology modules. International Electronic Journal of Algebra 1–15.
IEEE M. Hatamkhani, “Serre subcategory, generalized local homology and generalized local cohomology modules”, IEJA, pp. 1–15, February 2025, doi: 10.24330/ieja.1640842.
ISNAD Hatamkhani, Marziyeh. “Serre Subcategory, Generalized Local Homology and Generalized Local Cohomology Modules”. International Electronic Journal of Algebra. February 2025. 1-15. https://doi.org/10.24330/ieja.1640842.
JAMA Hatamkhani M. Serre subcategory, generalized local homology and generalized local cohomology modules. IEJA. 2025;:1–15.
MLA Hatamkhani, Marziyeh. “Serre Subcategory, Generalized Local Homology and Generalized Local Cohomology Modules”. International Electronic Journal of Algebra, 2025, pp. 1-15, doi:10.24330/ieja.1640842.
Vancouver Hatamkhani M. Serre subcategory, generalized local homology and generalized local cohomology modules. IEJA. 2025:1-15.