Research Article
BibTex RIS Cite
Year 2011, Volume: 4 Issue: 1, 97 - 101, 30.04.2011

Abstract

References

  • [1] Chen, B. Y., Total mean curvature and submanifolds of nite type, World Scienti c, (1984).
  • [2] Chen, B. Y. and Ishikawa, S., Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), no. 2, 323-347.
  • [3] Chen, B. Y., On the total curvature of immersed manifolds, VI : Submanifolds of nite type and their applications, Bull. Ins. Math. Acad. Sinica 11 (1983), 309-328.
  • [4] Dimitric, I., Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, 260 (1992), 53-65.
  • [5] Ferrandez, A., Lucas, P. and Merono, M. A., Biharmonic Hopf cylinders, Rocky Mountain J. 28 (1998), no. 3, 957-975.
  • [6] Hacısalihoğlu, H.H. and Öztürk, R., On the characterization of inclined curves in En,I.,Tensor, N., S., 64 (2003), 157-162.
  • [7] Hacısalihoğlu, H.H. and. Öztürk, R., On the characterization of inclined curves in En,II.,Tensor, N., S., 64 (2003), 163-169.
  • [8] Ilarslan, K., Some special curves on non-Euclidean manifolds, Ph. D. thesis., University of Ankara, 2002.
  • [9] Kılıç, B., Finite type curves and surfaces, Ph. thesis, University of Hacettepe, (2002).

1-Type And Biharmonic Curves In Euclidean 3-Space

Year 2011, Volume: 4 Issue: 1, 97 - 101, 30.04.2011

Abstract

 

References

  • [1] Chen, B. Y., Total mean curvature and submanifolds of nite type, World Scienti c, (1984).
  • [2] Chen, B. Y. and Ishikawa, S., Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), no. 2, 323-347.
  • [3] Chen, B. Y., On the total curvature of immersed manifolds, VI : Submanifolds of nite type and their applications, Bull. Ins. Math. Acad. Sinica 11 (1983), 309-328.
  • [4] Dimitric, I., Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, 260 (1992), 53-65.
  • [5] Ferrandez, A., Lucas, P. and Merono, M. A., Biharmonic Hopf cylinders, Rocky Mountain J. 28 (1998), no. 3, 957-975.
  • [6] Hacısalihoğlu, H.H. and Öztürk, R., On the characterization of inclined curves in En,I.,Tensor, N., S., 64 (2003), 157-162.
  • [7] Hacısalihoğlu, H.H. and. Öztürk, R., On the characterization of inclined curves in En,II.,Tensor, N., S., 64 (2003), 163-169.
  • [8] Ilarslan, K., Some special curves on non-Euclidean manifolds, Ph. D. thesis., University of Ankara, 2002.
  • [9] Kılıç, B., Finite type curves and surfaces, Ph. thesis, University of Hacettepe, (2002).
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Hüseyin Kocayiğit

H.hilmi Hacısalihoğlu

Publication Date April 30, 2011
Published in Issue Year 2011 Volume: 4 Issue: 1

Cite

APA Kocayiğit, H., & Hacısalihoğlu, H. (2011). 1-Type And Biharmonic Curves In Euclidean 3-Space. International Electronic Journal of Geometry, 4(1), 97-101.
AMA Kocayiğit H, Hacısalihoğlu H. 1-Type And Biharmonic Curves In Euclidean 3-Space. Int. Electron. J. Geom. April 2011;4(1):97-101.
Chicago Kocayiğit, Hüseyin, and H.hilmi Hacısalihoğlu. “1-Type And Biharmonic Curves In Euclidean 3-Space”. International Electronic Journal of Geometry 4, no. 1 (April 2011): 97-101.
EndNote Kocayiğit H, Hacısalihoğlu H (April 1, 2011) 1-Type And Biharmonic Curves In Euclidean 3-Space. International Electronic Journal of Geometry 4 1 97–101.
IEEE H. Kocayiğit and H. Hacısalihoğlu, “1-Type And Biharmonic Curves In Euclidean 3-Space”, Int. Electron. J. Geom., vol. 4, no. 1, pp. 97–101, 2011.
ISNAD Kocayiğit, Hüseyin - Hacısalihoğlu, H.hilmi. “1-Type And Biharmonic Curves In Euclidean 3-Space”. International Electronic Journal of Geometry 4/1 (April 2011), 97-101.
JAMA Kocayiğit H, Hacısalihoğlu H. 1-Type And Biharmonic Curves In Euclidean 3-Space. Int. Electron. J. Geom. 2011;4:97–101.
MLA Kocayiğit, Hüseyin and H.hilmi Hacısalihoğlu. “1-Type And Biharmonic Curves In Euclidean 3-Space”. International Electronic Journal of Geometry, vol. 4, no. 1, 2011, pp. 97-101.
Vancouver Kocayiğit H, Hacısalihoğlu H. 1-Type And Biharmonic Curves In Euclidean 3-Space. Int. Electron. J. Geom. 2011;4(1):97-101.