Research Article
BibTex RIS Cite
Year 2025, Volume: 18 Issue: 1, 14 - 32, 24.04.2025

Abstract

References

  • Akyol M.A.: Remark on metallic maps between Metallic Riemannian manifolds and constancy of certain maps, Honam Math. J. 41(2019), No. 2, 343-356.
  • Blaga A.M., Nannicini A.: Generalized metallic structures, Revista de la Unión Mathematica Argentina, 61(2020), No1, 73-86.
  • Cabras A., Kolar I., Prolongation of tangent valued forms to Weil bundles, Archivum Mathematicum, Vol. 21 (1995), No. 2, 139-145.
  • Crasmareanu M., Hretcanu C.E.: Golden differential geometry, Chaos Solitons Fractals 38 (2008), no. 5, 1229-1238.
  • Debecki J., Krakow, Linear natural operators lifting p-vectors to tensors of type (q, 0) on Weil bundles, Czechoslovak Mathematical Journal, vol. 66(141), (2016), P. 511-525.
  • Doupovec M., Kures M.: Some geometric constructions on Frobenius Weil bundles, Differential geometry and its applications, vol. 35, (2014), P. 143-149.
  • Gancarzewicz J., Mikulski M., Pagoda Z.: Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J., 135(1994), 1-14.
  • Goldberg S.I., Yano K.: Polynomial structures on manifolds, Kodai Math. Sem. Rep. 22 (1970), 199-218.
  • Gualtieri M.: Generalized complex Geometry, PhD. Thesis, Oxford University, 2003 (math.DG/0401221).
  • Gualtieri M.: Generalized complex geometry, Annals of Mathematics, 174(2011), 75-123.
  • Lee J.M.:Introduction to Riemannian Manifolds, Springer Cham, 2018.
  • Hitchin N.: Generalized Calabi-Yau manifold, Quart. J. Math. Oxford, 54(2003), 281-308(math.DG/0209099).
  • Hretcanu C.E., Crâ¸smareanu M.: Metallic structures on riemannian manifolds, Rev. Un. Mat. Argentina 54(2013), No. 2, 15-27
  • Kolar I.: On the geometry of Weil bundles, Differential geometry and its applications, Vol. 35, (2014), 136-142.
  • Kolar I.: Covariant approach to natural transformations of Weil functors, Commentationes Mathematicae Universitatis Carolinea, Vol. 27, (1986), No. 4, 723-729.
  • Kolar I., Michor P., Slovak J.: Natural operations in differential geometry, Springer-Verlag. 1993.
  • Kouotchop Wamba P.M. & Ntyam A.: Prolongations of Dirac structures related to Weil bundles, Lobachevskii Journal of Mathamtics, 35(2014), 106-121.
  • Kouotchop Wamba P.M., Mba A.: Characterization of some natural transformations between the bundle functors $T^{A}\circ T^{\ast}$ and $T^{\ast}\circ T^{A}$ on $\mathcal{M}f_{m}$, Imhotep Mathematical Journal, vol. 3, (2018).
  • Ntyam A., Wouafo Kamga J.: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles , Annales Polonici Mathmatici, 82(2003), 233-240.
  • Nannicini A.: Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold, Journal of Geometry and Physics, 56(2006), 903-916.
  • Ozkan M.: Prolongations of golden structures to tangent bundles of order r, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2016), N◦1, 35-47.
  • Ozkan M., Yilmaz F.: Metallic structures on differentiable manifolds, Journal of Science and Arts, 44(2018), 645-660.
  • De Spinadel V.W.: The metallic means and design, Nexus II: Architecture and Mathematics (Mantua, 1998), 143-157, Collana Gli Studi, 5, Erba, Fucecchio, 1998.
  • Slovák J.:Prolongations of connections and spray with respect to Weil functors, Rend Circ. Mat. Palermo Suppl., 14(1987), 143-155.
  • Wankap Nono G.F., Kouotchop Wamba P.M., Toukap Wankap E.C.: Tangent generalized metallic structures of higher order, Lobachevskii Journal of Mathamtics, 44(2023), 5097-5115.
  • Zeina A.A.: The Golden ratio and its impact on architural design, international Design journal, 12(2021), 77-90.

Prolongation of Generalized Metallic Structures Related to Weil Bundles

Year 2025, Volume: 18 Issue: 1, 14 - 32, 24.04.2025

Abstract

Let (A, l) be a Weil-Frobenius algebra, M a smooth manifold. In this paper, we study the prolongations of generalized metallic structures on manifold M to its Weil bundle TAM and we investigate some of their properties. In particular, we study the prolongation of calibrated generalized product structures and calibrated complex structures induced by metallic structures on M.

References

  • Akyol M.A.: Remark on metallic maps between Metallic Riemannian manifolds and constancy of certain maps, Honam Math. J. 41(2019), No. 2, 343-356.
  • Blaga A.M., Nannicini A.: Generalized metallic structures, Revista de la Unión Mathematica Argentina, 61(2020), No1, 73-86.
  • Cabras A., Kolar I., Prolongation of tangent valued forms to Weil bundles, Archivum Mathematicum, Vol. 21 (1995), No. 2, 139-145.
  • Crasmareanu M., Hretcanu C.E.: Golden differential geometry, Chaos Solitons Fractals 38 (2008), no. 5, 1229-1238.
  • Debecki J., Krakow, Linear natural operators lifting p-vectors to tensors of type (q, 0) on Weil bundles, Czechoslovak Mathematical Journal, vol. 66(141), (2016), P. 511-525.
  • Doupovec M., Kures M.: Some geometric constructions on Frobenius Weil bundles, Differential geometry and its applications, vol. 35, (2014), P. 143-149.
  • Gancarzewicz J., Mikulski M., Pagoda Z.: Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J., 135(1994), 1-14.
  • Goldberg S.I., Yano K.: Polynomial structures on manifolds, Kodai Math. Sem. Rep. 22 (1970), 199-218.
  • Gualtieri M.: Generalized complex Geometry, PhD. Thesis, Oxford University, 2003 (math.DG/0401221).
  • Gualtieri M.: Generalized complex geometry, Annals of Mathematics, 174(2011), 75-123.
  • Lee J.M.:Introduction to Riemannian Manifolds, Springer Cham, 2018.
  • Hitchin N.: Generalized Calabi-Yau manifold, Quart. J. Math. Oxford, 54(2003), 281-308(math.DG/0209099).
  • Hretcanu C.E., Crâ¸smareanu M.: Metallic structures on riemannian manifolds, Rev. Un. Mat. Argentina 54(2013), No. 2, 15-27
  • Kolar I.: On the geometry of Weil bundles, Differential geometry and its applications, Vol. 35, (2014), 136-142.
  • Kolar I.: Covariant approach to natural transformations of Weil functors, Commentationes Mathematicae Universitatis Carolinea, Vol. 27, (1986), No. 4, 723-729.
  • Kolar I., Michor P., Slovak J.: Natural operations in differential geometry, Springer-Verlag. 1993.
  • Kouotchop Wamba P.M. & Ntyam A.: Prolongations of Dirac structures related to Weil bundles, Lobachevskii Journal of Mathamtics, 35(2014), 106-121.
  • Kouotchop Wamba P.M., Mba A.: Characterization of some natural transformations between the bundle functors $T^{A}\circ T^{\ast}$ and $T^{\ast}\circ T^{A}$ on $\mathcal{M}f_{m}$, Imhotep Mathematical Journal, vol. 3, (2018).
  • Ntyam A., Wouafo Kamga J.: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles , Annales Polonici Mathmatici, 82(2003), 233-240.
  • Nannicini A.: Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold, Journal of Geometry and Physics, 56(2006), 903-916.
  • Ozkan M.: Prolongations of golden structures to tangent bundles of order r, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2016), N◦1, 35-47.
  • Ozkan M., Yilmaz F.: Metallic structures on differentiable manifolds, Journal of Science and Arts, 44(2018), 645-660.
  • De Spinadel V.W.: The metallic means and design, Nexus II: Architecture and Mathematics (Mantua, 1998), 143-157, Collana Gli Studi, 5, Erba, Fucecchio, 1998.
  • Slovák J.:Prolongations of connections and spray with respect to Weil functors, Rend Circ. Mat. Palermo Suppl., 14(1987), 143-155.
  • Wankap Nono G.F., Kouotchop Wamba P.M., Toukap Wankap E.C.: Tangent generalized metallic structures of higher order, Lobachevskii Journal of Mathamtics, 44(2023), 5097-5115.
  • Zeina A.A.: The Golden ratio and its impact on architural design, international Design journal, 12(2021), 77-90.
There are 26 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Georges Florian Wankap Nono 0000-0003-0276-9019

Pierre Mesmaire Kouotchop Wamba 0009-0007-6064-654X

Ange Maloko Mavambou 0000-0003-2900-4753

Philippe Foapa Fogue 0009-0009-1113-2547

Early Pub Date April 20, 2025
Publication Date April 24, 2025
Submission Date October 4, 2024
Acceptance Date February 25, 2025
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Wankap Nono, G. F., Kouotchop Wamba, P. M., Maloko Mavambou, A., Foapa Fogue, P. (2025). Prolongation of Generalized Metallic Structures Related to Weil Bundles. International Electronic Journal of Geometry, 18(1), 14-32.
AMA Wankap Nono GF, Kouotchop Wamba PM, Maloko Mavambou A, Foapa Fogue P. Prolongation of Generalized Metallic Structures Related to Weil Bundles. Int. Electron. J. Geom. April 2025;18(1):14-32.
Chicago Wankap Nono, Georges Florian, Pierre Mesmaire Kouotchop Wamba, Ange Maloko Mavambou, and Philippe Foapa Fogue. “Prolongation of Generalized Metallic Structures Related to Weil Bundles”. International Electronic Journal of Geometry 18, no. 1 (April 2025): 14-32.
EndNote Wankap Nono GF, Kouotchop Wamba PM, Maloko Mavambou A, Foapa Fogue P (April 1, 2025) Prolongation of Generalized Metallic Structures Related to Weil Bundles. International Electronic Journal of Geometry 18 1 14–32.
IEEE G. F. Wankap Nono, P. M. Kouotchop Wamba, A. Maloko Mavambou, and P. Foapa Fogue, “Prolongation of Generalized Metallic Structures Related to Weil Bundles”, Int. Electron. J. Geom., vol. 18, no. 1, pp. 14–32, 2025.
ISNAD Wankap Nono, Georges Florian et al. “Prolongation of Generalized Metallic Structures Related to Weil Bundles”. International Electronic Journal of Geometry 18/1 (April 2025), 14-32.
JAMA Wankap Nono GF, Kouotchop Wamba PM, Maloko Mavambou A, Foapa Fogue P. Prolongation of Generalized Metallic Structures Related to Weil Bundles. Int. Electron. J. Geom. 2025;18:14–32.
MLA Wankap Nono, Georges Florian et al. “Prolongation of Generalized Metallic Structures Related to Weil Bundles”. International Electronic Journal of Geometry, vol. 18, no. 1, 2025, pp. 14-32.
Vancouver Wankap Nono GF, Kouotchop Wamba PM, Maloko Mavambou A, Foapa Fogue P. Prolongation of Generalized Metallic Structures Related to Weil Bundles. Int. Electron. J. Geom. 2025;18(1):14-32.