Research Article
BibTex RIS Cite

Yapay Zekanın Hemşirelik Eğitiminde Klinik Uygulama ve Öğrenme Süreçlerine Etkisi: Nitel Çalışma

Year 2025, Issue: 25, 220 - 229, 29.04.2025
https://doi.org/10.38079/igusabder.1647191

Abstract

Amaç: Araştırma öğrencilerin hemşirelik eğitiminde yapay zeka kullanım alanlarını ve öğrenme süreçlerine etkisini belirlemek amacıyla niteliksel (olgu bilim) tipte planlandı ve gerçekleştirildi.
Yöntem: Araştırmada veri toplama aracı olarak hemşirelik öğrencilerinin özelliklerini içeren Demografik Veri Formu ve Yarı Yapılandırılmış Görüşme Formu kullanılmıştır. Veriler, ses kayıt cihazı ile toplanmış ve Microsoft Word dosyasına transkriptor yöntemiyle aktarılmıştır. Araştırma verileri, içerik analizi yöntemiyle değerlendirilmiş olup, üç uzman görüşü alınmıştır. İçerik analizi sürecinde MAXQDA programı kullanılmıştır.
Bulgular: Araştırma sonuçlarına göre, öğrenciler çoğunlukla yapay zeka araçlarından özellikle chatgpt'den faydalandıklarını ifade etmiştir. Chatgpt'nin, araştırma yapma, dil öğrenme, ilaç bilgisi edinme ve uygulamalar hakkında bilgi edinme konularında önemli katkılar sağladığı belirtilmiştir. Öğrenciler, yapay zekanın daha güvenilir ve güncellenmiş kaynaklarla desteklenmesi gerektiğini vurgulamış, bilgi kirliliğinin azaltılması gerektiğine dikkat çekmişlerdir. Ayrıca, yapay zekanın yalnızca güvenilir akademik kaynaklardan veri çekmesi gerektiği yönünde bir öneri geliştirilmiştir.
Sonuç: Yapay zekanın öğrenme sürecine önemli katkılar sağladığı, ancak güvenilirlik ve bilgi kirliliği gibi bazı temel sorunların ele alınması gerektiği görüldü. Öğrenciler, yapay zeka destekli eğitimin daha güvenilir, basit ve erişilebilir olması için çeşitli öneriler sundu.

References

  • 1. Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. J Peer J. 2019;7:e7702.
  • 2. Aitken R, Faulkner R, Bucknall T, Parker J. Aspects Of Nursing Education: The Types Of Skills And Knowledge Required To Meet The Changing Needs Of The Labor Force Involved in Nursing - Literature Reviews. National Review of Nursing Education Australia. 2002.
  • 3. Akalın B, Veranyurt Ü. Sağlıkta dijitalleşme ve yapay zeka. SDÜ Sağlık Yönetimi Dergisi. 2020;2(2):128-137.
  • 4. Dariel OJP, Raby T, Ravaut F, Rothan-Tondeur M. Developing the serious games potential in nursing education. Nurse Educ Today. 2013;33(12):1569-1575.
  • 5. Davies N. Can robots handle your healthcare? J Eng Technol. 2016;11(9):58-61. doi: 10.1049/et.2016.0907.
  • 6. Akgerman A, Yavuz EDO, Kavaslar İ, Güngör S. Yapay zeka ve hemşirelik. Sağlık Bilimlerinde Yapay Zeka Dergisi. 2022;2(1):21-27.
  • 7. Gunawan J. Exploring the future of nursing: Insights from the ChatGPT model. Belitung Nurs J. 2023;9(1):1-5.
  • 8. Alkhaqani AL. Potential benefits and challenges of ChatGPT in future nursing education. Maaen J Med Sci. 2023;2(2):2.
  • 9. Sun GH, Hoelscher SH. The ChatGPT storm and what faculty can do. Nurse Educator. 2023;48(3):119-124.
  • 10. O'Connor S. Open artificial intelligence platforms in nursing education: Tools for academic progress or abuse? Nurse Educ Pract. 2023;66:103537.
  • 11. OpenAI. ChatGPT: optimizing language models for dialogue. OpenAI Blog. https://openai.com/blog/chatgpt/. Published November 2022. Accessed 2022.

The Effect of Artificial Intelligence on Clinical Practice and Learning Processes in Nursing Education: A Qualitative Study

Year 2025, Issue: 25, 220 - 229, 29.04.2025
https://doi.org/10.38079/igusabder.1647191

Abstract

Aim: The study was planned and carried out in a qualitative (case study) type in order to determine the areas of artificial intelligence use in nursing education and its effect on the learning processes of students.
Method: Demographic Data Form including the characteristics of nursing students and Semi-structured Interview Form were used as data collection tools. The data were collected with a voice recorder and transferred to a Microsoft Word file using a transcriber. The research data were evaluated by content analysis method and three expert opinions were obtained. MAXQDA program was used in the content analysis process.
Results: According to the results of the research, students mostly stated that they benefited from artificial intelligence tools, especially chatgpt. It was stated that chatgpt made significant contributions to conducting research, learning languages, obtaining drug information and obtaining information about applications. The students emphasized that AI should be supported with more reliable and updated sources and pointed out that information pollution should be reduced. In addition, a suggestion was made that AI should only draw data from reliable academic sources.
Conclusion: It was seen that AI makes significant contributions to the learning process, but some fundamental issues such as reliability and information pollution need to be addressed. Students offered several suggestions to make AI-supported education more reliable, simple and accessible.

Ethical Statement

This study was carried out with the approval of the Ethics Committee of Istanbul Gelisim University, dated 29/11/2024 and numbered 2024-19-50.

References

  • 1. Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. J Peer J. 2019;7:e7702.
  • 2. Aitken R, Faulkner R, Bucknall T, Parker J. Aspects Of Nursing Education: The Types Of Skills And Knowledge Required To Meet The Changing Needs Of The Labor Force Involved in Nursing - Literature Reviews. National Review of Nursing Education Australia. 2002.
  • 3. Akalın B, Veranyurt Ü. Sağlıkta dijitalleşme ve yapay zeka. SDÜ Sağlık Yönetimi Dergisi. 2020;2(2):128-137.
  • 4. Dariel OJP, Raby T, Ravaut F, Rothan-Tondeur M. Developing the serious games potential in nursing education. Nurse Educ Today. 2013;33(12):1569-1575.
  • 5. Davies N. Can robots handle your healthcare? J Eng Technol. 2016;11(9):58-61. doi: 10.1049/et.2016.0907.
  • 6. Akgerman A, Yavuz EDO, Kavaslar İ, Güngör S. Yapay zeka ve hemşirelik. Sağlık Bilimlerinde Yapay Zeka Dergisi. 2022;2(1):21-27.
  • 7. Gunawan J. Exploring the future of nursing: Insights from the ChatGPT model. Belitung Nurs J. 2023;9(1):1-5.
  • 8. Alkhaqani AL. Potential benefits and challenges of ChatGPT in future nursing education. Maaen J Med Sci. 2023;2(2):2.
  • 9. Sun GH, Hoelscher SH. The ChatGPT storm and what faculty can do. Nurse Educator. 2023;48(3):119-124.
  • 10. O'Connor S. Open artificial intelligence platforms in nursing education: Tools for academic progress or abuse? Nurse Educ Pract. 2023;66:103537.
  • 11. OpenAI. ChatGPT: optimizing language models for dialogue. OpenAI Blog. https://openai.com/blog/chatgpt/. Published November 2022. Accessed 2022.
There are 11 citations in total.

Details

Primary Language English
Subjects Nurse Education
Journal Section Articles
Authors

Meltem Aslan 0000-0003-3847-2233

Aydın Nart 0000-0001-8700-8889

Musab Alpaydın 0009-0002-9645-4105

Early Pub Date April 29, 2025
Publication Date April 29, 2025
Submission Date February 26, 2025
Acceptance Date March 27, 2025
Published in Issue Year 2025 Issue: 25

Cite

JAMA Aslan M, Nart A, Alpaydın M. The Effect of Artificial Intelligence on Clinical Practice and Learning Processes in Nursing Education: A Qualitative Study. IGUSABDER. 2025;:220–229.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)