Research Article
BibTex RIS Cite

Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinin Yem Kalitesine Tuzlu-Alkali Toprakların Etkileri

Year 2025, Volume: 11 Issue: 1, 48 - 59, 22.04.2025
https://doi.org/10.24180/ijaws.1564635

Abstract

Bu araştırmada 7 farklı kinoa çeşidinin tuzlu-alkali topraklardaki yem kalite performasnları belirlenmiştir. Çalışma 2 yıl süreyle (2021-2022) tedadüf bloklarında faktöriyel deneme desenine göre 3 tekerrürlü olarak kurulmuştur. Denemede Sandoval Mix (SM), Red Head (RH), Titicaca (T), Moqu Arrochilla (MA), French Vanilla (FV), Oro de Valle (OV) ve Rainbow (R) çeşitleri kullanılmıştır. Araştırma sonuçlarına bakıldığında yıllara göre sadece ham protein (HP) oranında farklılık olmuştur. Kontrol toprağına göre, tuzlu-alkali toprakların ham protein oranı üzerine herhangi bir etkisi olmazken, nötr çözücülerde çözünemeyen lif (NDF), asit çözücülerde çözünmeyen lif (ADF), kuru madde tüketimi (KMT), kuru madde sindirilebilirliği (KMS), sindirilebilir enerji (SE), nispi yem değeri (NYD) ve metabolik enerji (ME) değerlerinde önemli değişimlere neden olmuştur. Araştırmada kullanılan kinoa çeşitlerinin besin değerlerinde önemli farklılıklar olduğu belirlenmiştir. Araştırma sonuçlarına göre, tuzlu-alkali topraklarda kinoa yetiştiriciliğinde ham protein oranında azalma göstermeyen Sandoval Mix, Red Head, French Vanilla ve Oro de Valle kinoa çeşitlerinin tercih edilmesi gerekmektedir. Diğer taraftan tuzlu-alkali topraklarda kinoa çeşitlerinin önemli kalite özelliklerinden NDF içeriğinde artış olacağı ve KMT ve NYD içeriklerinde ise azalış olacağı göz önüne alınarak kinoa yetiştiriciliğinin yapılması gerekmektedir.

References

  • Al-Dakheel, A. J., Hussain, M. I., & Rahman, A. Q. M. (2015). Impact of irrigation water salinity on agronomical and quality attributes of Cenchrus ciliaris L. accessions. Agricultural Water Management, 159, 148–154. https://doi.org/10.1016/j.agwat.2015.06.014
  • Anderson, A. W., Gull, U., Benes, S. E., Singh, S., Hutmacher, R. B., Brummer, E. C., & Putnam, D. H. (2023). Salinity and cultivar effects on alfalfa forage yield and nutritive value in a Mediterranean climate. Grassland Research, 2(3), 153-166. https://doi.org/10.1002/glr2.12061
  • Anonymous, (2022). Turkish State Meteorological Service. Ankara, Turkey.
  • Aras, İ., & Keskin, B. (2018). The effects of different ırrigation water salinity levels on some silage sorghum (Sorghum sp.) varieties. Journal of the Institute of Science and Technology, 8(1), 279-288. https://doi.org/10.21597/jist.407886
  • Ball, D. M., Hoveland, C. S., & Lacefield, G. D. (1996). Southern Forages: Modern Concepts for Forage Crop Management. Atlanta: Potash & Phosphate Institute.
  • Baur, F. J., & Ensminger, L. G. (1977). The association of official analytical chemists (AOAC). Journal of the American Oil Chemists’ Society, 54(4), 171-172.
  • Bhargava, A., Shukla, S., & Ohri, D. (2007). Genetic variability and ınterrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.), Field Crops Research, 101(1), 104-116. https://doi.org/10.1016/j.fcr.2006.10.001
  • Blanco, J. A. (2015). Fodder and Animal Feed. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the Art Report of Quinoa in the World in 2013 (pp. 250-266). FAO & CIRAD.
  • Biond, S., Ruiz K. B., Martínez E. A., Zurita-Silva A., Orsini, F., Antognoni, F., Dinelli, G., Marotti, I., Gianquinto, G., Maldonado, S., Burrieza, H., Bazile, D., Adolf, V. I., & Jacobsen, S. E. (2015). Tolerance to saline conditions. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the Art Report of Quinoa in the World in 2013 (pp. 143-156). FAO & CIRAD.
  • Çağlayan, B., & Kökten K. (2021). Adaptation of quinoa (Chenopodium quinoa Willd.) genotypes in Bingöl conditions, Isparta University of Applied Sciences Journal of Faculty of Agriculture, 16(2), 220-225.
  • Elfeel, A. A., & Bakhashwain, A. A. (2012). Salinity effects on growth attributes mineral uptake, forage quality and tannin. Research Journal of Environmental and Earth Sciences, 4(11), 990-995.
  • FAO, 1990. Micronutrient assessment at the country level: An international study, FAO Soil Bulletin, No: 63, Rome Fonnesbeck, P. V., Clark, D. H., Garret, W. N., & Speth, C. F. (1984). Predicting energy utilization from alfalfa hay from the Western Region. Proceeding of American Society of Animal Sciences (Western Section), 35, 305-308.
  • Fowler, J. L., Hageman, J. H., Moore, K. J., Suzukida, M., Assadian, H., & Valenzuela, M. (1992). Salinity effects on forage quality of Russian thistle. Rangeland Ecology & Management/Journal of Range Management Archives, 45(6), 559-563.
  • Fuentes, F. F., & Bhargava, A. (2011). Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science, 197(2), 124-134. https://doi.org/10.1111/j.1439-037X.2010.00445.x
  • Golos, P. J., Dixon, K. W., & Erickson, T. E. (2016). Plant recruitment from the soil seed bank depends on topsoil stockpile age, height, and storage history in an arid environment. Restoration Ecology, 24(52), 53-61. https://doi.org/10.1111/rec.12389
  • Hedayati-Firoozabadi, A., Kazemeini, S. A., Pirasteh-Anosheh, H., Ghadiri, H., & Pessarakli, M. (2020). Forage yield and quality as affected by salt stress in different ratios of Sorghum bicolor-Bassia indica intercropping. Journal of Plant Nutrition, 43(17), 2579-2589. https://doi.org/10.1080/01904167.2020.1783301
  • Heidari, F., Jalilian, J., & Gholinezhad, E. (2023). The effect of salinity stress and foliar application of nano-fertilizers on quantitative and qualitative characteristics of quinoa forage. Journal of Crops Improvement, 25(3), 769-785.
  • Hussain, M. I., Al-Dakheel, A. J., & Reigosa, M. J. (2018). Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiology Biochemistry, 129, 411–420. https://doi.org/10.1016/j.plaphy.2018.06.023
  • Jacobsen, S. E., Monteros, C., Corcuera, L. J., Bravo, L. A., Christiansen, J. L., & Mujica, A. (2007). Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 26(4), 471–475. https://doi.org/10.1016/j.eja.2007.01.006
  • Jamali, S., & Sharifan, H. (2018). Investigation the effect of different salinity levels on yield and yield components of quinoa (Cv. Titicaca). Journal of Water and Soil Conservation, 25(2), 251-266. https://doi.org/10.22069/jwsc.2018.13721.2841
  • Kadereit, G., Gotzek, D., Jacobs, S., & Freitag, H. (2005). Origin and age of Australian Chenopodiaceae. Organisms Diversity and Evolution, 5(1), 59-80. https://doi.org/10.1016/j.ode.2004.07.002
  • Keskin, B., & Aksoy, K. (2024). Effects of crushed corn and wheat bran added in different rates on silage quality of quinoa. Journal of the Institute of Science and Technology, 14(3), 1353-1365. https://doi.org/10.21597/jist.1462901
  • Keskin, B., & Duman, A. (2024). Silage quality characteristics of quinoa varieties grown in different row spacings. Journal of Adnan Menderes University Agricultural Faculty, 21(1), 45-51. https://doi.org/10.25308/aduziraat.1424102
  • Keskin, B., & Önkür, H. (2019, April 11-12). The effect of different row spacing and intra-row spacing on some feed quality characteristics of seeds and stems of quinoa (Chenopodium quinoa Willd.). Umteb 6. International Congress of Vocational and Technical Sciences, Iğdır University, Iğdır – Türkiye. ISBN: 978-605-7875-36-5, pp: 271-278.
  • Keskin, B., Temel, S., & Akbay Tohumcu, S. (2023). Determination of forage yield performance of different Chenopodium quinoa cultivars in saline conditions. Zemdirbyste-Agriculture, 110(2), 149-156. https://doi.org/10.13080/z-a.2023.110.018
  • Khalil, J. K., Sawaya, W. N., & Hyder, S. Z. (1986). Nutrient composition of Atriplex leaves grown in Saudi Arabia. Journal of Range Management, 39, 104-107.
  • Kılıç, Ü., Yurtseven, S., Boğa, M., & Aydemir, S. (2015). Effects of soil salinity levels on nutrient contents and ın vitro gas productions of some graminious forages. Journal of Soil Science and Plant Nutrition, 3(1), 9-15.
  • Kutlu, H. R., Görgülü, M., & Çelik, L. B. (2005). General Animal Nutrition. Çukurova University, Faculty of Agriculture, Department of Animal Science, Department of Feeds and Animal Nutrition, Adana.
  • Kutlu, H. R., & Özen, N, (2009, June 24-27). Recent Advances in Animal Nutrition. VI. National Animal Science Congress, Erzurum.
  • Mahmoud, A. H., & Sallam, S. (2017). Response of quinoa (Chenopodium quinoa Willd) plant to nitrogen fertilization and irrigation by saline water. Alexandria Science Exchange Journal, 38(2), 326-334. https://doi.org/10.21608/asejaiqjsae.2017.3508
  • Masters, D. G., Benes, S. E., & Norman, H. C., (2007). Biosaline agriculture for forage and livestock production. Agriculture, Ecosystems & Environment, 119(3-4), 234-238. https://doi.org/10.1016/j.agee.2006.08.003
  • Masters, D., Tiong, M., Vercoe, P., & Norman, H. (2010). The nutritive value of river saltbush (Atriplex amnicola) when grown in different concentrations of sodium chloride irrigation solution. Small Ruminant Research, 91(1), 56-62. https://doi.org/10.1016/j.smallrumres.2009.10.019
  • Morales, A. J., Bajgain, P., Garver, Z., Maughan, P. J., & Udall, J. A. (2011). Physiological responses of Chenopodium quinoa to salt stress. International Journal of Plant Physiology and Biochemistry, 3, 219-232.
  • Morrison, J. A. (2003). Hay and pasture managment. Chapter 6, Hay and Pasture.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Oddy, V. H, Robards, G. E., & Low, S. G. (1983). Prediction of in vivo dry matter digestibility from the fiber nitrogen content of a feed. In: Robards, G.E., Packham, R.G. (Eds.), Feed Information and Animal Production. Common wealth Agricultural Bureau, Farnham Royal, UK.
  • Pulvento, C., Riccardi, M., Lavini, A., Iafelice, G., Marconi, E., & d’Andria, R. (2012). Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. Journal Agronomy and Crop Science, 198(A), 254-263. https://doi.org/10.1111/j.1439-037X.2012.00509.x
  • Rezzouk, F. Z., Shahid, M. A., Elouafi, I. A., Zhou, B., Araus, J. L., & Serret, M. D. (2020). Agronomic performance of irrigated quinoa in desert areas: Comparing different approaches for early assessment of salinity stress. Agricultural Water Management, 240 (106205), 1-15. https://doi.org/10.1016/j.agwat.2020.106205
  • Richards, L. A. (1954). Origin and nature of saline and alkali soil, In: Diagnosis and improvement of saline and alkali soil. Agricultural Handbook No: 60, USDA, Washington, D.C., USA, 1-6.
  • Rohweder, D. A., Barnes, R. F., & Jorgensen, N. (1978). Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47(3), 747-759. https://doi.org/10.2527/jas1978.473747x
  • Rosa, M., Hilal, M., Gonzalez, J. A., & Prado, F. E. (2009). Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiology and Biochemistry, 47(4), 300-307. https://doi.org/10.1016/j.plaphy.2008.12.001
  • Rubio, P., & Rojas Lemus, E. N. (2007). Forraje de quinua (Chenopodium quinoa Willd.) como sustituto de forraje de alfalfa (Medicago sativa L.) en dietas para conejos de engorda. Ingeniero Agrónomo Especialista en Zootecnia Pregrado, Universidad Autónoma Chapingo.
  • Sheaffer, C. C., Peterson, M. A., Mccalin, M., Volene, J. J., Cherney, J. H., Johnson, K. D., Woodward, W. T., & Viands, D. R. (1995, March). Acide detergent fiber, neutral detergent fiber concentration and relative feed value. North American Alfalfa Improvement Conference, Minneapolis.
  • Suyama, H., Benes, S. E., Robinson, P. H., Grattan, S. R., Grieve, C. M., & Getachew, G. (2007). Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation. Agricultural Water Management, 88(1-3), 159-172. https://doi.org/10.1016/j.agwat.2006.10.011
  • Şen, A., Başaran, U., Doğrusöz, M. Ç., Gülümser, E., & Mut, H. (2021). The effect of alkali stress on seedling development and quality of grasspea (Lathyrus sativus L.) genotypes. Turkish Journal of Agricultural Research, 8(2), 205-212. https://doi.org/10.19159/tutad.890589
  • Tan, M., & Temel, S. (2017). Determination of dry matter yield and some properties of different quinoa genotypes grown in Erzurum and Iğdır Conditions. Journal of the Institute of Science and Technology, 7(4), 257-263. https://doi.org/10.21597/jist.2017.219
  • Tan, M., & Temel, S. (2018). Performance of some quinoa (Chenopodium quinoa willd.) genotypes grown ın different climate conditions. Turkish Journal of Field Crops, 23(2), 180-186. https://doi.org/10.17557/tjfc.485617
  • Temel, S., & Keskin, B. (2020). Effect of morphological components on the herbage yield and quality of quinoa (Chenopodium quinoa Willd.) grown at different dates. Turkish Journal of Agriculture and Forestry, 44, 533-542. https://doi.org/10.3906/tar-1912-58
  • Temel, S., Keskin, B., Şimşek, U., & Yılmaz İ. H. (2015). Performance of some forage grass species in halomorphic soil. Turkish Journal of Field Crops, 20(2): 131-141. https://doi.org/10.17557/tjfc.82860
  • Temel, S., Keskin, B., Şimşek, U., & Yılmaz, İ. H. (2016). The effect of saline and non-saline soil conditions on yield and nutritional characteristics of some perennial legumes forages. Journal of Agricultural Sciences, 22(4), 528-538. https://doi.org/10.1501/Tarimbil_0000001411
  • Temel, I., & Keskin, B. (2019a). The effects on nutrient content of quinoa (Chenopodium quinoa Willd.) of different row spacing and intra-row spacing. International Journal of Agriculture and Wildlife Science, 5(1), 110-116. https://doi.org/10.24180/ijaws.486327
  • Temel, I., & Keskin, B. (2019b). The effects of different row spacing and ıntra-row spacing on hay yield and some yield components of quinoa (Chenopodium quinoa Willd.). Journal of the Institute of Science and Technology, 9(1), 522-532, https://doi.org/10.21597/jist.480917
  • Ülgen, N., & Yurtsever, N. (1974). Turkey Fertilizer and Fertilization Guide (Türkiye Gübre ve Gübreleme Rehberi). Soil and Fertilizer Research Institute.
  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for diatery fiber. neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597, https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Waldron, B. L., Sagers, J. K., Peel, M. D., Rigby, C. W., Bugbee, B., & Creech, J. E. (2020). Salinity reduces the forage quality of forage kochia: A halophytic Chenopodiaceae shrub. Rangeland Ecology & Management, 73(3), 384-393. https://doi.org/10.1016/j.rama.2019.12.005

Effects of Saline-Alkaline Soils on Forage Quality of Some Quinoa (Chenopodium quinoa Willd.) Varieties

Year 2025, Volume: 11 Issue: 1, 48 - 59, 22.04.2025
https://doi.org/10.24180/ijaws.1564635

Abstract

In this research, the forage quality performances of 7 different quinoa varieties in saline-alkaline soils were determined. The study was established using the factorial experimental design in random blocks with 3 replications for 2 years (2021-2022). Sandoval Mix (SM), Red Head (RH), Titicaca (T), Moqu Arrochilla (MA), French Vanilla (FV), Oro de Valle (OV), and Rainbow (R) varieties were used in the experiment. According to the research results, there was only a difference in the crude protein (CP) ratio over the years. Compared to the control soil, saline-alkaline soils had no effect on crude protein content, but caused significant changes in neutral detergent fibre (NDF), acid detergent fibre (ADF), dry matter intake (DMI), dry matter digastiblity (DMD), metabolized energy (ME), relative feed values (RFV) and digestible energy (DE). It was determined that there were significant differences in the forage quality of the quinoa varieties used in the study. According to the research results, Sandoval Mix, Red Head, French Vanilla and Oro de Valle quinoa varieties, which do not show a decrease in crude protein content, should be preferred in quinoa cultivation in saline-alkaline soils. On the other hand, quinoa cultivation should be carried out by taking into account that there will be an increase in NDF content and a decrease in DMI and RFV contents, which are important quality features of quinoa varieties in saline-alkaline soils.

References

  • Al-Dakheel, A. J., Hussain, M. I., & Rahman, A. Q. M. (2015). Impact of irrigation water salinity on agronomical and quality attributes of Cenchrus ciliaris L. accessions. Agricultural Water Management, 159, 148–154. https://doi.org/10.1016/j.agwat.2015.06.014
  • Anderson, A. W., Gull, U., Benes, S. E., Singh, S., Hutmacher, R. B., Brummer, E. C., & Putnam, D. H. (2023). Salinity and cultivar effects on alfalfa forage yield and nutritive value in a Mediterranean climate. Grassland Research, 2(3), 153-166. https://doi.org/10.1002/glr2.12061
  • Anonymous, (2022). Turkish State Meteorological Service. Ankara, Turkey.
  • Aras, İ., & Keskin, B. (2018). The effects of different ırrigation water salinity levels on some silage sorghum (Sorghum sp.) varieties. Journal of the Institute of Science and Technology, 8(1), 279-288. https://doi.org/10.21597/jist.407886
  • Ball, D. M., Hoveland, C. S., & Lacefield, G. D. (1996). Southern Forages: Modern Concepts for Forage Crop Management. Atlanta: Potash & Phosphate Institute.
  • Baur, F. J., & Ensminger, L. G. (1977). The association of official analytical chemists (AOAC). Journal of the American Oil Chemists’ Society, 54(4), 171-172.
  • Bhargava, A., Shukla, S., & Ohri, D. (2007). Genetic variability and ınterrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.), Field Crops Research, 101(1), 104-116. https://doi.org/10.1016/j.fcr.2006.10.001
  • Blanco, J. A. (2015). Fodder and Animal Feed. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the Art Report of Quinoa in the World in 2013 (pp. 250-266). FAO & CIRAD.
  • Biond, S., Ruiz K. B., Martínez E. A., Zurita-Silva A., Orsini, F., Antognoni, F., Dinelli, G., Marotti, I., Gianquinto, G., Maldonado, S., Burrieza, H., Bazile, D., Adolf, V. I., & Jacobsen, S. E. (2015). Tolerance to saline conditions. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the Art Report of Quinoa in the World in 2013 (pp. 143-156). FAO & CIRAD.
  • Çağlayan, B., & Kökten K. (2021). Adaptation of quinoa (Chenopodium quinoa Willd.) genotypes in Bingöl conditions, Isparta University of Applied Sciences Journal of Faculty of Agriculture, 16(2), 220-225.
  • Elfeel, A. A., & Bakhashwain, A. A. (2012). Salinity effects on growth attributes mineral uptake, forage quality and tannin. Research Journal of Environmental and Earth Sciences, 4(11), 990-995.
  • FAO, 1990. Micronutrient assessment at the country level: An international study, FAO Soil Bulletin, No: 63, Rome Fonnesbeck, P. V., Clark, D. H., Garret, W. N., & Speth, C. F. (1984). Predicting energy utilization from alfalfa hay from the Western Region. Proceeding of American Society of Animal Sciences (Western Section), 35, 305-308.
  • Fowler, J. L., Hageman, J. H., Moore, K. J., Suzukida, M., Assadian, H., & Valenzuela, M. (1992). Salinity effects on forage quality of Russian thistle. Rangeland Ecology & Management/Journal of Range Management Archives, 45(6), 559-563.
  • Fuentes, F. F., & Bhargava, A. (2011). Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science, 197(2), 124-134. https://doi.org/10.1111/j.1439-037X.2010.00445.x
  • Golos, P. J., Dixon, K. W., & Erickson, T. E. (2016). Plant recruitment from the soil seed bank depends on topsoil stockpile age, height, and storage history in an arid environment. Restoration Ecology, 24(52), 53-61. https://doi.org/10.1111/rec.12389
  • Hedayati-Firoozabadi, A., Kazemeini, S. A., Pirasteh-Anosheh, H., Ghadiri, H., & Pessarakli, M. (2020). Forage yield and quality as affected by salt stress in different ratios of Sorghum bicolor-Bassia indica intercropping. Journal of Plant Nutrition, 43(17), 2579-2589. https://doi.org/10.1080/01904167.2020.1783301
  • Heidari, F., Jalilian, J., & Gholinezhad, E. (2023). The effect of salinity stress and foliar application of nano-fertilizers on quantitative and qualitative characteristics of quinoa forage. Journal of Crops Improvement, 25(3), 769-785.
  • Hussain, M. I., Al-Dakheel, A. J., & Reigosa, M. J. (2018). Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiology Biochemistry, 129, 411–420. https://doi.org/10.1016/j.plaphy.2018.06.023
  • Jacobsen, S. E., Monteros, C., Corcuera, L. J., Bravo, L. A., Christiansen, J. L., & Mujica, A. (2007). Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 26(4), 471–475. https://doi.org/10.1016/j.eja.2007.01.006
  • Jamali, S., & Sharifan, H. (2018). Investigation the effect of different salinity levels on yield and yield components of quinoa (Cv. Titicaca). Journal of Water and Soil Conservation, 25(2), 251-266. https://doi.org/10.22069/jwsc.2018.13721.2841
  • Kadereit, G., Gotzek, D., Jacobs, S., & Freitag, H. (2005). Origin and age of Australian Chenopodiaceae. Organisms Diversity and Evolution, 5(1), 59-80. https://doi.org/10.1016/j.ode.2004.07.002
  • Keskin, B., & Aksoy, K. (2024). Effects of crushed corn and wheat bran added in different rates on silage quality of quinoa. Journal of the Institute of Science and Technology, 14(3), 1353-1365. https://doi.org/10.21597/jist.1462901
  • Keskin, B., & Duman, A. (2024). Silage quality characteristics of quinoa varieties grown in different row spacings. Journal of Adnan Menderes University Agricultural Faculty, 21(1), 45-51. https://doi.org/10.25308/aduziraat.1424102
  • Keskin, B., & Önkür, H. (2019, April 11-12). The effect of different row spacing and intra-row spacing on some feed quality characteristics of seeds and stems of quinoa (Chenopodium quinoa Willd.). Umteb 6. International Congress of Vocational and Technical Sciences, Iğdır University, Iğdır – Türkiye. ISBN: 978-605-7875-36-5, pp: 271-278.
  • Keskin, B., Temel, S., & Akbay Tohumcu, S. (2023). Determination of forage yield performance of different Chenopodium quinoa cultivars in saline conditions. Zemdirbyste-Agriculture, 110(2), 149-156. https://doi.org/10.13080/z-a.2023.110.018
  • Khalil, J. K., Sawaya, W. N., & Hyder, S. Z. (1986). Nutrient composition of Atriplex leaves grown in Saudi Arabia. Journal of Range Management, 39, 104-107.
  • Kılıç, Ü., Yurtseven, S., Boğa, M., & Aydemir, S. (2015). Effects of soil salinity levels on nutrient contents and ın vitro gas productions of some graminious forages. Journal of Soil Science and Plant Nutrition, 3(1), 9-15.
  • Kutlu, H. R., Görgülü, M., & Çelik, L. B. (2005). General Animal Nutrition. Çukurova University, Faculty of Agriculture, Department of Animal Science, Department of Feeds and Animal Nutrition, Adana.
  • Kutlu, H. R., & Özen, N, (2009, June 24-27). Recent Advances in Animal Nutrition. VI. National Animal Science Congress, Erzurum.
  • Mahmoud, A. H., & Sallam, S. (2017). Response of quinoa (Chenopodium quinoa Willd) plant to nitrogen fertilization and irrigation by saline water. Alexandria Science Exchange Journal, 38(2), 326-334. https://doi.org/10.21608/asejaiqjsae.2017.3508
  • Masters, D. G., Benes, S. E., & Norman, H. C., (2007). Biosaline agriculture for forage and livestock production. Agriculture, Ecosystems & Environment, 119(3-4), 234-238. https://doi.org/10.1016/j.agee.2006.08.003
  • Masters, D., Tiong, M., Vercoe, P., & Norman, H. (2010). The nutritive value of river saltbush (Atriplex amnicola) when grown in different concentrations of sodium chloride irrigation solution. Small Ruminant Research, 91(1), 56-62. https://doi.org/10.1016/j.smallrumres.2009.10.019
  • Morales, A. J., Bajgain, P., Garver, Z., Maughan, P. J., & Udall, J. A. (2011). Physiological responses of Chenopodium quinoa to salt stress. International Journal of Plant Physiology and Biochemistry, 3, 219-232.
  • Morrison, J. A. (2003). Hay and pasture managment. Chapter 6, Hay and Pasture.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Oddy, V. H, Robards, G. E., & Low, S. G. (1983). Prediction of in vivo dry matter digestibility from the fiber nitrogen content of a feed. In: Robards, G.E., Packham, R.G. (Eds.), Feed Information and Animal Production. Common wealth Agricultural Bureau, Farnham Royal, UK.
  • Pulvento, C., Riccardi, M., Lavini, A., Iafelice, G., Marconi, E., & d’Andria, R. (2012). Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. Journal Agronomy and Crop Science, 198(A), 254-263. https://doi.org/10.1111/j.1439-037X.2012.00509.x
  • Rezzouk, F. Z., Shahid, M. A., Elouafi, I. A., Zhou, B., Araus, J. L., & Serret, M. D. (2020). Agronomic performance of irrigated quinoa in desert areas: Comparing different approaches for early assessment of salinity stress. Agricultural Water Management, 240 (106205), 1-15. https://doi.org/10.1016/j.agwat.2020.106205
  • Richards, L. A. (1954). Origin and nature of saline and alkali soil, In: Diagnosis and improvement of saline and alkali soil. Agricultural Handbook No: 60, USDA, Washington, D.C., USA, 1-6.
  • Rohweder, D. A., Barnes, R. F., & Jorgensen, N. (1978). Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47(3), 747-759. https://doi.org/10.2527/jas1978.473747x
  • Rosa, M., Hilal, M., Gonzalez, J. A., & Prado, F. E. (2009). Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiology and Biochemistry, 47(4), 300-307. https://doi.org/10.1016/j.plaphy.2008.12.001
  • Rubio, P., & Rojas Lemus, E. N. (2007). Forraje de quinua (Chenopodium quinoa Willd.) como sustituto de forraje de alfalfa (Medicago sativa L.) en dietas para conejos de engorda. Ingeniero Agrónomo Especialista en Zootecnia Pregrado, Universidad Autónoma Chapingo.
  • Sheaffer, C. C., Peterson, M. A., Mccalin, M., Volene, J. J., Cherney, J. H., Johnson, K. D., Woodward, W. T., & Viands, D. R. (1995, March). Acide detergent fiber, neutral detergent fiber concentration and relative feed value. North American Alfalfa Improvement Conference, Minneapolis.
  • Suyama, H., Benes, S. E., Robinson, P. H., Grattan, S. R., Grieve, C. M., & Getachew, G. (2007). Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation. Agricultural Water Management, 88(1-3), 159-172. https://doi.org/10.1016/j.agwat.2006.10.011
  • Şen, A., Başaran, U., Doğrusöz, M. Ç., Gülümser, E., & Mut, H. (2021). The effect of alkali stress on seedling development and quality of grasspea (Lathyrus sativus L.) genotypes. Turkish Journal of Agricultural Research, 8(2), 205-212. https://doi.org/10.19159/tutad.890589
  • Tan, M., & Temel, S. (2017). Determination of dry matter yield and some properties of different quinoa genotypes grown in Erzurum and Iğdır Conditions. Journal of the Institute of Science and Technology, 7(4), 257-263. https://doi.org/10.21597/jist.2017.219
  • Tan, M., & Temel, S. (2018). Performance of some quinoa (Chenopodium quinoa willd.) genotypes grown ın different climate conditions. Turkish Journal of Field Crops, 23(2), 180-186. https://doi.org/10.17557/tjfc.485617
  • Temel, S., & Keskin, B. (2020). Effect of morphological components on the herbage yield and quality of quinoa (Chenopodium quinoa Willd.) grown at different dates. Turkish Journal of Agriculture and Forestry, 44, 533-542. https://doi.org/10.3906/tar-1912-58
  • Temel, S., Keskin, B., Şimşek, U., & Yılmaz İ. H. (2015). Performance of some forage grass species in halomorphic soil. Turkish Journal of Field Crops, 20(2): 131-141. https://doi.org/10.17557/tjfc.82860
  • Temel, S., Keskin, B., Şimşek, U., & Yılmaz, İ. H. (2016). The effect of saline and non-saline soil conditions on yield and nutritional characteristics of some perennial legumes forages. Journal of Agricultural Sciences, 22(4), 528-538. https://doi.org/10.1501/Tarimbil_0000001411
  • Temel, I., & Keskin, B. (2019a). The effects on nutrient content of quinoa (Chenopodium quinoa Willd.) of different row spacing and intra-row spacing. International Journal of Agriculture and Wildlife Science, 5(1), 110-116. https://doi.org/10.24180/ijaws.486327
  • Temel, I., & Keskin, B. (2019b). The effects of different row spacing and ıntra-row spacing on hay yield and some yield components of quinoa (Chenopodium quinoa Willd.). Journal of the Institute of Science and Technology, 9(1), 522-532, https://doi.org/10.21597/jist.480917
  • Ülgen, N., & Yurtsever, N. (1974). Turkey Fertilizer and Fertilization Guide (Türkiye Gübre ve Gübreleme Rehberi). Soil and Fertilizer Research Institute.
  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for diatery fiber. neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597, https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Waldron, B. L., Sagers, J. K., Peel, M. D., Rigby, C. W., Bugbee, B., & Creech, J. E. (2020). Salinity reduces the forage quality of forage kochia: A halophytic Chenopodiaceae shrub. Rangeland Ecology & Management, 73(3), 384-393. https://doi.org/10.1016/j.rama.2019.12.005
There are 55 citations in total.

Details

Primary Language English
Subjects Pasture-Meadow Forage Plants
Journal Section Tarla Bitkileri
Authors

Bilal Keskin 0000-0001-6826-9768

Süleyman Temel 0000-0001-9334-8601

Seda Akbay Tohumcu 0000-0002-0725-1318

Early Pub Date April 18, 2025
Publication Date April 22, 2025
Submission Date October 10, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Keskin, B., Temel, S., & Akbay Tohumcu, S. (2025). Effects of Saline-Alkaline Soils on Forage Quality of Some Quinoa (Chenopodium quinoa Willd.) Varieties. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 11(1), 48-59. https://doi.org/10.24180/ijaws.1564635

17365       17368       17367        17366      17369     17370