Review
BibTex RIS Cite

Applications of Boron and Derivatives in Defense Industry: Mini Review

Year 2025, Issue: 2, 19 - 33, 30.04.2025

Abstract

Boron is the 51st most common element in the earth's crust and is usually found in nature not in pure form but in the form of borate compounds (e.g. borax, boric acid, and boric acid salts) in combination with oxygen. This semi-metal element in group 13 of the periodic table has historically been used in glass, ceramics, and antiseptic products, but today it has become a strategic material in many fields from energy technologies to nanotechnology. Boron, which plays a critical role, especially in renewable energy systems and battery technologies, increases the efficiency of photovoltaic cells in solar panels and increases the energy density and lifetime of lithium-ion batteries. While boron hydrides gain importance in the storage and release of hydrogen, boron carbide increases safety by providing neutron control in nuclear reactors. In the defence and aerospace industry, boron carbide and boron nitride, which are used in the production of light and durable materials, are preferred for their high strength and chemical stability. In the field of nanotechnology, boron nanotubes and boron-based nanomaterials enable groundbreaking applications in energy storage, industrial catalysts, and sensor technologies. In addition, boron compounds attract attention in the biomedical field with their anti-cancer properties and wound healing-promoting effects. In the agricultural sector, boron contributes to sustainable agricultural practices as a key component of fertilizers that support plant growth and increase productivity. Boron also plays a role in various physiological functions as an essential trace element for humans and plants. Although excessive intake can lead to toxic effects, the positive effects of boron on nutrition and health show that it is not a poison, but rather an essential nutrient for life. Thanks to these versatile uses, boron stands out as an indispensable element in the energy, materials, and biotechnology fields of the future.

References

  • T. Řezanka and K. Sigler, “Biologically Active Compounds Of Semi-Metals,” in Bioactive Natural Products (Part O), 2008, pp. 835–921. doi: 10.1016/S1572-5995(08)80018-X.
  • K.-C. Kim, N.-I. Kim, T. Jiang, J.-C. Kim, and C. I. Kang, “Boron recovery from salt lake brine, seawater, and wastewater – A review,” Hydrometallurgy, vol. 218, p. 106062, Apr. 2023, doi: 10.1016/j.hydromet.2023.106062.
  • C. D. Hunt, “Boron,” in Encyclopedia of Food Sciences and Nutrition, Elsevier, 2003, pp. 566–574. doi: 10.1016/B0-12-227055-X/00112-7.
  • I. Uluisik, H. C. Karakaya, and A. Koc, “The importance of boron in biological systems,” J. Trace Elem. Med. Biol., vol. 45, pp. 156–162, Jan. 2018, doi: 10.1016/j.jtemb.2017.10.008.
  • S. Çakır, “Uses of Boron and Boron Toxicity,” Environ. Toxicol. Ecol., vol. 2, no. 2, pp. 115–121, 2022.
  • Z. Huang, S. Wang, R. D. Dewhurst, N. V. Ignat’ev, M. Finze, and H. Braunschweig, “Boron: Its Role in Energy‐Related Processes and Applications,” Angew. Chemie Int. Ed., vol. 59, no. 23, pp. 8800–8816, Jun. 2020, doi: 10.1002/anie.201911108.
  • T. Uslu, “Potential Use of Boron for Energy Production and Storage,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 31, no. 7, pp. 610–618, Mar. 2009, doi: 10.1080/15567030701746646.
  • R. Bayat et al., “Ultrasonic synthesis of borophene as a 2D electrode material with high electrocatalytic activity for use in fuel cell applications,” Carbon Trends, vol. 15, p. 100356, 2024.
  • E. Yoğurtcuoğlu, “Recovery of Boron Wastes with Inorganic Acid,” Eskişehir Tech. Univ. J. Sci. Technol. A - Appl. Sci. Eng., vol. 25, no. 1, pp. 14–26, Mar. 2024, doi: 10.18038/estubtda.1209824.
  • F. Kong et al., “Deep hydrothermal and shallow groundwater borne lithium and boron loadings to a mega brine lake in Qinghai Tibet Plateau based on multi-tracer models,” J. Hydrol., vol. 598, p. 126313, Jul. 2021, doi: 10.1016/j.jhydrol.2021.126313.
  • I. Garcés Millas, “Boron Industry, Sources, and Evaporitic Andean Deposits: Geochemical Characteristics and Evolution Paths of the Superficial Brines,” in Recent Advances in Boron-Containing Materials, IntechOpen, 2020. doi: 10.5772/intechopen.90797.
  • Y. Kar, N. Şen, and A. Demirbaş, “Boron Minerals in Turkey, Their Application Areas and Importance for the Country’s Economy,” Miner. Energy - Raw Mater. Rep., vol. 20, no. 3–4, pp. 2–10, Jan. 2006, doi: 10.1080/14041040500504293.
  • B. Elevli, İ. Yaman, and B. Laratte, “Estimation of the Turkish Boron Exportation to Europe,” Mining, vol. 2, no. 2, pp. 155–169, Mar. 2022, doi: 10.3390/mining2020009.
  • A. R. Scialli, J. P. Bonde, I. Brüske-Hohlfeld, B. D. Culver, Y. Li, and F. M. Sullivan, “An overview of male reproductive studies of boron with an emphasis on studies of highly exposed Chinese workers,” Reprod. Toxicol., vol. 29, no. 1, pp. 10–24, Jan. 2010, doi: 10.1016/j.reprotox.2009.10.006.
  • A. G. Melton, “Development Of Wide Bandgap Solid-State Neutron Detectors,” Georgia Institute of Technology, 2011.
  • Y. Gaylan, A. Bozkurt, and B. Avar, “Investigating Thermal and Fast Neutron Shielding Properties of B4C, B2O3, Sm2O3, and Gd2O3 doped Polymer Matrix Composites using Monte Carlo Simulations,” Süleyman Demirel Üniversitesi Fen Edeb. Fakültesi Fen Derg., vol. 16, no. 2, pp. 490–499, Nov. 2021, doi: 10.29233/sdufeffd.933338.
  • T. S. R. C. Murthy, J. K. Sonber, K. Sairam, S. Majumdar, and V. Kain, “Boron-Based Ceramics and Composites for Nuclear and Space Applications: Synthesis and Consolidation,” in Handbook of Advanced Ceramics and Composites, Cham: Springer International Publishing, 2019, pp. 1–36. doi: 10.1007/978-3-319-73255-8_22-1.
  • J. A. Evans, M. D. DeHart, K. D. Weaver, and D. D. Keiser, “Burnable absorbers in nuclear reactors – A review,” Nucl. Eng. Des., vol. 391, p. 111726, May 2022, doi: 10.1016/j.nucengdes.2022.111726.
  • L. K. Mansur, “Foreword,” in Comprehensive Nuclear Materials, Elsevier, 2011, pp. xxiii–xxiv. doi: 10.1016/B978-0-08-056033-5.09014-5.
  • A. Albarodi, P. Uslu Kiçeci, S. Uzun Duran, and B. Demirrköz, “Monte-Carlo (MC) Analysis of Borated Materials for Neutron Shielding Applications,” Eurasian J. Sci. Eng. Technol., vol. 3, no. 2, pp. 63–70, Dec. 2022, doi: 10.55696/ejset.1102371.
  • M. A. Dymova, S. Y. Taskaev, V. A. Richter, and E. V. Kuligina, “Boron neutron capture therapy: Current status and future perspectives.,” Cancer Commun. (London, England), vol. 40, no. 9, pp. 406–421, Sep. 2020, doi: 10.1002/cac2.12089.
  • S.-I. MIYATAKE et al., “Boron Neutron Capture Therapy for Malignant Brain Tumors,” Neurol. Med. Chir. (Tokyo)., vol. 56, no. 7, pp. 361–371, 2016, doi: 10.2176/nmc.ra.2015-0297.
  • H. He et al., “The basis and advances in clinical application of boron neutron capture therapy,” Radiat. Oncol., vol. 16, no. 1, p. 216, Nov. 2021, doi: 10.1186/s13014-021-01939-7.
  • B. R. Golla, A. Mukhopadhyay, B. Basu, and S. K. Thimmappa, “Review on ultra-high temperature boride ceramics,” Prog. Mater. Sci., vol. 111, p. 100651, Jun. 2020, doi: 10.1016/j.pmatsci.2020.100651.
  • J. K. Sonber, T. S. R. C. Murthy, S. Majumdar, and V. Kain, “Processing of ZrB2- and HfB2-Based Ultra-High Temperature Ceramic Materials: A Review,” Mater. Perform. Charact., vol. 10, no. 2, pp. 89–121, Jun. 2021, doi: 10.1520/MPC20200133.
  • A. O’Connor, C. Park, J. E. Baciak, and M. V. Manuel, “Mitigating space radiation using magnesium(-lithium) and boron carbide composites,” Acta Astronaut., vol. 216, pp. 37–43, Mar. 2024, doi: 10.1016/j.actaastro.2023.12.013.
  • J. H. Kim, T. V. Pham, J. H. Hwang, C. S. Kim, and M. J. Kim, “Boron nitride nanotubes: synthesis and applications,” Nano Converg., vol. 5, no. 1, p. 17, Dec. 2018, doi: 10.1186/s40580-018-0149-y.
  • H. Khaliq, Z. Juming, and P. Ke-Mei, “The Physiological Role of Boron on Health,” Biol. Trace Elem. Res., vol. 186, no. 1, pp. 31–51, Nov. 2018, doi: 10.1007/s12011-018-1284-3.
  • Y. Wu et al., “Synthesis of novel activated carbon-supported trimetallic Pt–Ru–Ni nanoparticles using wood chips as efficient catalysts for the hydrogen generation from NaBH4 and enhanced photodegradation on methylene blue,” Int. J. Hydrogen Energy, Aug. 2022, doi: 10.1016/J.IJHYDENE.2022.07.152.
  • Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int. J. Hydrogen Energy, May 2022, doi: 10.1016/J.IJHYDENE.2022.04.177.
  • M. Abdullah, I. Ahmed, M. Arafat Islam, Z. Ahsan, and S. Saha, “Recent developments and diverse applications of high melting point materials,” Results Eng., vol. 22, p. 102376, Jun. 2024, doi: 10.1016/j.rineng.2024.102376.
  • T. Venkateswaran, B. Basu, G. B. Raju, and D.-Y. Kim, “Densification and properties of transition metal borides-based cermets via spark plasma sintering,” J. Eur. Ceram. Soc., vol. 26, no. 13, pp. 2431–2440, Jan. 2006, doi: 10.1016/j.jeurceramsoc.2005.05.011.
  • T. S. R. C. Murthy, J. K. Sonber, K. Sairam, S. Majumdar, and V. Kain, “Boron-Based Ceramics and Composites for Nuclear and Space Applications: Synthesis and Consolidation,” in Handbook of Advanced Ceramics and Composites, Cham: Springer International Publishing, 2020, pp. 703–738. doi: 10.1007/978-3-030-16347-1_22.
  • J. Yadav et al., “Greening the supply chain: Sustainable approaches for rare earth element recovery from neodymium iron boron magnet waste,” J. Environ. Chem. Eng., vol. 12, no. 4, p. 113169, Aug. 2024, doi: 10.1016/j.jece.2024.113169.
  • D. M. Schubert, “Borates in Industrial Use,” pp. 1–40, 2003, doi: 10.1007/3-540-46110-8_1.
  • X. Zhang, W. Pang, L. T. DeLuca, and Y. Zhao, High-energy Combustion Agents of Organic Borohydrides. Royal Society of Chemistry, 2023. doi: 10.1039/9781837670017.
  • X. Li, W. Sun, and G. Ning, “Noticeable localized corrosion of solid boric acid on 304 stainless steel,” Nucl. Eng. Technol., vol. 56, no. 9, pp. 3616–3625, Sep. 2024, doi: 10.1016/j.net.2024.04.013.
  • Y. I. Kuznetsov and G. V. Redkina, “Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media,” Coatings, vol. 12, no. 2, p. 149, Jan. 2022, doi: 10.3390/coatings12020149.
  • S. Siengchin, “A review on lightweight materials for defence applications: Present and future developments,” Def. Technol., vol. 24, pp. 1–17, Jun. 2023, doi: 10.1016/j.dt.2023.02.025.
  • M. Mahdavi, A. Abdollah-Zadeh, and H. Elmkhah, “A comparative study on time-dependent corrosion properties of Ti–B–N films applied by PACVD method,” J. Mater. Res. Technol., vol. 36, pp. 80–97, May 2025, doi: 10.1016/j.jmrt.2025.03.097.
  • J. Zhang et al., “Integration of Antifouling and Anti-Cavitation Coatings on Propellers: A Review,” Coatings, vol. 13, no. 9, p. 1619, Sep. 2023, doi: 10.3390/coatings13091619.
  • N. Bogatu et al., “Assessment of the Effectiveness of Protective Coatings in Preventing Steel Corrosion in the Marine Environment,” Polymers (Basel)., vol. 17, no. 3, p. 378, Jan. 2025, doi: 10.3390/polym17030378.
  • I. E. Campos Silva, A. Günen, M. Serdar Karakaş, and A. M. Delgado Brito, “The Boriding Process for Enhancing the Surface Properties of High-Temperature Metallic Materials,” 2024, pp. 221–259. doi: 10.1007/978-3-031-45534-6_9.
  • ‪Maryam Shojaie-bahaabad, M. Bozorg, M. Najafizadeh, and P. Cavaliere, “Ultra high temperature ceramic coatings in thermal protection systems (TPS),” Ceram. Int., vol. 50, no. 7, pp. 9937–9951, Apr. 2024, doi: 10.1016/j.ceramint.2023.12.372.‬‬‬
  • J. Choi, C.-S. Seok, S. Park, and G. Kim, “Effect of high-temperature degradation on microstructure evolution and mechanical properties of austenitic heat-resistant steel,” J. Mater. Res. Technol., vol. 8, no. 2, pp. 2011–2020, Apr. 2019, doi: 10.1016/j.jmrt.2018.11.017.
  • J. N. Oliver, W. Xie, J. Du, and M. Ecker, “The Effect of Boron Oxide on the Structures and Thermal Properties of Phosophosilicate Bioactive Glasses for Metallic Implants’ Coatings,” Appl. Sci., vol. 15, no. 3, p. 1293, Jan. 2025, doi: 10.3390/app15031293.
  • D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull., vol. 37, no. 10, pp. 891–898, Oct. 2012, doi: 10.1557/mrs.2012.232.
  • D. Greuel, O. Haidn, and K. Fritscher, “Thermal Barrier Coating for Cryogenic Rocket Engines,” Jul. 2002. doi: 10.2514/6.2002-4145.
  • A. Greco, K. Mistry, V. Sista, O. Eryilmaz, and A. Erdemir, “Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications,” Wear, vol. 271, no. 9–10, pp. 1754–1760, Jul. 2011, doi: 10.1016/j.wear.2010.11.060.
  • X. Dong et al., “Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications,” Biomimetics, vol. 9, no. 10, p. 585, Sep. 2024, doi: 10.3390/biomimetics9100585.
  • S. Özel, E. Vural, and M. Binici, “Optimization of the effect of thermal barrier coating (TBC) on diesel engine performance by Taguchi method,” Fuel, vol. 263, p. 116537, Mar. 2020, doi: 10.1016/j.fuel.2019.116537.
  • L. Chkhartishvili et al., “Advanced Boron Carbide Matrix Nanocomposites Obtained from Liquid-Charge: Focused Review,” Condens. Matter, vol. 8, no. 2, p. 37, Apr. 2023, doi: 10.3390/condmat8020037.
  • D. He, L. Shang, Z. Lu, G. Zhang, L. Wang, and Q. Xue, “Tailoring the mechanical and tribological properties of B 4 C/a-C coatings by controlling the boron carbide content,” Surf. Coatings Technol., vol. 329, pp. 11–18, Nov. 2017, doi: 10.1016/j.surfcoat.2017.09.017.
  • J. Konieczny and K. Labisz, “Materials used in the combat aviation construction,” Transp. Probl., vol. 16, no. 2, pp. 5–18, Jun. 2021, doi: 10.21307/tp-2021-019.
  • E. Medvedovski, “Lightweight ceramic composite armour system,” Adv. Appl. Ceram., vol. 105, no. 5, pp. 241–245, Oct. 2006, doi: 10.1179/174367606X113537.
  • J. W. McCauley, “Institutional and technical history of requirements‐based strategic armor ceramics basic research leading up to the multiscale material by design materials in extreme dynamic environments (MEDE) program. Part I. Brief history of institutional changes and,” Int. J. Ceram. Eng. Sci., vol. 5, no. 3, May 2023, doi: 10.1002/ces2.10176.
  • X. Yi, “Progress of ceramic materials in the application of armor protection,” Highlights Sci. Eng. Technol., vol. 73, pp. 274–282, Nov. 2023, doi: 10.54097/hset.v73i.12987.
  • P. H. P. M. da Silveira, T. T. da Silva, M. P. Ribeiro, P. R. Rodrigues de Jesus, P. C. R. dos S. Credmann, and A. V. Gomes, “A Brief Review of Alumina, Silicon Carbide and Boron Carbide Ceramic Materials for Ballistic Applications,” Acad. Lett., Oct. 2021, doi: 10.20935/AL3742.
  • J. Jung and S. Kang, “Advances in Manufacturing Boron Carbide‐Aluminum Composites,” J. Am. Ceram. Soc., vol. 87, no. 1, pp. 47–54, Jan. 2004, doi: 10.1111/j.1551-2916.2004.00047.x.
  • P. Hartoko and S. Li, “MECHANICAL PROPERTIES ENHANCEMENT OF BORON CARBIDE BASED ARMOUR MATERIALS,” J. Pertahanan Media Inf. ttg Kaji. Strateg. Pertahanan yang Mengedepankan Identity, Nasionalism Integr., vol. 6, no. 1, p. 20, Apr. 2020, doi: 10.33172/jp.v6i1.810.
  • M. W. Chen, J. W. McCauley, J. C. LaSalvia, and K. J. Hemker, “Microstructural Characterization of Commercial Hot‐Pressed Boron Carbide Ceramics,” J. Am. Ceram. Soc., vol. 88, no. 7, pp. 1935–1942, Jul. 2005, doi: 10.1111/j.1551-2916.2005.00346.x.
  • O. Olanrewaju, I. O. Oladele, and S. O. Adelani, “Recent advances in natural fiber reinforced metal/ceramic/polymer composites: An overview of the structure-property relationship for engineering applications,” Hybrid Adv., vol. 8, p. 100378, Mar. 2025, doi: 10.1016/J.HYBADV.2025.100378.
  • G. Karadimas and K. Salonitis, “Ceramic Matrix Composites for Aero Engine Applications—A Review,” Appl. Sci. 2023, Vol. 13, Page 3017, vol. 13, no. 5, p. 3017, Feb. 2023, doi: 10.3390/APP13053017.
  • E. Medvedovski, “Ballistic performance of armour ceramics: Influence of design and structure. Part 1,” Ceram. Int., vol. 36, no. 7, pp. 2103–2115, Sep. 2010, doi: 10.1016/J.CERAMINT.2010.05.021.
  • R. Phiri, S. Mavinkere Rangappa, S. Siengchin, O. P. Oladijo, and T. Ozbakkaloglu, “Advances in lightweight composite structures and manufacturing technologies: A comprehensive review,” Heliyon, vol. 10, no. 21, p. e39661, Nov. 2024, doi: 10.1016/J.HELIYON.2024.E39661.
  • M. Karahan, A. Kuş, and R. Eren, “An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics,” Int. J. Impact Eng., vol. 35, no. 6, pp. 499–510, Jun. 2008, doi: 10.1016/j.ijimpeng.2007.04.003.
  • E. Aytav and A. M. Isik, “Experimental Investigation of Ballistic Performance of Free Particle Armor Systems,” J. Mater. Mechatronics A, vol. 4, no. 2, pp. 518–543, Dec. 2023, doi: 10.55546/jmm.1354113.
  • S. A. Hashim, S. Karmakar, A. Roy, and M. Abubakar, “Evaluation of Boron Combustion for Ducted Rocket Applications Using Condensed Product Analysis,” Def. Sci. J., vol. 74, no. 2, pp. 278–287, Mar. 2024, doi: 10.14429/dsj.74.18685.
  • S. Mandal, S. A. Hashim, A. Roy, and S. Karmakar, “A short review of challenges and prospects of boron-laden solid fuels for ramjet applications,” FirePhysChem, vol. 3, no. 3, pp. 179–200, Sep. 2023, doi: 10.1016/j.fpc.2023.06.001.
  • M. G. Gok and O. Cihan, “Energetic Materials and Metal Borides for Solid Propellant Rocket Engines,” Int. J. Mater. Eng. Technol., vol. 003, pp. 109–119, 2020.
  • L. Han, R. Wang, W. Chen, Z. Wang, X. Zhu, and T. Huang, “Preparation and Combustion Mechanism of Boron-Based High-Energy Fuels,” Catalysts, vol. 13, no. 2, p. 378, Feb. 2023, doi: 10.3390/catal13020378.
  • W. Anderson, “Rocket Engines,” in Encyclopedia of Energy, Elsevier, 2004, pp. 483–491. doi: 10.1016/B0-12-176480-X/00090-5.
  • R. Kore and A. Vashishtha, “Combustion Behaviour of ADN-Based Green Solid Propellant with Metal Additives: A Comprehensive Review and Discussion,” Aerospace, vol. 12, no. 1, p. 46, Jan. 2025, doi: 10.3390/aerospace12010046.
  • A. Iqbal, G. Moskal, A. Cavaleiro, A. Amjad, and M. J. Khan, “The current advancement of zirconate based dual phase system in thermal barrier coatings (TBCs): New modes of the failures: Understanding and investigations,” Alexandria Eng. J., vol. 91, pp. 161–196, Mar. 2024, doi: 10.1016/j.aej.2024.01.063.
  • R. S. Petrova, N. Suwattananont, and V. Samardzic, “The Effect of Boronizing on Metallic Alloys for Automotive Applications,” J. Mater. Eng. Perform., vol. 17, no. 3, pp. 340–345, Jun. 2008, doi: 10.1007/s11665-008-9228-2.
  • H. Zhang et al., “Construction of boron-based double-layer core-shell structure composites and their combustion energy release characteristics,” Fuel, vol. 371, p. 132157, Sep. 2024, doi: 10.1016/j.fuel.2024.132157.
  • O. G. Glotov, “Screening of metal fuels for use in composite propellants for ramjets,” Prog. Aerosp. Sci., vol. 143, p. 100954, Nov. 2023, doi: 10.1016/j.paerosci.2023.100954.
  • Z. Huang, S. Wang, R. D. Dewhurst, N. V Ignat’ev, M. Finze, and H. Braunschweig, “Boron: Its Role in Energy-Related Processes and Applications.,” Angew. Chem. Int. Ed. Engl., vol. 59, no. 23, pp. 8800–8816, Jun. 2020, doi: 10.1002/anie.201911108.
  • R. K. Mishra, J. Sarkar, K. Verma, I. Chianella, S. Goel, and H. Y. Nezhad, “Borophene: A 2D wonder shaping the future of nanotechnology and materials science,” Nano Mater. Sci., May 2024, doi: 10.1016/j.nanoms.2024.03.007.
  • J. Weerasinghe et al., “Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites.,” Nanomater. (Basel, Switzerland), vol. 13, no. 11, May 2023, doi: 10.3390/nano13111763.
  • P. Beaumont and C. Soutis, The Structural Integrity of Carbon Fiber Composites. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-46120-5.
  • J. C. Ince et al., “Overview of emerging hybrid and composite materials for space applications,” Adv. Compos. Hybrid Mater., vol. 6, no. 4, p. 130, Aug. 2023, doi: 10.1007/s42114-023-00678-5.
  • R. N. Yastrebinsky, A. V. Yastrebinskaya, A. I. Gorodov, and A. V. Akimenko, “Polymer Boron-Containing Composite for Protecting Astronauts of Manned Orbital Stations from Secondary Neutron Radiation,” J. Compos. Sci., vol. 8, no. 9, p. 372, Sep. 2024, doi: 10.3390/jcs8090372.
  • B. Castanie et al., “Review of Monolithic Composite Laminate and Stiffened Structures in Aeronautic Applications,” Compos. Part C Open Access, p. 100585, Apr. 2025, doi: 10.1016/j.jcomc.2025.100585.
  • S. Kim, S. Lee, Y. Zhang, S. Park, and J. Gu, “Carbon‐Based Radar Absorbing Materials toward Stealth Technologies,” Adv. Sci., vol. 10, no. 32, Nov. 2023, doi: 10.1002/advs.202303104.
  • A. Kolanowska, D. Janas, A. P. Herman, R. G. Jędrysiak, T. Giżewski, and S. Boncel, “From blackness to invisibility – Carbon nanotubes role in the attenuation of and shielding from radio waves for stealth technology,” Carbon N. Y., vol. 126, pp. 31–52, Jan. 2018, doi: 10.1016/j.carbon.2017.09.078.
  • L. Jin et al., “Application, development, and challenges of stealth materials/structures in next-generation aviation equipment,” Appl. Surf. Sci. Adv., vol. 19, p. 100575, Feb. 2024, doi: 10.1016/j.apsadv.2024.100575.
  • N. Krishna V and K. G. Padmasine, “A review on microwave band pass filters: Materials and design optimization techniques for wireless communication systems,” Mater. Sci. Semicond. Process., vol. 154, p. 107181, Feb. 2023, doi: 10.1016/j.mssp.2022.107181.
  • H. Smith, “Innovation in supersonic passenger air travel,” in Innovation in Aeronautics, Elsevier, 2012, pp. 155–196. doi: 10.1533/9780857096098.1.155.
  • S. Mondal and A. K. Banthia, “Low-temperature synthetic route for boron carbide,” J. Eur. Ceram. Soc., vol. 25, no. 2–3, pp. 287–291, Jan. 2005, doi: 10.1016/j.jeurceramsoc.2004.08.011.
  • G. A. Rao and S. P. Mahulikar, “Integrated review of stealth technology and its role in airpower,” Aeronaut. J., vol. 106, no. 1066, pp. 629–642, Dec. 2002, doi: 10.1017/S0001924000011702.
  • R. Bellais, “Technology and the defense industry: real threats, bad habits, or new (market) opportunities?,” J. Innov. Econ. Manag., vol. n°12, no. 2, pp. 59–78, Jun. 2013, doi: 10.3917/jie.012.0059.
  • G. Asgedom, K. Yeneneh, G. Tilahun, and B. Negash, “Numerical and experimental analysis of body armor polymer penetration resistance against 7.62 mm bullet,” Heliyon, vol. 11, no. 1, p. e41286, Jan. 2025, doi: 10.1016/j.heliyon.2024.e41286.
  • S. G. Savio, K. Ramanjaneyulu, V. Madhu, and T. B. Bhat, “An experimental study on ballistic performance of boron carbide tiles,” Int. J. Impact Eng., vol. 38, no. 7, pp. 535–541, Jul. 2011, doi: 10.1016/j.ijimpeng.2011.01.006.
  • K. Bilisik, M. Syduzzaman, G. Erdogan, and M. Korkmaz, “Advances in ballistic protection,” in Functional and Technical Textiles, Elsevier, 2023, pp. 71–139. doi: 10.1016/B978-0-323-91593-9.00023-7.
  • B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers (Basel)., vol. 14, no. 22, p. 5007, Nov. 2022, doi: 10.3390/polym14225007.
  • J.-H. Ouyang, Y.-F. Li, Y.-Z. Zhang, Y.-M. Wang, and Y.-J. Wang, “High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review,” Lubricants, vol. 10, no. 8, p. 177, Aug. 2022, doi: 10.3390/lubricants10080177.
  • R. Rolls and R. D. Shaw, “The influence of borate coatings on the high-temperature oxidation of iron,” Corros. Sci., vol. 14, no. 7, pp. 431–441, Aug. 1974, doi: 10.1016/0010-938X(74)90003-1.
  • A. Iqbal and G. Moskal, “Recent Development in Advance Ceramic Materials and Understanding the Mechanisms of Thermal Barrier Coatings Degradation,” Arch. Comput. Methods Eng., vol. 30, no. 8, pp. 4855–4896, Nov. 2023, doi: 10.1007/s11831-023-09960-7.
  • C. S. Seu, V. K. Davis, J. Pasalic, and R. V. Bugga, “Aluminum Borate Coating on High-Voltage Cathodes for Li-Ion Batteries,” J. Electrochem. Soc., vol. 162, no. 12, pp. A2259–A2265, Aug. 2015, doi: 10.1149/2.0161512jes.
  • G. Sato and T. Honda, “Effects of additives on frictional properties of CrN and boron cast iron,” Proc. Mech. Eng. Congr. Japan, vol. 2016, p. S1150603, 2016, doi: 10.1299/jsmemecj.2016.S1150603.
  • A. Bin Rashid, M. Haque, S. M. M. Islam, K. M. R. Uddin Labib, and P. Chowdhury, “Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects,” Adv. Mater. Sci. Eng., vol. 2024, pp. 1–33, May 2024, doi: 10.1155/2024/2112358.
  • H.-H. Sheu, Q.-Y. Wang, and Y.-W. Lee, “Effects of Boron Carbide Particle Content on Corrosion Resistance and Wear Resistance of Ni-B/B4C Composite Coatings,” Int. J. Electrochem. Sci., vol. 17, no. 11, p. 221166, Nov. 2022, doi: 10.20964/2022.11.61.
  • “Science & Technology Trends 2020-2040,” NATO Science & Technology Organization, 2020.
  • J. Reis, Y. Cohen, N. Melão, J. Costa, and D. Jorge, “High-Tech Defense Industries: Developing Autonomous Intelligent Systems,” Appl. Sci., vol. 11, no. 11, p. 4920, May 2021, doi: 10.3390/app11114920.
  • M. Zhu, X. Zhou, H. Zhang, L. Wang, and H. Sun, “International trade evolution and competition prediction of boron ore: Based on complex network and link prediction,” Resour. Policy, vol. 82, p. 103542, May 2023, doi: 10.1016/j.resourpol.2023.103542.

Savunma Endüstrisinde Bor ve Türevlerin Uygulamaları: Mini İnceleme

Year 2025, Issue: 2, 19 - 33, 30.04.2025

Abstract

Bor, yerkabuğunda en yaygın 51. elementtir ve doğada genellikle saf halde değil, oksijenle birlikte borat bileşikleri (örneğin boraks, borik asit ve borik asit tuzları) şeklinde bulunur. Periyodik tablonun 13. grubunda yer alan bu yarı metal element, geçmişte cam, seramik ve antiseptik ürünlerde kullanılırken, günümüzde enerji teknolojilerinden nanoteknolojiye kadar birçok alanda stratejik bir malzeme haline gelmiştir. Özellikle yenilenebilir enerji sistemleri ve batarya teknolojilerinde kritik rol oynayan bor, güneş panellerindeki fotovoltaik hücrelerin verimliliğini artırırken, lityum-iyon bataryaların enerji yoğunluğunu ve ömrünü artırıyor. Hidrojenin depolanması ve salınımında bor hidrürler önem kazanırken, bor karbür nükleer reaktörlerde nötron kontrolü sağlayarak güvenliği artırıyor. Savunma ve havacılık sanayinde, hafif ve dayanıklı malzemelerin üretiminde kullanılan bor karbür ve bor nitrür, yüksek mukavemetleri ve kimyasal kararlılıkları nedeniyle tercih ediliyor. Nanoteknoloji alanında ise bor nanotüpler ve bor bazlı nanomalzemeler enerji depolama, endüstriyel katalizörler ve sensör teknolojilerinde çığır açan uygulamalara olanak sağlıyor. Ayrıca bor bileşikleri, anti-kanser özellikleri ve yara iyileşmesini destekleyici etkileriyle biyomedikal alanda da dikkat çekmektedir. Tarım sektöründe bor, bitki büyümesini destekleyen ve verimliliği artıran gübrelerin önemli bir bileşeni olarak sürdürülebilir tarım uygulamalarına katkıda bulunmaktadır. Bor ayrıca insanlar ve bitkiler için temel bir eser element olarak çeşitli fizyolojik işlevlerde rol oynar. Aşırı alımı toksik etkilere yol açabilse de, borun beslenme ve sağlık üzerindeki olumlu etkileri onun bir zehir değil, aksine yaşam için gerekli bir besin maddesi olduğunu göstermektedir. Bu çok yönlü kullanımları sayesinde bor, geleceğin enerji, malzeme ve biyoteknoloji alanlarında vazgeçilmez bir element olarak öne çıkmaktadır.

References

  • T. Řezanka and K. Sigler, “Biologically Active Compounds Of Semi-Metals,” in Bioactive Natural Products (Part O), 2008, pp. 835–921. doi: 10.1016/S1572-5995(08)80018-X.
  • K.-C. Kim, N.-I. Kim, T. Jiang, J.-C. Kim, and C. I. Kang, “Boron recovery from salt lake brine, seawater, and wastewater – A review,” Hydrometallurgy, vol. 218, p. 106062, Apr. 2023, doi: 10.1016/j.hydromet.2023.106062.
  • C. D. Hunt, “Boron,” in Encyclopedia of Food Sciences and Nutrition, Elsevier, 2003, pp. 566–574. doi: 10.1016/B0-12-227055-X/00112-7.
  • I. Uluisik, H. C. Karakaya, and A. Koc, “The importance of boron in biological systems,” J. Trace Elem. Med. Biol., vol. 45, pp. 156–162, Jan. 2018, doi: 10.1016/j.jtemb.2017.10.008.
  • S. Çakır, “Uses of Boron and Boron Toxicity,” Environ. Toxicol. Ecol., vol. 2, no. 2, pp. 115–121, 2022.
  • Z. Huang, S. Wang, R. D. Dewhurst, N. V. Ignat’ev, M. Finze, and H. Braunschweig, “Boron: Its Role in Energy‐Related Processes and Applications,” Angew. Chemie Int. Ed., vol. 59, no. 23, pp. 8800–8816, Jun. 2020, doi: 10.1002/anie.201911108.
  • T. Uslu, “Potential Use of Boron for Energy Production and Storage,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 31, no. 7, pp. 610–618, Mar. 2009, doi: 10.1080/15567030701746646.
  • R. Bayat et al., “Ultrasonic synthesis of borophene as a 2D electrode material with high electrocatalytic activity for use in fuel cell applications,” Carbon Trends, vol. 15, p. 100356, 2024.
  • E. Yoğurtcuoğlu, “Recovery of Boron Wastes with Inorganic Acid,” Eskişehir Tech. Univ. J. Sci. Technol. A - Appl. Sci. Eng., vol. 25, no. 1, pp. 14–26, Mar. 2024, doi: 10.18038/estubtda.1209824.
  • F. Kong et al., “Deep hydrothermal and shallow groundwater borne lithium and boron loadings to a mega brine lake in Qinghai Tibet Plateau based on multi-tracer models,” J. Hydrol., vol. 598, p. 126313, Jul. 2021, doi: 10.1016/j.jhydrol.2021.126313.
  • I. Garcés Millas, “Boron Industry, Sources, and Evaporitic Andean Deposits: Geochemical Characteristics and Evolution Paths of the Superficial Brines,” in Recent Advances in Boron-Containing Materials, IntechOpen, 2020. doi: 10.5772/intechopen.90797.
  • Y. Kar, N. Şen, and A. Demirbaş, “Boron Minerals in Turkey, Their Application Areas and Importance for the Country’s Economy,” Miner. Energy - Raw Mater. Rep., vol. 20, no. 3–4, pp. 2–10, Jan. 2006, doi: 10.1080/14041040500504293.
  • B. Elevli, İ. Yaman, and B. Laratte, “Estimation of the Turkish Boron Exportation to Europe,” Mining, vol. 2, no. 2, pp. 155–169, Mar. 2022, doi: 10.3390/mining2020009.
  • A. R. Scialli, J. P. Bonde, I. Brüske-Hohlfeld, B. D. Culver, Y. Li, and F. M. Sullivan, “An overview of male reproductive studies of boron with an emphasis on studies of highly exposed Chinese workers,” Reprod. Toxicol., vol. 29, no. 1, pp. 10–24, Jan. 2010, doi: 10.1016/j.reprotox.2009.10.006.
  • A. G. Melton, “Development Of Wide Bandgap Solid-State Neutron Detectors,” Georgia Institute of Technology, 2011.
  • Y. Gaylan, A. Bozkurt, and B. Avar, “Investigating Thermal and Fast Neutron Shielding Properties of B4C, B2O3, Sm2O3, and Gd2O3 doped Polymer Matrix Composites using Monte Carlo Simulations,” Süleyman Demirel Üniversitesi Fen Edeb. Fakültesi Fen Derg., vol. 16, no. 2, pp. 490–499, Nov. 2021, doi: 10.29233/sdufeffd.933338.
  • T. S. R. C. Murthy, J. K. Sonber, K. Sairam, S. Majumdar, and V. Kain, “Boron-Based Ceramics and Composites for Nuclear and Space Applications: Synthesis and Consolidation,” in Handbook of Advanced Ceramics and Composites, Cham: Springer International Publishing, 2019, pp. 1–36. doi: 10.1007/978-3-319-73255-8_22-1.
  • J. A. Evans, M. D. DeHart, K. D. Weaver, and D. D. Keiser, “Burnable absorbers in nuclear reactors – A review,” Nucl. Eng. Des., vol. 391, p. 111726, May 2022, doi: 10.1016/j.nucengdes.2022.111726.
  • L. K. Mansur, “Foreword,” in Comprehensive Nuclear Materials, Elsevier, 2011, pp. xxiii–xxiv. doi: 10.1016/B978-0-08-056033-5.09014-5.
  • A. Albarodi, P. Uslu Kiçeci, S. Uzun Duran, and B. Demirrköz, “Monte-Carlo (MC) Analysis of Borated Materials for Neutron Shielding Applications,” Eurasian J. Sci. Eng. Technol., vol. 3, no. 2, pp. 63–70, Dec. 2022, doi: 10.55696/ejset.1102371.
  • M. A. Dymova, S. Y. Taskaev, V. A. Richter, and E. V. Kuligina, “Boron neutron capture therapy: Current status and future perspectives.,” Cancer Commun. (London, England), vol. 40, no. 9, pp. 406–421, Sep. 2020, doi: 10.1002/cac2.12089.
  • S.-I. MIYATAKE et al., “Boron Neutron Capture Therapy for Malignant Brain Tumors,” Neurol. Med. Chir. (Tokyo)., vol. 56, no. 7, pp. 361–371, 2016, doi: 10.2176/nmc.ra.2015-0297.
  • H. He et al., “The basis and advances in clinical application of boron neutron capture therapy,” Radiat. Oncol., vol. 16, no. 1, p. 216, Nov. 2021, doi: 10.1186/s13014-021-01939-7.
  • B. R. Golla, A. Mukhopadhyay, B. Basu, and S. K. Thimmappa, “Review on ultra-high temperature boride ceramics,” Prog. Mater. Sci., vol. 111, p. 100651, Jun. 2020, doi: 10.1016/j.pmatsci.2020.100651.
  • J. K. Sonber, T. S. R. C. Murthy, S. Majumdar, and V. Kain, “Processing of ZrB2- and HfB2-Based Ultra-High Temperature Ceramic Materials: A Review,” Mater. Perform. Charact., vol. 10, no. 2, pp. 89–121, Jun. 2021, doi: 10.1520/MPC20200133.
  • A. O’Connor, C. Park, J. E. Baciak, and M. V. Manuel, “Mitigating space radiation using magnesium(-lithium) and boron carbide composites,” Acta Astronaut., vol. 216, pp. 37–43, Mar. 2024, doi: 10.1016/j.actaastro.2023.12.013.
  • J. H. Kim, T. V. Pham, J. H. Hwang, C. S. Kim, and M. J. Kim, “Boron nitride nanotubes: synthesis and applications,” Nano Converg., vol. 5, no. 1, p. 17, Dec. 2018, doi: 10.1186/s40580-018-0149-y.
  • H. Khaliq, Z. Juming, and P. Ke-Mei, “The Physiological Role of Boron on Health,” Biol. Trace Elem. Res., vol. 186, no. 1, pp. 31–51, Nov. 2018, doi: 10.1007/s12011-018-1284-3.
  • Y. Wu et al., “Synthesis of novel activated carbon-supported trimetallic Pt–Ru–Ni nanoparticles using wood chips as efficient catalysts for the hydrogen generation from NaBH4 and enhanced photodegradation on methylene blue,” Int. J. Hydrogen Energy, Aug. 2022, doi: 10.1016/J.IJHYDENE.2022.07.152.
  • Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int. J. Hydrogen Energy, May 2022, doi: 10.1016/J.IJHYDENE.2022.04.177.
  • M. Abdullah, I. Ahmed, M. Arafat Islam, Z. Ahsan, and S. Saha, “Recent developments and diverse applications of high melting point materials,” Results Eng., vol. 22, p. 102376, Jun. 2024, doi: 10.1016/j.rineng.2024.102376.
  • T. Venkateswaran, B. Basu, G. B. Raju, and D.-Y. Kim, “Densification and properties of transition metal borides-based cermets via spark plasma sintering,” J. Eur. Ceram. Soc., vol. 26, no. 13, pp. 2431–2440, Jan. 2006, doi: 10.1016/j.jeurceramsoc.2005.05.011.
  • T. S. R. C. Murthy, J. K. Sonber, K. Sairam, S. Majumdar, and V. Kain, “Boron-Based Ceramics and Composites for Nuclear and Space Applications: Synthesis and Consolidation,” in Handbook of Advanced Ceramics and Composites, Cham: Springer International Publishing, 2020, pp. 703–738. doi: 10.1007/978-3-030-16347-1_22.
  • J. Yadav et al., “Greening the supply chain: Sustainable approaches for rare earth element recovery from neodymium iron boron magnet waste,” J. Environ. Chem. Eng., vol. 12, no. 4, p. 113169, Aug. 2024, doi: 10.1016/j.jece.2024.113169.
  • D. M. Schubert, “Borates in Industrial Use,” pp. 1–40, 2003, doi: 10.1007/3-540-46110-8_1.
  • X. Zhang, W. Pang, L. T. DeLuca, and Y. Zhao, High-energy Combustion Agents of Organic Borohydrides. Royal Society of Chemistry, 2023. doi: 10.1039/9781837670017.
  • X. Li, W. Sun, and G. Ning, “Noticeable localized corrosion of solid boric acid on 304 stainless steel,” Nucl. Eng. Technol., vol. 56, no. 9, pp. 3616–3625, Sep. 2024, doi: 10.1016/j.net.2024.04.013.
  • Y. I. Kuznetsov and G. V. Redkina, “Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media,” Coatings, vol. 12, no. 2, p. 149, Jan. 2022, doi: 10.3390/coatings12020149.
  • S. Siengchin, “A review on lightweight materials for defence applications: Present and future developments,” Def. Technol., vol. 24, pp. 1–17, Jun. 2023, doi: 10.1016/j.dt.2023.02.025.
  • M. Mahdavi, A. Abdollah-Zadeh, and H. Elmkhah, “A comparative study on time-dependent corrosion properties of Ti–B–N films applied by PACVD method,” J. Mater. Res. Technol., vol. 36, pp. 80–97, May 2025, doi: 10.1016/j.jmrt.2025.03.097.
  • J. Zhang et al., “Integration of Antifouling and Anti-Cavitation Coatings on Propellers: A Review,” Coatings, vol. 13, no. 9, p. 1619, Sep. 2023, doi: 10.3390/coatings13091619.
  • N. Bogatu et al., “Assessment of the Effectiveness of Protective Coatings in Preventing Steel Corrosion in the Marine Environment,” Polymers (Basel)., vol. 17, no. 3, p. 378, Jan. 2025, doi: 10.3390/polym17030378.
  • I. E. Campos Silva, A. Günen, M. Serdar Karakaş, and A. M. Delgado Brito, “The Boriding Process for Enhancing the Surface Properties of High-Temperature Metallic Materials,” 2024, pp. 221–259. doi: 10.1007/978-3-031-45534-6_9.
  • ‪Maryam Shojaie-bahaabad, M. Bozorg, M. Najafizadeh, and P. Cavaliere, “Ultra high temperature ceramic coatings in thermal protection systems (TPS),” Ceram. Int., vol. 50, no. 7, pp. 9937–9951, Apr. 2024, doi: 10.1016/j.ceramint.2023.12.372.‬‬‬
  • J. Choi, C.-S. Seok, S. Park, and G. Kim, “Effect of high-temperature degradation on microstructure evolution and mechanical properties of austenitic heat-resistant steel,” J. Mater. Res. Technol., vol. 8, no. 2, pp. 2011–2020, Apr. 2019, doi: 10.1016/j.jmrt.2018.11.017.
  • J. N. Oliver, W. Xie, J. Du, and M. Ecker, “The Effect of Boron Oxide on the Structures and Thermal Properties of Phosophosilicate Bioactive Glasses for Metallic Implants’ Coatings,” Appl. Sci., vol. 15, no. 3, p. 1293, Jan. 2025, doi: 10.3390/app15031293.
  • D. R. Clarke, M. Oechsner, and N. P. Padture, “Thermal-barrier coatings for more efficient gas-turbine engines,” MRS Bull., vol. 37, no. 10, pp. 891–898, Oct. 2012, doi: 10.1557/mrs.2012.232.
  • D. Greuel, O. Haidn, and K. Fritscher, “Thermal Barrier Coating for Cryogenic Rocket Engines,” Jul. 2002. doi: 10.2514/6.2002-4145.
  • A. Greco, K. Mistry, V. Sista, O. Eryilmaz, and A. Erdemir, “Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications,” Wear, vol. 271, no. 9–10, pp. 1754–1760, Jul. 2011, doi: 10.1016/j.wear.2010.11.060.
  • X. Dong et al., “Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications,” Biomimetics, vol. 9, no. 10, p. 585, Sep. 2024, doi: 10.3390/biomimetics9100585.
  • S. Özel, E. Vural, and M. Binici, “Optimization of the effect of thermal barrier coating (TBC) on diesel engine performance by Taguchi method,” Fuel, vol. 263, p. 116537, Mar. 2020, doi: 10.1016/j.fuel.2019.116537.
  • L. Chkhartishvili et al., “Advanced Boron Carbide Matrix Nanocomposites Obtained from Liquid-Charge: Focused Review,” Condens. Matter, vol. 8, no. 2, p. 37, Apr. 2023, doi: 10.3390/condmat8020037.
  • D. He, L. Shang, Z. Lu, G. Zhang, L. Wang, and Q. Xue, “Tailoring the mechanical and tribological properties of B 4 C/a-C coatings by controlling the boron carbide content,” Surf. Coatings Technol., vol. 329, pp. 11–18, Nov. 2017, doi: 10.1016/j.surfcoat.2017.09.017.
  • J. Konieczny and K. Labisz, “Materials used in the combat aviation construction,” Transp. Probl., vol. 16, no. 2, pp. 5–18, Jun. 2021, doi: 10.21307/tp-2021-019.
  • E. Medvedovski, “Lightweight ceramic composite armour system,” Adv. Appl. Ceram., vol. 105, no. 5, pp. 241–245, Oct. 2006, doi: 10.1179/174367606X113537.
  • J. W. McCauley, “Institutional and technical history of requirements‐based strategic armor ceramics basic research leading up to the multiscale material by design materials in extreme dynamic environments (MEDE) program. Part I. Brief history of institutional changes and,” Int. J. Ceram. Eng. Sci., vol. 5, no. 3, May 2023, doi: 10.1002/ces2.10176.
  • X. Yi, “Progress of ceramic materials in the application of armor protection,” Highlights Sci. Eng. Technol., vol. 73, pp. 274–282, Nov. 2023, doi: 10.54097/hset.v73i.12987.
  • P. H. P. M. da Silveira, T. T. da Silva, M. P. Ribeiro, P. R. Rodrigues de Jesus, P. C. R. dos S. Credmann, and A. V. Gomes, “A Brief Review of Alumina, Silicon Carbide and Boron Carbide Ceramic Materials for Ballistic Applications,” Acad. Lett., Oct. 2021, doi: 10.20935/AL3742.
  • J. Jung and S. Kang, “Advances in Manufacturing Boron Carbide‐Aluminum Composites,” J. Am. Ceram. Soc., vol. 87, no. 1, pp. 47–54, Jan. 2004, doi: 10.1111/j.1551-2916.2004.00047.x.
  • P. Hartoko and S. Li, “MECHANICAL PROPERTIES ENHANCEMENT OF BORON CARBIDE BASED ARMOUR MATERIALS,” J. Pertahanan Media Inf. ttg Kaji. Strateg. Pertahanan yang Mengedepankan Identity, Nasionalism Integr., vol. 6, no. 1, p. 20, Apr. 2020, doi: 10.33172/jp.v6i1.810.
  • M. W. Chen, J. W. McCauley, J. C. LaSalvia, and K. J. Hemker, “Microstructural Characterization of Commercial Hot‐Pressed Boron Carbide Ceramics,” J. Am. Ceram. Soc., vol. 88, no. 7, pp. 1935–1942, Jul. 2005, doi: 10.1111/j.1551-2916.2005.00346.x.
  • O. Olanrewaju, I. O. Oladele, and S. O. Adelani, “Recent advances in natural fiber reinforced metal/ceramic/polymer composites: An overview of the structure-property relationship for engineering applications,” Hybrid Adv., vol. 8, p. 100378, Mar. 2025, doi: 10.1016/J.HYBADV.2025.100378.
  • G. Karadimas and K. Salonitis, “Ceramic Matrix Composites for Aero Engine Applications—A Review,” Appl. Sci. 2023, Vol. 13, Page 3017, vol. 13, no. 5, p. 3017, Feb. 2023, doi: 10.3390/APP13053017.
  • E. Medvedovski, “Ballistic performance of armour ceramics: Influence of design and structure. Part 1,” Ceram. Int., vol. 36, no. 7, pp. 2103–2115, Sep. 2010, doi: 10.1016/J.CERAMINT.2010.05.021.
  • R. Phiri, S. Mavinkere Rangappa, S. Siengchin, O. P. Oladijo, and T. Ozbakkaloglu, “Advances in lightweight composite structures and manufacturing technologies: A comprehensive review,” Heliyon, vol. 10, no. 21, p. e39661, Nov. 2024, doi: 10.1016/J.HELIYON.2024.E39661.
  • M. Karahan, A. Kuş, and R. Eren, “An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics,” Int. J. Impact Eng., vol. 35, no. 6, pp. 499–510, Jun. 2008, doi: 10.1016/j.ijimpeng.2007.04.003.
  • E. Aytav and A. M. Isik, “Experimental Investigation of Ballistic Performance of Free Particle Armor Systems,” J. Mater. Mechatronics A, vol. 4, no. 2, pp. 518–543, Dec. 2023, doi: 10.55546/jmm.1354113.
  • S. A. Hashim, S. Karmakar, A. Roy, and M. Abubakar, “Evaluation of Boron Combustion for Ducted Rocket Applications Using Condensed Product Analysis,” Def. Sci. J., vol. 74, no. 2, pp. 278–287, Mar. 2024, doi: 10.14429/dsj.74.18685.
  • S. Mandal, S. A. Hashim, A. Roy, and S. Karmakar, “A short review of challenges and prospects of boron-laden solid fuels for ramjet applications,” FirePhysChem, vol. 3, no. 3, pp. 179–200, Sep. 2023, doi: 10.1016/j.fpc.2023.06.001.
  • M. G. Gok and O. Cihan, “Energetic Materials and Metal Borides for Solid Propellant Rocket Engines,” Int. J. Mater. Eng. Technol., vol. 003, pp. 109–119, 2020.
  • L. Han, R. Wang, W. Chen, Z. Wang, X. Zhu, and T. Huang, “Preparation and Combustion Mechanism of Boron-Based High-Energy Fuels,” Catalysts, vol. 13, no. 2, p. 378, Feb. 2023, doi: 10.3390/catal13020378.
  • W. Anderson, “Rocket Engines,” in Encyclopedia of Energy, Elsevier, 2004, pp. 483–491. doi: 10.1016/B0-12-176480-X/00090-5.
  • R. Kore and A. Vashishtha, “Combustion Behaviour of ADN-Based Green Solid Propellant with Metal Additives: A Comprehensive Review and Discussion,” Aerospace, vol. 12, no. 1, p. 46, Jan. 2025, doi: 10.3390/aerospace12010046.
  • A. Iqbal, G. Moskal, A. Cavaleiro, A. Amjad, and M. J. Khan, “The current advancement of zirconate based dual phase system in thermal barrier coatings (TBCs): New modes of the failures: Understanding and investigations,” Alexandria Eng. J., vol. 91, pp. 161–196, Mar. 2024, doi: 10.1016/j.aej.2024.01.063.
  • R. S. Petrova, N. Suwattananont, and V. Samardzic, “The Effect of Boronizing on Metallic Alloys for Automotive Applications,” J. Mater. Eng. Perform., vol. 17, no. 3, pp. 340–345, Jun. 2008, doi: 10.1007/s11665-008-9228-2.
  • H. Zhang et al., “Construction of boron-based double-layer core-shell structure composites and their combustion energy release characteristics,” Fuel, vol. 371, p. 132157, Sep. 2024, doi: 10.1016/j.fuel.2024.132157.
  • O. G. Glotov, “Screening of metal fuels for use in composite propellants for ramjets,” Prog. Aerosp. Sci., vol. 143, p. 100954, Nov. 2023, doi: 10.1016/j.paerosci.2023.100954.
  • Z. Huang, S. Wang, R. D. Dewhurst, N. V Ignat’ev, M. Finze, and H. Braunschweig, “Boron: Its Role in Energy-Related Processes and Applications.,” Angew. Chem. Int. Ed. Engl., vol. 59, no. 23, pp. 8800–8816, Jun. 2020, doi: 10.1002/anie.201911108.
  • R. K. Mishra, J. Sarkar, K. Verma, I. Chianella, S. Goel, and H. Y. Nezhad, “Borophene: A 2D wonder shaping the future of nanotechnology and materials science,” Nano Mater. Sci., May 2024, doi: 10.1016/j.nanoms.2024.03.007.
  • J. Weerasinghe et al., “Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites.,” Nanomater. (Basel, Switzerland), vol. 13, no. 11, May 2023, doi: 10.3390/nano13111763.
  • P. Beaumont and C. Soutis, The Structural Integrity of Carbon Fiber Composites. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-46120-5.
  • J. C. Ince et al., “Overview of emerging hybrid and composite materials for space applications,” Adv. Compos. Hybrid Mater., vol. 6, no. 4, p. 130, Aug. 2023, doi: 10.1007/s42114-023-00678-5.
  • R. N. Yastrebinsky, A. V. Yastrebinskaya, A. I. Gorodov, and A. V. Akimenko, “Polymer Boron-Containing Composite for Protecting Astronauts of Manned Orbital Stations from Secondary Neutron Radiation,” J. Compos. Sci., vol. 8, no. 9, p. 372, Sep. 2024, doi: 10.3390/jcs8090372.
  • B. Castanie et al., “Review of Monolithic Composite Laminate and Stiffened Structures in Aeronautic Applications,” Compos. Part C Open Access, p. 100585, Apr. 2025, doi: 10.1016/j.jcomc.2025.100585.
  • S. Kim, S. Lee, Y. Zhang, S. Park, and J. Gu, “Carbon‐Based Radar Absorbing Materials toward Stealth Technologies,” Adv. Sci., vol. 10, no. 32, Nov. 2023, doi: 10.1002/advs.202303104.
  • A. Kolanowska, D. Janas, A. P. Herman, R. G. Jędrysiak, T. Giżewski, and S. Boncel, “From blackness to invisibility – Carbon nanotubes role in the attenuation of and shielding from radio waves for stealth technology,” Carbon N. Y., vol. 126, pp. 31–52, Jan. 2018, doi: 10.1016/j.carbon.2017.09.078.
  • L. Jin et al., “Application, development, and challenges of stealth materials/structures in next-generation aviation equipment,” Appl. Surf. Sci. Adv., vol. 19, p. 100575, Feb. 2024, doi: 10.1016/j.apsadv.2024.100575.
  • N. Krishna V and K. G. Padmasine, “A review on microwave band pass filters: Materials and design optimization techniques for wireless communication systems,” Mater. Sci. Semicond. Process., vol. 154, p. 107181, Feb. 2023, doi: 10.1016/j.mssp.2022.107181.
  • H. Smith, “Innovation in supersonic passenger air travel,” in Innovation in Aeronautics, Elsevier, 2012, pp. 155–196. doi: 10.1533/9780857096098.1.155.
  • S. Mondal and A. K. Banthia, “Low-temperature synthetic route for boron carbide,” J. Eur. Ceram. Soc., vol. 25, no. 2–3, pp. 287–291, Jan. 2005, doi: 10.1016/j.jeurceramsoc.2004.08.011.
  • G. A. Rao and S. P. Mahulikar, “Integrated review of stealth technology and its role in airpower,” Aeronaut. J., vol. 106, no. 1066, pp. 629–642, Dec. 2002, doi: 10.1017/S0001924000011702.
  • R. Bellais, “Technology and the defense industry: real threats, bad habits, or new (market) opportunities?,” J. Innov. Econ. Manag., vol. n°12, no. 2, pp. 59–78, Jun. 2013, doi: 10.3917/jie.012.0059.
  • G. Asgedom, K. Yeneneh, G. Tilahun, and B. Negash, “Numerical and experimental analysis of body armor polymer penetration resistance against 7.62 mm bullet,” Heliyon, vol. 11, no. 1, p. e41286, Jan. 2025, doi: 10.1016/j.heliyon.2024.e41286.
  • S. G. Savio, K. Ramanjaneyulu, V. Madhu, and T. B. Bhat, “An experimental study on ballistic performance of boron carbide tiles,” Int. J. Impact Eng., vol. 38, no. 7, pp. 535–541, Jul. 2011, doi: 10.1016/j.ijimpeng.2011.01.006.
  • K. Bilisik, M. Syduzzaman, G. Erdogan, and M. Korkmaz, “Advances in ballistic protection,” in Functional and Technical Textiles, Elsevier, 2023, pp. 71–139. doi: 10.1016/B978-0-323-91593-9.00023-7.
  • B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers (Basel)., vol. 14, no. 22, p. 5007, Nov. 2022, doi: 10.3390/polym14225007.
  • J.-H. Ouyang, Y.-F. Li, Y.-Z. Zhang, Y.-M. Wang, and Y.-J. Wang, “High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review,” Lubricants, vol. 10, no. 8, p. 177, Aug. 2022, doi: 10.3390/lubricants10080177.
  • R. Rolls and R. D. Shaw, “The influence of borate coatings on the high-temperature oxidation of iron,” Corros. Sci., vol. 14, no. 7, pp. 431–441, Aug. 1974, doi: 10.1016/0010-938X(74)90003-1.
  • A. Iqbal and G. Moskal, “Recent Development in Advance Ceramic Materials and Understanding the Mechanisms of Thermal Barrier Coatings Degradation,” Arch. Comput. Methods Eng., vol. 30, no. 8, pp. 4855–4896, Nov. 2023, doi: 10.1007/s11831-023-09960-7.
  • C. S. Seu, V. K. Davis, J. Pasalic, and R. V. Bugga, “Aluminum Borate Coating on High-Voltage Cathodes for Li-Ion Batteries,” J. Electrochem. Soc., vol. 162, no. 12, pp. A2259–A2265, Aug. 2015, doi: 10.1149/2.0161512jes.
  • G. Sato and T. Honda, “Effects of additives on frictional properties of CrN and boron cast iron,” Proc. Mech. Eng. Congr. Japan, vol. 2016, p. S1150603, 2016, doi: 10.1299/jsmemecj.2016.S1150603.
  • A. Bin Rashid, M. Haque, S. M. M. Islam, K. M. R. Uddin Labib, and P. Chowdhury, “Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects,” Adv. Mater. Sci. Eng., vol. 2024, pp. 1–33, May 2024, doi: 10.1155/2024/2112358.
  • H.-H. Sheu, Q.-Y. Wang, and Y.-W. Lee, “Effects of Boron Carbide Particle Content on Corrosion Resistance and Wear Resistance of Ni-B/B4C Composite Coatings,” Int. J. Electrochem. Sci., vol. 17, no. 11, p. 221166, Nov. 2022, doi: 10.20964/2022.11.61.
  • “Science & Technology Trends 2020-2040,” NATO Science & Technology Organization, 2020.
  • J. Reis, Y. Cohen, N. Melão, J. Costa, and D. Jorge, “High-Tech Defense Industries: Developing Autonomous Intelligent Systems,” Appl. Sci., vol. 11, no. 11, p. 4920, May 2021, doi: 10.3390/app11114920.
  • M. Zhu, X. Zhou, H. Zhang, L. Wang, and H. Sun, “International trade evolution and competition prediction of boron ore: Based on complex network and link prediction,” Resour. Policy, vol. 82, p. 103542, May 2023, doi: 10.1016/j.resourpol.2023.103542.
There are 106 citations in total.

Details

Primary Language English
Subjects Manufacturing Metallurgy , Nanomaterials, Nanometrology
Journal Section Reviews
Authors

Muhammed Bekmezci 0000-0003-3965-6333

Ramazan Bayat 0000-0002-9763-1591

Güray Kaya 0000-0002-6721-9598

Fatih Şen

Publication Date April 30, 2025
Submission Date April 17, 2025
Acceptance Date April 30, 2025
Published in Issue Year 2025 Issue: 2

Cite

APA Bekmezci, M., Bayat, R., Kaya, G., Şen, F. (2025). Applications of Boron and Derivatives in Defense Industry: Mini Review. International Journal of Boron Science and Nanotechnology(2), 19-33.

e-ISSN:: 3062-1933