Research Article
BibTex RIS Cite

Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry

Year 2025, Volume: 9 Issue: 1, 25 - 35
https://doi.org/10.32571/ijct.1569679

Abstract

The electronic properties of phthalocyanine compound were investigated by computational chemistry. These quantum chemical studies are expected to contribute to the development of new solar cells. The energy and photophysical characteristics of the Si-Pc derivative were investigated through quantum chemical studies using density functional theory (DFT) and time-dependent DFT (TD-DFT) approaches. In addition, the following global descriptor types were estimated: hardness (η), electron affinity (EA), bandgap energies (Egap), ionisation potential (IP), highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and electrophilicity index (Ω). The theoretical results in this regard agree well with DFT approaches.

References

  • 1.Shibu, A.; Jones, S.; Tolley, P.L.; Diaz, D.; Kwiatkowski, C.O.; Jones, D.S.; Shivas, J.M.; Foley, J. J.; Schmedake, T.A. Mater. Adv. 2023, 4 (23), 6321-6332.
  • 2.Sweatha, L.; Aswathppa, S.; Chinnathambi, M.; Silviya, M.; Anithalakshmi, M.; Robert, R. J. Mol. Struct. 2024, 1317, 139138.
  • 3.Kim, S.; Quy, H. V.; Bark, C. W. Mater. Today Energy 2021, 19, 100583.
  • 4.Sachdeva, S.; Singh, D.; Tripathi, S. K. Phys. Rev. B Condens. 2024, 695, 416552.
  • 5.Wang, H.; Fukuda, T.; Ishikawa, N.; Matsuo, Y. Org. Electron. 2014, 15 (1), 139-143.
  • 6.Rozhkova, X.; Aimukhanov, A.; Zeinidenov, A.; Paygin, V.; Valiev, D.; Bisquert, J.; Guerrero, A.; Alexeev, A.; Ilyassov, B. Synth. Met. 2023, 295, 117347.
  • 7.Kabir, S.; Takayashiki, Y.; Ohno, A.; Hanna, J.-i.; Iino, H. Opt. Mater. 2022, 126, 112209.
  • 8.Küçükgenç, Ö.; Ağcaabat, R.; Dumludağ, F.; Odabaş, Z. Polyhedron 2024, 262, 117169.
  • 9.Balamurugan, G.; Park, J. S. Dyes Pigments 2022, 201, 110199.
  • 10.Lu, C.; Yu, Z.; Cao, J. CJSC 2024, 43 (3), 100240.
  • 11.Le, T.-H.; Tran, N.-A.; Fujii, A.; Ozaki, M.; Dao, Q.-D. Thin Solid Films 2023, 787, 140134.
  • 12.Gümrükçü Köse, G.; Karaoğlan, G. K.; Erdağ Maden, Y.; Koca, A. Dyes Pigments 2022, 207, 110686.
  • 13.Yüzer, A. C.; Kurtay, G.; Ince, T.; Yurtdaş, S.; Harputlu, E.; Ocakoglu, K.; Güllü, M.; Tozlu, C.; Ince, M. Mater. Sci. Semicond. Process. 2021, 129, 105777.
  • 14.Lawson Daku, L. M.; Casida, M. E. In Green Chemistry and Computational Chemistry, Mammino, L., Ed. Elsevier: 2022; pp 355-384.
  • 14.Lawson Daku, L. M.; Casida, M. E. In Green Chemistry and Computational Chemistry, Mammino, L., Ed. Elsevier: 2022; pp 355-384.
  • 15.Binnie, S. J.; Sola, E.; Alfè, D.; Gillan, M. J. Mol. Simul. 2009, 35 (7), 609-612.
  • 16.Viveros, A.; Rubio, E.; Mendoza, S.; Rodríguez, J.; Quintos, A. SUSCOM 2018, 19.
  • 17.Bello, S.; Urwick, A.; Bastianini, F.; Nedoma, A. J.; Dunbar, A. Energy Rep. 2022, 8, 89-106.
  • 18.Lamsabhi, A. M.; Yánez, M.; Mó, O.; Trujillo, C.; Blanco, F.; Alkorta, I.; Elguero, J.; Caballero, E.; Rodriguez-Morgade, S.; Claessens, C.; Torres, T. JPP 2011, 15, 1220-1230.
  • 19.Nemykin, V.; Hadt, R.; Belosludov, V.; Mizuseki, H.; Kawazoe, Y. J. Phys. Chem. A 2007, 111, 12901-13.
  • 20.Jiang, X.; Gao, Y.; Lal, R.; Hu, J.; Song, B. Mol. Phys. 2018, 116 (13), 1697-1705.
  • 21.Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem. Int. Ed. 1997, 36 (17), 1808-1832.
  • 22.Fuentealba, P.; Chamorro, E.; Santos, J. C. In Theoretical and Computational Chemistry, Toro-Labbé, A., Ed. Elsevier: 2007; Vol. 19, pp 57-85.
  • 23.Ağırtaş, M. S.; Ödemiş, Ö.; Solğun, D. G.; Tanrıverdı, A. A.; Özkartal, A. J. Coord. Chem. 2023, 76 (11-12), 1471-1484.
  • 24.Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., Gaussian Inc. Wallingford Ct 2009, 2.
  • 25.Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A……. et al. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
  • 26.Tanriverdi, A. A.; Yildiko, U.; Tekes, A. T.; Cakmak, İ.; Ata, A. C. Polym. Bull. 2022, 80, 9853–9880.
  • 27.Sundaram, S.; Vijayakumar, V. N.; Balasubramanian, V. Comput. Theor. Chem. 2022, 1217, 113920.
  • 28.Alghamdi, S. K.; Abbas, F.; Hussein, R. K.; Alhamzani, A. G.; El‐Shamy, N. T. J. Mol. Struct. 2023, 1271, 134001.
  • 29.Buvaneswari, M.; Santhakumari, R.; Usha, C.; Jayasree, R.; Sagadevan, S. J. Mol. Struct. 2021, 1243, 130856.
  • 30.Solgun, D. G.; Tanriverdi, A. A.; Yildiko, U.; Ağirtaş, M. S. J. Incl. Phenom. Macrocycl. Chem. 2022, 102 (11), 851-860.
  • 31.Wang, Y.; Li, T.; Ma, P.; Bai, H.; Chen, M.; Xie, Y.; Dong, W. ACS Sustain. Chem. Eng. 2016, 4.
  • 32.Choi, H.; Nicolaescu, R.; Paek, S.; Ko, J.; Kamat, P. V. ACS Nano 2011, 5 (11), 9238-9245.
  • 33.Kobayashi, N.; Furuyama, T.; Satoh, K. J. Am. Chem. Soc. 2011, 133 (49), 19642-19645.
  • 34.de la Torre, G.; Vázquez, P.; Agulló-López, F.; Torres, T. Chem. Rev. 2004, 104 (9), 3723-3750.
  • 35.Namuangruk, S.; Sirithip, K.; Rattanatwan, R.; Keawin, T.; Kungwan, N.; Sudyodsuk, T.; Promarak, V.; Surakhot, Y.; Jungsuttiwong, S. Dalton Trans. 2014, 43 (24), 9166-9176.
  • 36.Hooper, R. W.; Zhang, A.; Koszelewski, D.; Lewtak, J. P.; Koszarna, B.; Levy, C. J.; Gryko, D. T.; Stillman, M. J. JPP 2018, 22 (12), 1111-1128.
  • 37.Karimova, N. V.; Luo, M.; Grassian, V. H.; Gerber, R. B. PCCP 2020, 22 (9), 5046-5056.
  • 38.Furuyama, T.; Satoh, K.; Kushiya, T.; Kobayashi, N. J. Am. Chem. Soc. 2014, 136 (2), 765-776.
  • 39.Yildiko, U.; Tanriverdi, A. A. BKCS 2022, 43 (6), 822-835.
  • 40.Valencia, D.; Whiting, G.; Bulo, R.; Weckhuysen, B. PCCP 2015, 18.
  • 41.Amudha, G.; Santhakumari, R.; Chandrika, D.; Mugeshini, S.; Rajeswari, N.; Sagadevan, S. Chin. J. Phys. 2022, 76, 44-58.
  • 42.Sefer, E.; Koyuncu, F. B. Electrochim. Acta 2014, 143, 106-113.
  • 43.Privado, M.; de la Cruz, P.; Malhotra, P.; Sharma, G. D.; Langa, F. Sol. Energy 2021, 221, 393-401.
  • 44.Altun, K.; Yildiko, Ü.; Tanriverdi, A. A.; Çakmak, İ. IJCT 2021, 5 (2), 147-155.
  • 45.Włodarska, M.; Mossety-Leszczak, B. Int. J. Mol. Sci. 2021, 22 (7), 3424.
  • 46.Yildiko, U.; Tanriverdi, A. A. J. Polym. Res. 2021, 29 (1), 19.
  • 47.Scheiner, S., J. Comput. Chem. 2018, 39 (9), 500-510.
  • 48.Mierzwa, G.; Gordon, A. J.; Latajka, Z.; Berski, S. Comput. Theor. Chem. 2015, 1053, 130-141.
  • 49.Kansız, S.; Azam, M.; Dege, N.; Ermiş, N.; Al-Resayes, S. I.; Alam, M. GCLR 2022, 15 (3), 825-836.
Year 2025, Volume: 9 Issue: 1, 25 - 35
https://doi.org/10.32571/ijct.1569679

Abstract

References

  • 1.Shibu, A.; Jones, S.; Tolley, P.L.; Diaz, D.; Kwiatkowski, C.O.; Jones, D.S.; Shivas, J.M.; Foley, J. J.; Schmedake, T.A. Mater. Adv. 2023, 4 (23), 6321-6332.
  • 2.Sweatha, L.; Aswathppa, S.; Chinnathambi, M.; Silviya, M.; Anithalakshmi, M.; Robert, R. J. Mol. Struct. 2024, 1317, 139138.
  • 3.Kim, S.; Quy, H. V.; Bark, C. W. Mater. Today Energy 2021, 19, 100583.
  • 4.Sachdeva, S.; Singh, D.; Tripathi, S. K. Phys. Rev. B Condens. 2024, 695, 416552.
  • 5.Wang, H.; Fukuda, T.; Ishikawa, N.; Matsuo, Y. Org. Electron. 2014, 15 (1), 139-143.
  • 6.Rozhkova, X.; Aimukhanov, A.; Zeinidenov, A.; Paygin, V.; Valiev, D.; Bisquert, J.; Guerrero, A.; Alexeev, A.; Ilyassov, B. Synth. Met. 2023, 295, 117347.
  • 7.Kabir, S.; Takayashiki, Y.; Ohno, A.; Hanna, J.-i.; Iino, H. Opt. Mater. 2022, 126, 112209.
  • 8.Küçükgenç, Ö.; Ağcaabat, R.; Dumludağ, F.; Odabaş, Z. Polyhedron 2024, 262, 117169.
  • 9.Balamurugan, G.; Park, J. S. Dyes Pigments 2022, 201, 110199.
  • 10.Lu, C.; Yu, Z.; Cao, J. CJSC 2024, 43 (3), 100240.
  • 11.Le, T.-H.; Tran, N.-A.; Fujii, A.; Ozaki, M.; Dao, Q.-D. Thin Solid Films 2023, 787, 140134.
  • 12.Gümrükçü Köse, G.; Karaoğlan, G. K.; Erdağ Maden, Y.; Koca, A. Dyes Pigments 2022, 207, 110686.
  • 13.Yüzer, A. C.; Kurtay, G.; Ince, T.; Yurtdaş, S.; Harputlu, E.; Ocakoglu, K.; Güllü, M.; Tozlu, C.; Ince, M. Mater. Sci. Semicond. Process. 2021, 129, 105777.
  • 14.Lawson Daku, L. M.; Casida, M. E. In Green Chemistry and Computational Chemistry, Mammino, L., Ed. Elsevier: 2022; pp 355-384.
  • 14.Lawson Daku, L. M.; Casida, M. E. In Green Chemistry and Computational Chemistry, Mammino, L., Ed. Elsevier: 2022; pp 355-384.
  • 15.Binnie, S. J.; Sola, E.; Alfè, D.; Gillan, M. J. Mol. Simul. 2009, 35 (7), 609-612.
  • 16.Viveros, A.; Rubio, E.; Mendoza, S.; Rodríguez, J.; Quintos, A. SUSCOM 2018, 19.
  • 17.Bello, S.; Urwick, A.; Bastianini, F.; Nedoma, A. J.; Dunbar, A. Energy Rep. 2022, 8, 89-106.
  • 18.Lamsabhi, A. M.; Yánez, M.; Mó, O.; Trujillo, C.; Blanco, F.; Alkorta, I.; Elguero, J.; Caballero, E.; Rodriguez-Morgade, S.; Claessens, C.; Torres, T. JPP 2011, 15, 1220-1230.
  • 19.Nemykin, V.; Hadt, R.; Belosludov, V.; Mizuseki, H.; Kawazoe, Y. J. Phys. Chem. A 2007, 111, 12901-13.
  • 20.Jiang, X.; Gao, Y.; Lal, R.; Hu, J.; Song, B. Mol. Phys. 2018, 116 (13), 1697-1705.
  • 21.Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F. Angew. Chem. Int. Ed. 1997, 36 (17), 1808-1832.
  • 22.Fuentealba, P.; Chamorro, E.; Santos, J. C. In Theoretical and Computational Chemistry, Toro-Labbé, A., Ed. Elsevier: 2007; Vol. 19, pp 57-85.
  • 23.Ağırtaş, M. S.; Ödemiş, Ö.; Solğun, D. G.; Tanrıverdı, A. A.; Özkartal, A. J. Coord. Chem. 2023, 76 (11-12), 1471-1484.
  • 24.Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., Gaussian Inc. Wallingford Ct 2009, 2.
  • 25.Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A……. et al. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
  • 26.Tanriverdi, A. A.; Yildiko, U.; Tekes, A. T.; Cakmak, İ.; Ata, A. C. Polym. Bull. 2022, 80, 9853–9880.
  • 27.Sundaram, S.; Vijayakumar, V. N.; Balasubramanian, V. Comput. Theor. Chem. 2022, 1217, 113920.
  • 28.Alghamdi, S. K.; Abbas, F.; Hussein, R. K.; Alhamzani, A. G.; El‐Shamy, N. T. J. Mol. Struct. 2023, 1271, 134001.
  • 29.Buvaneswari, M.; Santhakumari, R.; Usha, C.; Jayasree, R.; Sagadevan, S. J. Mol. Struct. 2021, 1243, 130856.
  • 30.Solgun, D. G.; Tanriverdi, A. A.; Yildiko, U.; Ağirtaş, M. S. J. Incl. Phenom. Macrocycl. Chem. 2022, 102 (11), 851-860.
  • 31.Wang, Y.; Li, T.; Ma, P.; Bai, H.; Chen, M.; Xie, Y.; Dong, W. ACS Sustain. Chem. Eng. 2016, 4.
  • 32.Choi, H.; Nicolaescu, R.; Paek, S.; Ko, J.; Kamat, P. V. ACS Nano 2011, 5 (11), 9238-9245.
  • 33.Kobayashi, N.; Furuyama, T.; Satoh, K. J. Am. Chem. Soc. 2011, 133 (49), 19642-19645.
  • 34.de la Torre, G.; Vázquez, P.; Agulló-López, F.; Torres, T. Chem. Rev. 2004, 104 (9), 3723-3750.
  • 35.Namuangruk, S.; Sirithip, K.; Rattanatwan, R.; Keawin, T.; Kungwan, N.; Sudyodsuk, T.; Promarak, V.; Surakhot, Y.; Jungsuttiwong, S. Dalton Trans. 2014, 43 (24), 9166-9176.
  • 36.Hooper, R. W.; Zhang, A.; Koszelewski, D.; Lewtak, J. P.; Koszarna, B.; Levy, C. J.; Gryko, D. T.; Stillman, M. J. JPP 2018, 22 (12), 1111-1128.
  • 37.Karimova, N. V.; Luo, M.; Grassian, V. H.; Gerber, R. B. PCCP 2020, 22 (9), 5046-5056.
  • 38.Furuyama, T.; Satoh, K.; Kushiya, T.; Kobayashi, N. J. Am. Chem. Soc. 2014, 136 (2), 765-776.
  • 39.Yildiko, U.; Tanriverdi, A. A. BKCS 2022, 43 (6), 822-835.
  • 40.Valencia, D.; Whiting, G.; Bulo, R.; Weckhuysen, B. PCCP 2015, 18.
  • 41.Amudha, G.; Santhakumari, R.; Chandrika, D.; Mugeshini, S.; Rajeswari, N.; Sagadevan, S. Chin. J. Phys. 2022, 76, 44-58.
  • 42.Sefer, E.; Koyuncu, F. B. Electrochim. Acta 2014, 143, 106-113.
  • 43.Privado, M.; de la Cruz, P.; Malhotra, P.; Sharma, G. D.; Langa, F. Sol. Energy 2021, 221, 393-401.
  • 44.Altun, K.; Yildiko, Ü.; Tanriverdi, A. A.; Çakmak, İ. IJCT 2021, 5 (2), 147-155.
  • 45.Włodarska, M.; Mossety-Leszczak, B. Int. J. Mol. Sci. 2021, 22 (7), 3424.
  • 46.Yildiko, U.; Tanriverdi, A. A. J. Polym. Res. 2021, 29 (1), 19.
  • 47.Scheiner, S., J. Comput. Chem. 2018, 39 (9), 500-510.
  • 48.Mierzwa, G.; Gordon, A. J.; Latajka, Z.; Berski, S. Comput. Theor. Chem. 2015, 1053, 130-141.
  • 49.Kansız, S.; Azam, M.; Dege, N.; Ermiş, N.; Al-Resayes, S. I.; Alam, M. GCLR 2022, 15 (3), 825-836.
There are 50 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Aslıhan Aycan Tanrıverdi 0000-0001-5811-8253

Ümit Yıldıko 0000-0001-8627-9038

Early Pub Date June 2, 2025
Publication Date
Submission Date October 18, 2024
Acceptance Date May 26, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Tanrıverdi, A. A., & Yıldıko, Ü. (2025). Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry. International Journal of Chemistry and Technology, 9(1), 25-35. https://doi.org/10.32571/ijct.1569679
AMA Tanrıverdi AA, Yıldıko Ü. Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry. Int. J. Chem. Technol. June 2025;9(1):25-35. doi:10.32571/ijct.1569679
Chicago Tanrıverdi, Aslıhan Aycan, and Ümit Yıldıko. “Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry”. International Journal of Chemistry and Technology 9, no. 1 (June 2025): 25-35. https://doi.org/10.32571/ijct.1569679.
EndNote Tanrıverdi AA, Yıldıko Ü (June 1, 2025) Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry. International Journal of Chemistry and Technology 9 1 25–35.
IEEE A. A. Tanrıverdi and Ü. Yıldıko, “Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry”, Int. J. Chem. Technol., vol. 9, no. 1, pp. 25–35, 2025, doi: 10.32571/ijct.1569679.
ISNAD Tanrıverdi, Aslıhan Aycan - Yıldıko, Ümit. “Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry”. International Journal of Chemistry and Technology 9/1 (June 2025), 25-35. https://doi.org/10.32571/ijct.1569679.
JAMA Tanrıverdi AA, Yıldıko Ü. Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry. Int. J. Chem. Technol. 2025;9:25–35.
MLA Tanrıverdi, Aslıhan Aycan and Ümit Yıldıko. “Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry”. International Journal of Chemistry and Technology, vol. 9, no. 1, 2025, pp. 25-35, doi:10.32571/ijct.1569679.
Vancouver Tanrıverdi AA, Yıldıko Ü. Investigation of Theoretical Properties of Axially Disubstituted Silicon (iv) Phthalocyanine Compound by Computational Chemistry. Int. J. Chem. Technol. 2025;9(1):25-3.