Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 69 - 83
https://doi.org/10.32571/ijct.1594493

Abstract

Project Number

1594493

References

  • 1. Obinna, I.B.; Ebere, E.C. Heavy Metal and Organic P ollutant Journal . 2019, 1–38.
  • 2. Yuan, Y.; Niu, B.; Yu, Q.; Guo, X.; Guo, Z.; Wen, J.; Wang, N. Angew. Chem. 2020, 132, 1236–1243.
  • 3. Arise, R.O.; Aboyewa, J.A.; Osioma, E. Nigeria. Journal of Basic Applied. Science. 2015, 23, 141–155.
  • 4. Sheela, T.; Sadasivam, S.K. Journal of Applied. Biology. 2020, 8, 42–46.
  • 5. Salawu, M.O.; Sunday, E.T.; Oyelola, H.; Oloyede, B.; Sunday, E. T.; Oloyede, H.O.B. Accepted Manuscript. 2018, 04,001
  • 6. Fernández, M.R.; Juan, S.; Albornoz, C.B.; Larsen, K.; Najle, R. Environmental Earth Sciences, 2018, 0(0), 0.
  • 7. Farid, N.; Ullah, A.; Khan, S.; Butt, S.; Khan, A.Z.; Afsheen, Z.; El-serehy, H. A.; Yasmin, H.; Ayaz, T.; Ali, Q. Environmental. 2023, 28-38.
  • 8. DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. International Journal of Molecular. Science. 2019, 20, 3412.
  • 9. Parmar, S.; Singh, V. Journal of Plant Science. 2015, 2, 1–8.
  • 10. Shawky, E.M.; Elgindi, M.R.; Baky, M.H. Journal of environmental. 2023, 2, 1024.
  • 11. El-Khatib, A.A.; Hegazy, A.K.; Aboelkassem, A. Int. J. Phytoremediat. 2014, 16, 29–45.
  • 12. Fabunmi, I.; Olumdeji, O.; Uyimadu, J.P.; Adeleye, A. Journal of Applied. Biology. 2014, 7, 12.1, 39-47.
  • 13. AOAC. Official methods of analysis (18th ed.). Arlington, VA: Association of Official Analytical Chemists. 2005.
  • 14. Wilson, B.; Pyatt, F.B. Bull. Environ. Contam. Toxicol. 2007, 78, 390–394.
  • 15. Basílico, G.; Faggi, A.; de Cabo, L. Springer: Cham, Switzerland, 2018; pp. 169–178.
  • 16. Mojiri, A.; Tajuddin, R.M.; Ahmad, Z.; Ziyang, L.; Aziz, H.A.; Amin, N.M. International journal of Environmental, Science and Technology. 2018, 15 (9), 1949–1956.
  • 17. Abedi, T.; Mojiri, A. Plants, 2020, 9(4), 500.
  • 18. Khan, Z.; Elahi, A.; Bukhari, D.A.; Rehman, A. Journal of Saudi Chemical Society, 2022, 101569.
  • 19. Al-Khafaji, M.S.; Al-Ani, F.H.; Ibrahim, A.F. KSCE Journal of Civil Engineering, 2018, 22(4), 1077 -1082.
  • 20. Bokhari, S.H.; Mahmood-Ul-Hassan, M.; Ahmad, M. International journal of phytoremediation. 2019, 21(8), 799-806.
  • 21. Kumari, M.; Tripathi, B.D. Ecotoxicol. Environ. Saf. 2015, 112, 80–86.
  • 22. Yang, G.L.; Zheng, M.M.; Tan, A.J.; Liu, Y.T.; Feng, D.; Lv, S.M. Biology, 2021, 10(6), 544.
  • 23. Akhter, M.F.; Omelon, C.R.; Gordon, R.A.; Moser, D. Macfie, S.M. Environmental and Experimental Botany, 2014, 100, 10-1 9.
  • 24. Nocito, F.F.; Lancilli, C.; Dendena, B.; Lucchini, G.; Sacchi, G.A. Plant, cell & environment, 2011, 34(6), 994-1008.
  • 25. Shaibur, M.R.; Tanzia, F.S.; Nishi, S.; Nahar, N.; Parvin, S.; Adjadeh, T. A. Journal of hazardous materials advances, 2022, 7, 100102.
  • 26. Bingöl, N.A.; Akin, B.; Kocaçalişkan, İ.; Nalbantoğlu, B.; Meşeli, O. Turkish Journal of Botany, 2021, 45(6), 553-562.
  • 27. Ayaz, T.; Khan, S.; Khan, A.Z.; Lei, M.; Alam, M. Journal of environmental management, 2020, 255, 109833.
  • 28. Chanu, L. B.; Gupta, A. Chemosphere, 2016, 156, 407-411.
  • 29. Ashraf, U.; Kanu, A.S.; Deng, Q.; Mo, Z.; Pan, S.; Tian, H.; Tang, X. Frontiers in Plant Science, 2017, 8, 259.
  • 30. Tan, H.W.; Pang, Y.L.; Lim, S.; Chong, W.C.; Lai, C.W.; Abdullah, A.Z. Sustainability, 2023, 15(20), 15170.
  • 31. Ha, N.T.H.; Sakakibara, M.; Sano, S. Clean–Soil, Air, Water, 2009, 37(9), 720-725.
  • 32. Rodrigues, A. C. D.; Rocha, M. V. D. C.; Lima, E. S. A.; Pinho, C. F. D.; Santos, A. M. D.; Santos, F. S. D.; AmaralSobrinho, N. M. B. D.. International Journal of Phytoremediation, 2020 22(10), 1019-1 027.
  • 33. Kastratović, V.; Jaćimović, Ž. Agriculture & Forestry/Poljoprivreda i šumarstv, 2020, 66(1).
  • 34. Haddad, M.; Nassar, D.; Shtaya, M. Scientific reports, 2023, 13(1), 4121.
  • 35. Eid, E.M.; Shaltout, K.H.; Almuqrin, A.H.; Aloraini, D.A.; Khedher, K.M.; Taher, M.A.; Barcelo, D.; Science of The Total Environment, 2021, 782, 146887.
  • 36. Pusz, A.; Wiśniewska, M.; Rogalski, D. Resources, 2021, 10(5), 46.
  • 37. Yadav, P.; Chakraborty, A.; Srivastava, S.; Sahani, S.; Singh, P. CRC Press, 2022, (pp. 237-249).
  • 38. Galal, T.M.; Al-Sodany, Y. M.; Al-Yasi, H M. International journal of phytoremediation, 2020, 22(4), 373-382.
  • 39. Pandey, V.C.; Bajpai, O.; Singh, N. Renewable and Sustainable Energy Reviews, 2016, 54, 58-73.
  • 40. Uddin, M.M.; Zakeel, M.C. M.; Zavahir, J.S.; Marikar, F.M.; Jahan, I. Toxics, 2021, 9(12), 360.
  • 41. Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Environmental Challenges, 2021, 4, 100197

Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens

Year 2025, Volume: 9 Issue: 1, 69 - 83
https://doi.org/10.32571/ijct.1594493

Abstract

Heavy metal pollution in surface and groundwater bodies has become a major environmental concern, largely driven by the rapid expansion of industries. However, an effective and sustainable solution lies in the use of hydrophytes for phytoremediation. This approach offers an environmentally friendly and cost-effective way to remove heavy metals from contaminated water bodies. This study assessed the efficiency of hydrophytes (Ludwigia decurrens) for the removal of some selected heavy metals (HMs) in a combined state under a controlled pot experiment, using four different heavy metal concentrations. L. decurrens plant was obtained at a swampy area of university of Ilorin farm. The metals were combined in a pot at four different concentrations (10, 20, 30 & 40) ppm using 5 mL of each metal concentration. Samples of water and plants parts were taken at 7 days interval, digested using wet acid digestion and the digestates were analyzed for Cd, Cr, Pb and Zn using atomic absorption spectrophotometer (AAS). The plants were separated into different parts, root, stem and leaf. The average HMs percentage removal at different concentrations of (10, 20, 30 & 40) ppm for four weeks was Cd - 94.09%, 97.69%, 99.01% and 99.17%, Cr - was 91.46%, 91.37%, 82.20% and 84.25%, Pb - 90.69%, 85.56%, 97.71`% and 94.53%, while Zn - 50.31%, 51.34%, 77.79% and 83.24% respectively. The heavy metals were removed in order of Cd >Pb> Cr>Zn. The results show that the hydrophyte, L. decurrens can efficiently remove HMs at varied concentrations with maximum affinity for Cd among the four heavy metals studied.

Project Number

1594493

References

  • 1. Obinna, I.B.; Ebere, E.C. Heavy Metal and Organic P ollutant Journal . 2019, 1–38.
  • 2. Yuan, Y.; Niu, B.; Yu, Q.; Guo, X.; Guo, Z.; Wen, J.; Wang, N. Angew. Chem. 2020, 132, 1236–1243.
  • 3. Arise, R.O.; Aboyewa, J.A.; Osioma, E. Nigeria. Journal of Basic Applied. Science. 2015, 23, 141–155.
  • 4. Sheela, T.; Sadasivam, S.K. Journal of Applied. Biology. 2020, 8, 42–46.
  • 5. Salawu, M.O.; Sunday, E.T.; Oyelola, H.; Oloyede, B.; Sunday, E. T.; Oloyede, H.O.B. Accepted Manuscript. 2018, 04,001
  • 6. Fernández, M.R.; Juan, S.; Albornoz, C.B.; Larsen, K.; Najle, R. Environmental Earth Sciences, 2018, 0(0), 0.
  • 7. Farid, N.; Ullah, A.; Khan, S.; Butt, S.; Khan, A.Z.; Afsheen, Z.; El-serehy, H. A.; Yasmin, H.; Ayaz, T.; Ali, Q. Environmental. 2023, 28-38.
  • 8. DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. International Journal of Molecular. Science. 2019, 20, 3412.
  • 9. Parmar, S.; Singh, V. Journal of Plant Science. 2015, 2, 1–8.
  • 10. Shawky, E.M.; Elgindi, M.R.; Baky, M.H. Journal of environmental. 2023, 2, 1024.
  • 11. El-Khatib, A.A.; Hegazy, A.K.; Aboelkassem, A. Int. J. Phytoremediat. 2014, 16, 29–45.
  • 12. Fabunmi, I.; Olumdeji, O.; Uyimadu, J.P.; Adeleye, A. Journal of Applied. Biology. 2014, 7, 12.1, 39-47.
  • 13. AOAC. Official methods of analysis (18th ed.). Arlington, VA: Association of Official Analytical Chemists. 2005.
  • 14. Wilson, B.; Pyatt, F.B. Bull. Environ. Contam. Toxicol. 2007, 78, 390–394.
  • 15. Basílico, G.; Faggi, A.; de Cabo, L. Springer: Cham, Switzerland, 2018; pp. 169–178.
  • 16. Mojiri, A.; Tajuddin, R.M.; Ahmad, Z.; Ziyang, L.; Aziz, H.A.; Amin, N.M. International journal of Environmental, Science and Technology. 2018, 15 (9), 1949–1956.
  • 17. Abedi, T.; Mojiri, A. Plants, 2020, 9(4), 500.
  • 18. Khan, Z.; Elahi, A.; Bukhari, D.A.; Rehman, A. Journal of Saudi Chemical Society, 2022, 101569.
  • 19. Al-Khafaji, M.S.; Al-Ani, F.H.; Ibrahim, A.F. KSCE Journal of Civil Engineering, 2018, 22(4), 1077 -1082.
  • 20. Bokhari, S.H.; Mahmood-Ul-Hassan, M.; Ahmad, M. International journal of phytoremediation. 2019, 21(8), 799-806.
  • 21. Kumari, M.; Tripathi, B.D. Ecotoxicol. Environ. Saf. 2015, 112, 80–86.
  • 22. Yang, G.L.; Zheng, M.M.; Tan, A.J.; Liu, Y.T.; Feng, D.; Lv, S.M. Biology, 2021, 10(6), 544.
  • 23. Akhter, M.F.; Omelon, C.R.; Gordon, R.A.; Moser, D. Macfie, S.M. Environmental and Experimental Botany, 2014, 100, 10-1 9.
  • 24. Nocito, F.F.; Lancilli, C.; Dendena, B.; Lucchini, G.; Sacchi, G.A. Plant, cell & environment, 2011, 34(6), 994-1008.
  • 25. Shaibur, M.R.; Tanzia, F.S.; Nishi, S.; Nahar, N.; Parvin, S.; Adjadeh, T. A. Journal of hazardous materials advances, 2022, 7, 100102.
  • 26. Bingöl, N.A.; Akin, B.; Kocaçalişkan, İ.; Nalbantoğlu, B.; Meşeli, O. Turkish Journal of Botany, 2021, 45(6), 553-562.
  • 27. Ayaz, T.; Khan, S.; Khan, A.Z.; Lei, M.; Alam, M. Journal of environmental management, 2020, 255, 109833.
  • 28. Chanu, L. B.; Gupta, A. Chemosphere, 2016, 156, 407-411.
  • 29. Ashraf, U.; Kanu, A.S.; Deng, Q.; Mo, Z.; Pan, S.; Tian, H.; Tang, X. Frontiers in Plant Science, 2017, 8, 259.
  • 30. Tan, H.W.; Pang, Y.L.; Lim, S.; Chong, W.C.; Lai, C.W.; Abdullah, A.Z. Sustainability, 2023, 15(20), 15170.
  • 31. Ha, N.T.H.; Sakakibara, M.; Sano, S. Clean–Soil, Air, Water, 2009, 37(9), 720-725.
  • 32. Rodrigues, A. C. D.; Rocha, M. V. D. C.; Lima, E. S. A.; Pinho, C. F. D.; Santos, A. M. D.; Santos, F. S. D.; AmaralSobrinho, N. M. B. D.. International Journal of Phytoremediation, 2020 22(10), 1019-1 027.
  • 33. Kastratović, V.; Jaćimović, Ž. Agriculture & Forestry/Poljoprivreda i šumarstv, 2020, 66(1).
  • 34. Haddad, M.; Nassar, D.; Shtaya, M. Scientific reports, 2023, 13(1), 4121.
  • 35. Eid, E.M.; Shaltout, K.H.; Almuqrin, A.H.; Aloraini, D.A.; Khedher, K.M.; Taher, M.A.; Barcelo, D.; Science of The Total Environment, 2021, 782, 146887.
  • 36. Pusz, A.; Wiśniewska, M.; Rogalski, D. Resources, 2021, 10(5), 46.
  • 37. Yadav, P.; Chakraborty, A.; Srivastava, S.; Sahani, S.; Singh, P. CRC Press, 2022, (pp. 237-249).
  • 38. Galal, T.M.; Al-Sodany, Y. M.; Al-Yasi, H M. International journal of phytoremediation, 2020, 22(4), 373-382.
  • 39. Pandey, V.C.; Bajpai, O.; Singh, N. Renewable and Sustainable Energy Reviews, 2016, 54, 58-73.
  • 40. Uddin, M.M.; Zakeel, M.C. M.; Zavahir, J.S.; Marikar, F.M.; Jahan, I. Toxics, 2021, 9(12), 360.
  • 41. Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Environmental Challenges, 2021, 4, 100197
There are 41 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Articles
Authors

Damilola Ogundele 0000-0002-1855-4568

Beatrice Ibiyeye 0009-0006-9268-0665

Akanbi Gada Mariam Abiola 0000-0003-3661-1252

Simeon Gbenga Oladele 0000-0007-2191-2593

Project Number 1594493
Early Pub Date June 2, 2025
Publication Date
Submission Date December 1, 2024
Acceptance Date May 25, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Ogundele, D., Ibiyeye, B., Mariam Abiola, A. G., Oladele, S. G. (2025). Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens. International Journal of Chemistry and Technology, 9(1), 69-83. https://doi.org/10.32571/ijct.1594493
AMA Ogundele D, Ibiyeye B, Mariam Abiola AG, Oladele SG. Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens. Int. J. Chem. Technol. June 2025;9(1):69-83. doi:10.32571/ijct.1594493
Chicago Ogundele, Damilola, Beatrice Ibiyeye, Akanbi Gada Mariam Abiola, and Simeon Gbenga Oladele. “Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens”. International Journal of Chemistry and Technology 9, no. 1 (June 2025): 69-83. https://doi.org/10.32571/ijct.1594493.
EndNote Ogundele D, Ibiyeye B, Mariam Abiola AG, Oladele SG (June 1, 2025) Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens. International Journal of Chemistry and Technology 9 1 69–83.
IEEE D. Ogundele, B. Ibiyeye, A. G. Mariam Abiola, and S. G. Oladele, “Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens”, Int. J. Chem. Technol., vol. 9, no. 1, pp. 69–83, 2025, doi: 10.32571/ijct.1594493.
ISNAD Ogundele, Damilola et al. “Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens”. International Journal of Chemistry and Technology 9/1 (June 2025), 69-83. https://doi.org/10.32571/ijct.1594493.
JAMA Ogundele D, Ibiyeye B, Mariam Abiola AG, Oladele SG. Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens. Int. J. Chem. Technol. 2025;9:69–83.
MLA Ogundele, Damilola et al. “Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens”. International Journal of Chemistry and Technology, vol. 9, no. 1, 2025, pp. 69-83, doi:10.32571/ijct.1594493.
Vancouver Ogundele D, Ibiyeye B, Mariam Abiola AG, Oladele SG. Comparative Pot Experimental Studies for Phyto-Remediation of Heavy Metals in Contaminated Water Using Ludwigia Decurrens. Int. J. Chem. Technol. 2025;9(1):69-83.