Research Article
BibTex RIS Cite

Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum ribes and Its Role in Plant Programmed Cell Death (PCD)

Year 2025, Volume: 9 Issue: 1, 97 - 106
https://doi.org/10.32571/ijct.1608902

Abstract

PPARγ is a regulator of cellular differentiation and damage and a catalyst of lipid peroxidation, while its agonists, Thiazolidinediones, treat diabetes and cancer in humans. The molecular mechanism of therapeutic PPARγ is not fully understood. Rheum ribes is known for its healing effects in cancer and diabetes. On the other hand, the mechanisms underlying the power of Rheum ribes on diseases are unclear. To date, no study has demonstrated PPARγ expression in plants.
Using the in-situ labelling method with the PPARγ antibody, we stereologically determined the PPARγ expression in radiant along with non-radiant cells in PCD stage tissues of Rheum ribes plant harvested at the flowering stage. For the first time in literature, we have proven that the existence of PPARγ is present in plants. Also, this study revealed novel association of PPARγ protein with PCD.
The highest MDA (Malondialdehyde) value was found in the stem of Rheum ribes (6,1 ± 0,48 nmol/g). In addition, the highest expression of PPARγ is in the stems of Rheum ribes too (% 67). Level of lipid peroxidation was significantly associated with the expression of PPAR γ (r=0,714). Likewise, it has been revealed that PPAR γ controls lipid peroxidation in plants.
The findings of this study indicate that Rheum ribes may represent a potential source of PPARγ in the context of therapy cancer and diabetes. It has also been shown that PPARγ also controls PCD and lipid peroxidation in plants.

Ethical Statement

Ethics Committee Approval is not required for this study.

Supporting Institution

This research was funded by Kirsehir Ahi Evran University, Scientific Investigation Projects Coordinator

Project Number

SYO.A4.19.001

Thanks

I would like to thank my family for supporting me in this work.

References

  • 1. Geçibesler, İ. H. Analysis of lipophilic fingerprints of edible wild rhubarb (Rheum ribes L.) using GC-MS combined with chemometrics. Natural Product Research, 1-12. 2024.
  • 2. Adham, A. N.; Naqishbandi, A. M. HPLC analysis and antidiabetic effect of Rheum ribes root in type 2 diabetic patients. Zanco Journal of Medical Sciences (Zanco J Med Sci), 19(2), 957-964. 2015.
  • 3. Al-Shammari, A. M.; Jalill, R. D. A.; Hussein, M. F. Combined therapy of oncolytic Newcastle disease virus and rhizomes extract of Rheum ribes enhances cancer virotherapy in vitro and in vivo. Molecular Biology Reports, 47(3), 1691-1702. 2020.
  • 4. Abu-Irmaileh, B. E.; Afifi, F. U. Herbal medicine in Jordan with special emphasis on commonly used herbs. Journal of Ethnopharmacology, 89(2-3), 193-197. 2003.
  • 5. Çınar Ayan, İ.; Çetinkaya, S.; Dursun, H. G.; Süntar, İ. Bioactive compounds of Rheum ribes L. and its anticancerogenic effect via induction of apoptosis and miR-200 family expression in human colorectal cancer cells. Nutrition and Cancer, 73(7), 1228-1243. 2021. 6. Ghafouri, A.; Hosseini, S.; Shidfar, S.; Kamalinejad, M.; AghaHosseini, F.; Heydari, I.; Shidfar, F. The effect of Aqueous, Ethanolic extracts of Rheum ribes on insulin sensitivity, inflammation, oxidative stress in patients with type 2 diabetes mellitus: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Herbal Medicine, 24: 1003, 89-91. 2020.
  • 7. Oliveira, A.C.; Bertollo, C.M.; Rocha, L.T.; Nascimento, E.B.; Costa, K.A.; Coelho, M.M. Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. Eur J Pharmacol. 561:194–201. 2007.
  • 8. Tyagi, S.; Gupta, P.; Saini, A. S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. Journal of Advanced Pharmaceutical Technology & Research, 2.4: 236-237. 2011.
  • 9. Rovito, D.; Gionfriddo, G.; Barone, I.; Giordano, C.; Grande, F. Ligand-activated PPARγ downregulates CXCR4 gene expression through a novel identified PPAR response element and inhibits breast cancer progression. Oncotarget. Oct 4; 7(40): 65109–65124. 2016.
  • 10. Zhao, J.; Xu, Y.; Yu, H.; Li, X.; Wang, W.; Mao, D. Effects of PPARG on the proliferation, apoptosis, and estrogen secretion in goat granulosa cells. Theriogenology, 231: 62-72. 2025.
  • 11. Liu, X.; Liu, H.; Nie, H.; Tian, L.; Shi, Y.; Lai, W.; Lin, B. Oil mist particulate matter induces myocardial tissue injury by impairing fatty acid metabolism and mitochondrial bioenergetics function via inhibiting the PPAR alpha signaling pathway in rats. Environmental Pollution, 365: 125340-45. 2024.
  • 12. Arslan Atay, G. In beta cells of rats with TYPE 2 diabetes; explanation relationship of expressions of PPARγ and TGF(β1) and membranous lipid changes with the formation of diabetes. Master dissertation, University of Gaziosmanpaşa. Tokat. 2022.
  • 13. Yaman, S.O.; Ayhanci A. Lipid Peroxidation. Accenting Lipid Peroxidation. İntechopen. London (Headquarters), UK. ISBN: 978-1-83968-826-3. 2021.
  • 14. Gutteridge, M.C. Lipid Peroxidation and Antioxidants as Biomarker of Tissue Damage. Clinical Chemistry, 41, 1819-1828. 1995.
  • 15 Padilla, J.; Kaur, K.; Harris, S.G.; Phipps, R.P. PPAR-gamma-mediated regulation of normal and malignant B lineage cells. Ann N Y Acad Sci. Apr; 905:97-109. 2000.
  • 16 Chang, T.H.; Szabo, E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor gamma in non-small cell lung cancer. Cancer Res. Feb 15;60(4):1129-38. 2000.
  • 17. Pennell, R.; Lamb, C. American Society of Plant Physiologists Programmed Cell Death in Plants. The Plant Cell., Vol. 9, 1157-1 168, 1997.
  • 18. Yanık, F.; Çetinbaş, A.; Vardar, F. Programmed Cell Death in Plants. Marmara Journal of Science, 1: 61-70. 2018.
  • 19. Kliewer, S.A.; Mangelsdorf, D.J. Fibroblast growth factor 21: from pharmacology to physiolog. Am. J. Clin. Nutr. 91, 254- 257. 2010.
  • 20. Ch Chen, Y.; Li, Q.; Zhao, S.; Sun, L.; Yin, Z.; Wang, X.; Duan, Y. Berberine protects mice against type 2 diabetes by promoting PPARγ-FGF21-GLUT2-regulated insulin sensitivity and glucose/lipid homeostasis. Biochemical Pharmacology, 218, 115928-30. 2023.
  • 21. Y Yu, J.; Hu, Y.; Sheng, M.; Gao, M.; Guo, W.; Zhang, Z.; Ma, X. Selective PPARγ modulator diosmin improves insulin sensitivity and promotes browning of white fat. Journal of Biological Chemistry, 4: 299-301. 2023.
  • 22. Paschoal, V.A.; Walenta, E.; Talukdar, S.; Pessentheiner, A.R.; Osborn, O.; Hah. N.; Chi, T.J.; Tye, G.L.; Armando, A.M.; Evans, R.M.; Chi, N.W.; Quehenberger, O.; Olefsky, J.M.; Oh, D.Y. Positive Reinforcing Mechanisms between GPR120 and PPARγ Modulate Insulin Sensitivity. Cell Metab. 2;31(6):1173-1188. 2020.
  • 23. Pandey, M.K.; Gupta, S.C., Nabavizadeh, A.; Aggarwal, B.B. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Seminars in Cancer Biology. Volume 46, Pages 158-181. 2017.
  • 24. Sargin, S.A. Plants used against obesity in Turkish folk medicine: A review. Journal of Ethnopharmacology. Volume 270, 113841. 2021.
  • 25. Arslan Atay, G. In childhood leukemia, investigation of thorombocyte membrane li̇pi̇ds. Ph.D. Thesis. University of Gaziosmanpasa. Tokat. 2014.
  • 26. Cayli, S.; Eyibilen, A.; Gurbuzler, L.; Koc, S.; Atay G.A.; Ekici, A.; Aladağ, I. Jab1 expression is associated with TGF-β1 signaling in chronic rhinosinusitis and nasal polyposis. Acta Histochem. Jan;114(1):12-7. 2012.
  • 27. Naemi, F.; Asghari, G.; Yousofi, H.; Yousefi, H.A. Chemical composition of essential oil and anti trichomonas activity of leaf, stem, and flower of Rheum ribes L. extracts. Avicenna J Phytomed. May;4(3):191-9. 2014.
  • 28. Ozbek, H.; Ceylan, E.; Kara, M.; Ozgokce, F.; Koyuncu, M. Hypoglycemic effect of Rheum ribes roots in alloxan induced diabetic and normal mice. Scandinavian Journal of Laboratory Animal Science, 31, 113-115. 2004.
  • 29. Bazaz, F. B.; Khajeh, A.K.M.; Shokouhı, Z.H. In vitro antibacterial activity of Rheum ribes extract obtained from various plant parts against clinical isolates of Gram-negative pathogens. Iranian Journal Of Pharmaceutical Research (IJPR), 4(2), 87-91. 2005.
  • 30. Oktay, M.; Yildirim, A.; Bilaloglu, V.; Gülçin, I. Antioxidant activity of different parts of isgin (Rheum ribes L.). Asian Journal Of Chemistry, 19(4), 3047. 2007.
  • 31. Doležal, J.; Chondol, T.; Chlumská, Z.; Altman, J.; Čapková, K.; Dvorský, M.; Fibich, P.; Korznikov, K.A.; Ruka, A.T.; Kopecký, M.; Macek, M.; Řeháková, K. Contrasting biomass allocations explain adaptations to cold and drought in the world's highest-growing angiosperms. Ann Bot. 22;134(3):401-414. 2024.
  • 32. Huh, S. U. Evolutionary Diversity and Function of Metacaspases in Plants: Similar to but Not Caspases. International Journal of Molecular Sciences, 23(9), 4588. 2022.
  • 33. Apuhan, A. K.; Beyazkaya, T. A research on the effects of edible wild plants of Bingöl on gastronomy tourism. Tourism and Recreation, 1(1), 31-37. 2019.
  • 34. Gecibesler, I.H., Disli, F.; Bayindir, S.; Toprak, M.; Tufekci, A.R.; Sahin Yaglıoglu, A.; Altun, M.; Kocak, A.; Demirtas, I.; Adem, S. The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: Isolation, synthesis and biological activity. Food Chem. Apr 16;342:128378. 2021.
  • 35. Stompor-Gorący, M. The Health Benefits of Emodin, a Natural Anthraquinone Derived from Rhubarb-A Summary Update. Int J Mol Sci. Sep 1;22(17):9522. 2021.
  • 36. Nguyen, H. H.; Savage, G. P. Oxalate bioaccessibility in raw and cooked rhubarb (Rheum Rhabarbarum L.) during in vitro digestion. Journal of Food Composition and Analysis, 94, 103648. 2020.
  • 37. Karatepe, P.; Akgöl, M.; Tekin, A.; Çalıcıoğlu, M.; İncili, G.K.; Hayaloğlu, A.A. Effect of Rheum ribes L. pulp enriched with eugenol or thymol on survival of foodborne pathogens and quality parameters of chicken breast fillets. Int J Food Microbiol. Nov 2;424:110854. 2024.
  • 38. Cengiz, M.; Gür, B.; Sezer, C. V.; Baytar, O.; Şahin, Ö.; Ayhanci, A.; Kutlu, H. M. Green biosynthesis of selenium and zinc oxide nanoparticles using whole plant extract of Rheum ribes: Characterization, anticancer, and antimicrobial activity. Journal of Molecular Liquids, 412, 125861. 2024.
  • 39. Tuncer, B.; Günsan, B. Research on Propagation Possibilities of Wild Rhubarb (Rheum ribes L.) by Tissue Culture. Turkish Journal of Agricultural Research. 4(3): 296-301 297. 2017.
  • 40. Munzuroğlu, Ö.; Karataş, F.; Gür, N. A, E and C in Irgin (Rheum ribes L.) Investigation of Vitamins and Selenium Levels. Turk J Biol. 24 397–404. 2000.
  • 41. Ghasemi, G.; Fattahi, M.; Alirezalu, A. Screening genotypes and optimizing ultrasonic extraction of phenolic antioxidants from Rheum ribes using response surface methodology. Sci RepSep 15;14(1):21544. 2024.
  • 42. Sanchez, M.B.; Miranda-Perez, E.; Verjan, J.C.G.; de Los Angeles Fortis Barrera, M.; Perez-Ramos, J.; Alarcon-Aguilar, F.J. Potential of the chlorogenic acid as multitarget agent: Insulin-secretagogue and PPAR α/γ dual agonist. Biomed Pharmacother. Oct;94:169-175. 2017.
  • 43. Chuang, C.H.; Yeh, C.L.; Yeh, S.L.; Lin, E.S.; Wang, L.Y.; Wang, Y.H. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms. J Nutr Biochem. Jul;33:45-53. 2016.
Year 2025, Volume: 9 Issue: 1, 97 - 106
https://doi.org/10.32571/ijct.1608902

Abstract

Project Number

SYO.A4.19.001

References

  • 1. Geçibesler, İ. H. Analysis of lipophilic fingerprints of edible wild rhubarb (Rheum ribes L.) using GC-MS combined with chemometrics. Natural Product Research, 1-12. 2024.
  • 2. Adham, A. N.; Naqishbandi, A. M. HPLC analysis and antidiabetic effect of Rheum ribes root in type 2 diabetic patients. Zanco Journal of Medical Sciences (Zanco J Med Sci), 19(2), 957-964. 2015.
  • 3. Al-Shammari, A. M.; Jalill, R. D. A.; Hussein, M. F. Combined therapy of oncolytic Newcastle disease virus and rhizomes extract of Rheum ribes enhances cancer virotherapy in vitro and in vivo. Molecular Biology Reports, 47(3), 1691-1702. 2020.
  • 4. Abu-Irmaileh, B. E.; Afifi, F. U. Herbal medicine in Jordan with special emphasis on commonly used herbs. Journal of Ethnopharmacology, 89(2-3), 193-197. 2003.
  • 5. Çınar Ayan, İ.; Çetinkaya, S.; Dursun, H. G.; Süntar, İ. Bioactive compounds of Rheum ribes L. and its anticancerogenic effect via induction of apoptosis and miR-200 family expression in human colorectal cancer cells. Nutrition and Cancer, 73(7), 1228-1243. 2021. 6. Ghafouri, A.; Hosseini, S.; Shidfar, S.; Kamalinejad, M.; AghaHosseini, F.; Heydari, I.; Shidfar, F. The effect of Aqueous, Ethanolic extracts of Rheum ribes on insulin sensitivity, inflammation, oxidative stress in patients with type 2 diabetes mellitus: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Herbal Medicine, 24: 1003, 89-91. 2020.
  • 7. Oliveira, A.C.; Bertollo, C.M.; Rocha, L.T.; Nascimento, E.B.; Costa, K.A.; Coelho, M.M. Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. Eur J Pharmacol. 561:194–201. 2007.
  • 8. Tyagi, S.; Gupta, P.; Saini, A. S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. Journal of Advanced Pharmaceutical Technology & Research, 2.4: 236-237. 2011.
  • 9. Rovito, D.; Gionfriddo, G.; Barone, I.; Giordano, C.; Grande, F. Ligand-activated PPARγ downregulates CXCR4 gene expression through a novel identified PPAR response element and inhibits breast cancer progression. Oncotarget. Oct 4; 7(40): 65109–65124. 2016.
  • 10. Zhao, J.; Xu, Y.; Yu, H.; Li, X.; Wang, W.; Mao, D. Effects of PPARG on the proliferation, apoptosis, and estrogen secretion in goat granulosa cells. Theriogenology, 231: 62-72. 2025.
  • 11. Liu, X.; Liu, H.; Nie, H.; Tian, L.; Shi, Y.; Lai, W.; Lin, B. Oil mist particulate matter induces myocardial tissue injury by impairing fatty acid metabolism and mitochondrial bioenergetics function via inhibiting the PPAR alpha signaling pathway in rats. Environmental Pollution, 365: 125340-45. 2024.
  • 12. Arslan Atay, G. In beta cells of rats with TYPE 2 diabetes; explanation relationship of expressions of PPARγ and TGF(β1) and membranous lipid changes with the formation of diabetes. Master dissertation, University of Gaziosmanpaşa. Tokat. 2022.
  • 13. Yaman, S.O.; Ayhanci A. Lipid Peroxidation. Accenting Lipid Peroxidation. İntechopen. London (Headquarters), UK. ISBN: 978-1-83968-826-3. 2021.
  • 14. Gutteridge, M.C. Lipid Peroxidation and Antioxidants as Biomarker of Tissue Damage. Clinical Chemistry, 41, 1819-1828. 1995.
  • 15 Padilla, J.; Kaur, K.; Harris, S.G.; Phipps, R.P. PPAR-gamma-mediated regulation of normal and malignant B lineage cells. Ann N Y Acad Sci. Apr; 905:97-109. 2000.
  • 16 Chang, T.H.; Szabo, E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor gamma in non-small cell lung cancer. Cancer Res. Feb 15;60(4):1129-38. 2000.
  • 17. Pennell, R.; Lamb, C. American Society of Plant Physiologists Programmed Cell Death in Plants. The Plant Cell., Vol. 9, 1157-1 168, 1997.
  • 18. Yanık, F.; Çetinbaş, A.; Vardar, F. Programmed Cell Death in Plants. Marmara Journal of Science, 1: 61-70. 2018.
  • 19. Kliewer, S.A.; Mangelsdorf, D.J. Fibroblast growth factor 21: from pharmacology to physiolog. Am. J. Clin. Nutr. 91, 254- 257. 2010.
  • 20. Ch Chen, Y.; Li, Q.; Zhao, S.; Sun, L.; Yin, Z.; Wang, X.; Duan, Y. Berberine protects mice against type 2 diabetes by promoting PPARγ-FGF21-GLUT2-regulated insulin sensitivity and glucose/lipid homeostasis. Biochemical Pharmacology, 218, 115928-30. 2023.
  • 21. Y Yu, J.; Hu, Y.; Sheng, M.; Gao, M.; Guo, W.; Zhang, Z.; Ma, X. Selective PPARγ modulator diosmin improves insulin sensitivity and promotes browning of white fat. Journal of Biological Chemistry, 4: 299-301. 2023.
  • 22. Paschoal, V.A.; Walenta, E.; Talukdar, S.; Pessentheiner, A.R.; Osborn, O.; Hah. N.; Chi, T.J.; Tye, G.L.; Armando, A.M.; Evans, R.M.; Chi, N.W.; Quehenberger, O.; Olefsky, J.M.; Oh, D.Y. Positive Reinforcing Mechanisms between GPR120 and PPARγ Modulate Insulin Sensitivity. Cell Metab. 2;31(6):1173-1188. 2020.
  • 23. Pandey, M.K.; Gupta, S.C., Nabavizadeh, A.; Aggarwal, B.B. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Seminars in Cancer Biology. Volume 46, Pages 158-181. 2017.
  • 24. Sargin, S.A. Plants used against obesity in Turkish folk medicine: A review. Journal of Ethnopharmacology. Volume 270, 113841. 2021.
  • 25. Arslan Atay, G. In childhood leukemia, investigation of thorombocyte membrane li̇pi̇ds. Ph.D. Thesis. University of Gaziosmanpasa. Tokat. 2014.
  • 26. Cayli, S.; Eyibilen, A.; Gurbuzler, L.; Koc, S.; Atay G.A.; Ekici, A.; Aladağ, I. Jab1 expression is associated with TGF-β1 signaling in chronic rhinosinusitis and nasal polyposis. Acta Histochem. Jan;114(1):12-7. 2012.
  • 27. Naemi, F.; Asghari, G.; Yousofi, H.; Yousefi, H.A. Chemical composition of essential oil and anti trichomonas activity of leaf, stem, and flower of Rheum ribes L. extracts. Avicenna J Phytomed. May;4(3):191-9. 2014.
  • 28. Ozbek, H.; Ceylan, E.; Kara, M.; Ozgokce, F.; Koyuncu, M. Hypoglycemic effect of Rheum ribes roots in alloxan induced diabetic and normal mice. Scandinavian Journal of Laboratory Animal Science, 31, 113-115. 2004.
  • 29. Bazaz, F. B.; Khajeh, A.K.M.; Shokouhı, Z.H. In vitro antibacterial activity of Rheum ribes extract obtained from various plant parts against clinical isolates of Gram-negative pathogens. Iranian Journal Of Pharmaceutical Research (IJPR), 4(2), 87-91. 2005.
  • 30. Oktay, M.; Yildirim, A.; Bilaloglu, V.; Gülçin, I. Antioxidant activity of different parts of isgin (Rheum ribes L.). Asian Journal Of Chemistry, 19(4), 3047. 2007.
  • 31. Doležal, J.; Chondol, T.; Chlumská, Z.; Altman, J.; Čapková, K.; Dvorský, M.; Fibich, P.; Korznikov, K.A.; Ruka, A.T.; Kopecký, M.; Macek, M.; Řeháková, K. Contrasting biomass allocations explain adaptations to cold and drought in the world's highest-growing angiosperms. Ann Bot. 22;134(3):401-414. 2024.
  • 32. Huh, S. U. Evolutionary Diversity and Function of Metacaspases in Plants: Similar to but Not Caspases. International Journal of Molecular Sciences, 23(9), 4588. 2022.
  • 33. Apuhan, A. K.; Beyazkaya, T. A research on the effects of edible wild plants of Bingöl on gastronomy tourism. Tourism and Recreation, 1(1), 31-37. 2019.
  • 34. Gecibesler, I.H., Disli, F.; Bayindir, S.; Toprak, M.; Tufekci, A.R.; Sahin Yaglıoglu, A.; Altun, M.; Kocak, A.; Demirtas, I.; Adem, S. The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: Isolation, synthesis and biological activity. Food Chem. Apr 16;342:128378. 2021.
  • 35. Stompor-Gorący, M. The Health Benefits of Emodin, a Natural Anthraquinone Derived from Rhubarb-A Summary Update. Int J Mol Sci. Sep 1;22(17):9522. 2021.
  • 36. Nguyen, H. H.; Savage, G. P. Oxalate bioaccessibility in raw and cooked rhubarb (Rheum Rhabarbarum L.) during in vitro digestion. Journal of Food Composition and Analysis, 94, 103648. 2020.
  • 37. Karatepe, P.; Akgöl, M.; Tekin, A.; Çalıcıoğlu, M.; İncili, G.K.; Hayaloğlu, A.A. Effect of Rheum ribes L. pulp enriched with eugenol or thymol on survival of foodborne pathogens and quality parameters of chicken breast fillets. Int J Food Microbiol. Nov 2;424:110854. 2024.
  • 38. Cengiz, M.; Gür, B.; Sezer, C. V.; Baytar, O.; Şahin, Ö.; Ayhanci, A.; Kutlu, H. M. Green biosynthesis of selenium and zinc oxide nanoparticles using whole plant extract of Rheum ribes: Characterization, anticancer, and antimicrobial activity. Journal of Molecular Liquids, 412, 125861. 2024.
  • 39. Tuncer, B.; Günsan, B. Research on Propagation Possibilities of Wild Rhubarb (Rheum ribes L.) by Tissue Culture. Turkish Journal of Agricultural Research. 4(3): 296-301 297. 2017.
  • 40. Munzuroğlu, Ö.; Karataş, F.; Gür, N. A, E and C in Irgin (Rheum ribes L.) Investigation of Vitamins and Selenium Levels. Turk J Biol. 24 397–404. 2000.
  • 41. Ghasemi, G.; Fattahi, M.; Alirezalu, A. Screening genotypes and optimizing ultrasonic extraction of phenolic antioxidants from Rheum ribes using response surface methodology. Sci RepSep 15;14(1):21544. 2024.
  • 42. Sanchez, M.B.; Miranda-Perez, E.; Verjan, J.C.G.; de Los Angeles Fortis Barrera, M.; Perez-Ramos, J.; Alarcon-Aguilar, F.J. Potential of the chlorogenic acid as multitarget agent: Insulin-secretagogue and PPAR α/γ dual agonist. Biomed Pharmacother. Oct;94:169-175. 2017.
  • 43. Chuang, C.H.; Yeh, C.L.; Yeh, S.L.; Lin, E.S.; Wang, L.Y.; Wang, Y.H. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms. J Nutr Biochem. Jul;33:45-53. 2016.
There are 42 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Gülşen Arslan 0000-0002-4751-1620

Project Number SYO.A4.19.001
Early Pub Date June 3, 2025
Publication Date
Submission Date December 28, 2024
Acceptance Date May 7, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Arslan, G. (2025). Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum ribes and Its Role in Plant Programmed Cell Death (PCD). International Journal of Chemistry and Technology, 9(1), 97-106. https://doi.org/10.32571/ijct.1608902
AMA Arslan G. Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum ribes and Its Role in Plant Programmed Cell Death (PCD). Int. J. Chem. Technol. June 2025;9(1):97-106. doi:10.32571/ijct.1608902
Chicago Arslan, Gülşen. “Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum Ribes and Its Role in Plant Programmed Cell Death (PCD)”. International Journal of Chemistry and Technology 9, no. 1 (June 2025): 97-106. https://doi.org/10.32571/ijct.1608902.
EndNote Arslan G (June 1, 2025) Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum ribes and Its Role in Plant Programmed Cell Death (PCD). International Journal of Chemistry and Technology 9 1 97–106.
IEEE G. Arslan, “Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum ribes and Its Role in Plant Programmed Cell Death (PCD)”, Int. J. Chem. Technol., vol. 9, no. 1, pp. 97–106, 2025, doi: 10.32571/ijct.1608902.
ISNAD Arslan, Gülşen. “Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum Ribes and Its Role in Plant Programmed Cell Death (PCD)”. International Journal of Chemistry and Technology 9/1 (June 2025), 97-106. https://doi.org/10.32571/ijct.1608902.
JAMA Arslan G. Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum ribes and Its Role in Plant Programmed Cell Death (PCD). Int. J. Chem. Technol. 2025;9:97–106.
MLA Arslan, Gülşen. “Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum Ribes and Its Role in Plant Programmed Cell Death (PCD)”. International Journal of Chemistry and Technology, vol. 9, no. 1, 2025, pp. 97-106, doi:10.32571/ijct.1608902.
Vancouver Arslan G. Investigation of Peroxisome Proliferator Activated Receptorγ (PPARγ) Expression in Rheum ribes and Its Role in Plant Programmed Cell Death (PCD). Int. J. Chem. Technol. 2025;9(1):97-106.