Review
BibTex RIS Cite

The environmental footprint of artificial intelligence: A multi-aspect analysis of energy, water and electronic waste

Year 2025, Volume: 7 Issue: 2, 78 - 89

Abstract

Artificial intelligence (AI), one of the most innovative areas of modern technology, has a wide range of application potential, from optimizing industrial processes to solving environmental problems. However, its rapidly increasing use leads to significant environmental impacts. This study aims to comprehensively analyze the existing literature on the environmental impacts of artificial intelligence within the framework of energy consumption, carbon emissions, water use, and electronic waste and to develop sustainable strategies to reduce these impacts. The study also evaluated strategic interventions such as developing algorithms based on energy efficiency, integrating renewable energy sources, transparent carbon reporting, and sustainable design approaches. These analyses reveal that reducing the environmental costs of artificial intelligence is possible not only with technological innovations but also with policy development, regulations, and stakeholder cooperation. The findings show that if the environmental impacts of artificial intelligence are effectively managed, technological progress can be achieved in a way that is compatible with environmental sustainability. The study provides a basic framework for future research and policy development processes and emphasizes that artificial intelligence should be developed with a sustainability-oriented approach.

References

  • Aderibigbe, A. O., Ani, E. C., Ohenhen, P. E., Ohalete, N. C., Daraojimba, D. O. (2023). Enhancing energy efficiency with AI: A review of machine learning models in electricity demand forecasting. Engineering Science Technology Journal, 4(6), 636–645. https://doi.org/10.51594/estj.v4i6.636
  • Adewumi, A., Okoli, C. E., Usman, F. O., Olu-Lawal, K. A., Soyombo, O. T. (2024). Reviewing the impact of AI on renewable energy efficiency and management. International Journal of Science and Research Archive, 11(1), 1518–1527. https://doi.org/10.30574/ijsra.2024.11.1.0245
  • Ahmad Ibrahim, S. R., Yahaya, J., Sallehudin, H. . (2022). Green software process factors: A qualitative study. Sustainability, 14(18), 11180. https://doi.org/10.3390/su141811180
  • Albers, S. (2019). Sustainable data centers: Balancing energy and water usage. IEEE Transactions on Sustainable Computing, 4(2), 145–157. https://doi.org/10.1109/TSUSC.2019.2897700
  • Ali, S., Choi, B. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: a review. Electronics, 9(6), 1030. https://doi.org/10.3390/electronics9061030
  • Alkrush, A. A., Salem, M. S., Abdelrehim, O., Hegazi, A. A. (2024). Data Centers Cooling: A Critical Review of Techniques, Challenges, and Energy Saving Solutions. International Journal of Refrigeration..
  • Ardito, L., Procaccianti, G., Torchiano, M., Vetro, A. Understanding green software development: A conceptual framework. IT Professional, 17(4), 16–23. https://doi.org/10.1109/mitp.2015.16
  • Austen, K. (2023). The thirsty future of artificial intelligence. Nature, 603(7901), 366–369. https://doi.org/10.1038/d41586-023-00540-1
  • Austen, M. F., Subroto, A. (2023). Enabling practical decision making for sustainable green data center planning. Jurnal Ekonomi, 28(2), 1–15. https://doi.org/10.24912/je.v28i2.1540
  • Azmi, F., Saleh, A. (2024). Utilizing machine learning techniques for power estimation in residential electricity consumption. International Journal of Research and Review, 11(6), 326–333. https://doi.org/10.52403/ijrr.20240637
  • Bahrami, M., Khashroum, Z. (2023). Review of machine learning techniques for power electronics control and optimization. CRPASE, 9(3), 1–8. https://doi.org/10.61186/crpase.9.3.2860
  • Basmadjian, R., De Meer, H., Lent, R., Giuliani, G. (2015). Cloud computing and its interest in saving energy: The use case of a private cloud. Journal of Cloud Computing, 4(1), 1–25. https://doi.org/10.1186/s13677-015-0032-4
  • Bayer, F. M., Pruckner, M. (2023). Multi-agent reinforcement learning for sustainable building climate control. arXiv preprint arXiv:2309.06940. https://arxiv.org/abs/2309.06940
  • BBC News. (2024). The environmental challenges of AI. BBC News Science Technology. Erişim tarihi: 20 Aralık 2024, https://www.bbc.com
  • Biglari, A., Tang, W. (2023). A review of embedded machine learning based on hardware, application, and sensing scheme. Sensors, 23(4), 2131. https://doi.org/10.3390/s23042131
  • Bolte, L., Vandemeulebroucke, T., Wynsberghe, A. (2022). From an ethics of carefulness to an ethics of desirability: Going beyond current ethics approaches to sustainable AI. Sustainability, 14(8), 4472. https://doi.org/10.3390/su14084472
  • Bouaouda, A., Afdel, K., Abounacer, R. (2024). Unveiling genetic reinforcement learning (GRLA) and hybrid attention-enhanced gated recurrent unit with random forest (HAGRU-RF) for energy-efficient containerized data centers empowered by solar energy and AI. Sustainability, 16(11), 4438. https://doi.org/10.3390/su16114438
  • Celestine, A. D. N., Sulic, M., Wieliczko, M., Stetson, N. T. (2021). Hydrogen-based energy storage systems for large-scale data center applications. Sustainability, 13(22), 12654. https://doi.org/10.3390/su132212654
  • Chavali, D., Baburajan, B., Gurusamy, A., Dhiman, V. K., Katari, S. C. (2024). Regulating artificial intelligence: Developments and challenges. International Journal of Pharmaceutical Science, 2(3), 1250–1261.
  • Chen, T., Wang, X., Giannakis, G. B. (2015). Cooling-aware energy and workload management in data centers via stochastic optimization. IEEE Journal of Selected Topics in Signal Processing, 10(2), 402-415.
  • Cowls, J., Tsamados, A., Taddeo, M., Floridi, L. (2021). The AI gambit: Leveraging artificial intelligence to combat climate change—Opportunities, challenges, and recommendations. AI Society, 38(1), 283–307. https://doi.org/10.1007/s00146-021-01294-x
  • Dayarathna, M., Wen, Y., Fan, R. (2016). Data center energy consumption modeling: A survey. IEEE Communications Surveys Tutorials, 18(1), 732–794. https://doi.org/10.1109/COMST.2015.2481183
  • Desislavov, R. (2021). Compute and energy consumption trends in deep learning inference. arXiv preprint. https://doi.org/10.48550/arxiv.2109.05472
  • Ferreira, L. L., Dupont, C., Stolf, P., Da Costa, G., Pierson, J. M. (2019). Towards energy-efficient, thermal-aware scheduling in data centers. Sustainable Computing: Informatics and Systems, 23, 240–251. https://doi.org/10.1016/j.suscom.2019.08.003
  • George, A. S., George, A. H., Martin, A. G. (2023). The environmental impact of ai: A case study of water consumption by chat gpt. Partners Universal International Innovation Journal, 1(2), 97-104.
  • Ghamkhari, M., Mohsenian-Rad, H., Mohsenian-Rad, A. (2017). Optimal integration of renewable energy resources in data centers with behind-the-meter renewable generator. IEEE Transactions on Sustainable Energy, 8(2), 625–636. https://doi.org/10.1109/TSTE.2016.2623678
  • Goudarzi, S., Anisi, M., Kama, N., Doctor, F., Soleymani, S., Sangaiah, A. (2019). Predictive modelling of building energy consumption based on a hybrid nature-inspired optimization algorithm. Energy and Buildings, 196, 83–93. https://doi.org/10.1016/j.enbuild.2019.05.031
  • Gupta, U., Kim, Y. G., Lee, S., Tse, J., Lee, H. H. S., Wei, G. Y., Wu, C. J.  (2021). Chasing carbon: The elusive environmental footprint of computing. 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). https://doi.org/10.1109/hpca51647.2021.00076
  • Gürsakal, N., Çelik, S., Batmaz, B. (2022). Problems and opportunities of artificial intelligence. Akademik Yaklaşımlar Dergisi, 13(1), 203–225. https://doi.org/10.54688/ayd.1104830
  • Hamid, M., Ganne, A. (2023). Artificial intelligence in energy markets and power systems. International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets35943
  • Hassan, Q., Sameen, A., Salman, H., Al-Jiboory, A., Jaszczur, M. (2023). The role of renewable energy and artificial intelligence towards environmental sustainability and net zero. https://doi.org/10.21203/rs.3.rs-2970234/v1
  • He, W., Xu, Q., Zhao, S., Liu, S., Li, H. (2023). Performance analysis of data centers applying hybrid renewable energy power systems. Energy Proceedings, 1(1), 1–10. https://doi.org/10.46855/energy-proceedings-10347
  • He, W., Xu, Q., Guo, R., Liu, S., Wang, Y., Guo, H., Jin, S. (2024). Comparative performance analysis of two hybrid energy systems for data centers with different replenishment energy sources. Energy Proceedings, 1(1), 1–10. https://doi.org/10.46855/energy-proceedings-11223
  • Hurson, A., Sarvestani, S., Wisely, M. (2016). Energy-aware virtual machine placement in cloud data centers. Sustainable Computing: Informatics and Systems, 11, 1–13. https://doi.org/10.1016/j.suscom.2016.03.001
  • International Energy Agency. (2024). Electricity 2024: Executive summary. IEA. Retrieved from https://www.iea.org/reports/electricity-2024/executive-summary.
  • International Telecommunication Union (ITU) United Nations Institute for Training and Research (UNITAR). (2024). Global E-Waste Monitor 2024: Electronic waste rising five times faster than documented e-waste recycling. Retrieved from https://unitar.org/about/news-stories/press/global-e-waste-monitor-2024-electronic-waste-rising-five-times-faster-documented-e-waste-recycling.
  • Kang, D. K., Yang, E. J., Youn, C. H. (2018). Deep learning-based sustainable data center energy cost minimization with temporal MACRO/MICRO scale management. IEEE Access, 7, 28888–28899. https://doi.org/10.1109/access.2018.2888839
  • Krumay, B., Brandtweiner, R. (2016). Measuring the environmental impact of ICT hardware. International Journal of Sustainable Development and Planning, 11(6), 1064–1076. https://doi.org/10.2495/sdp-v11-n6-1064-1076
  • Kumar, R., Dahyalal ,S., (2014). Review: Current status of recycling of waste printed circuit boards in India. Journal of Environmental Protection, 5(1), 1–10. https://doi.org/10.4236/jep.2014.51002
  • Kumar, R., Khatri, S., Diván, M. (2022). Optimization of power consumption in data centers using machine learning based approaches: a review. International Journal of Electrical and Computer Engineering (Ijece), 12(3), 3192. https://doi.org/10.11591/ijece.v12i3.pp3192-3203
  • Kummu, M., Guillaume, J. H., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Ward, P. J. (2016). The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports, 6(1), 1–16. https://doi.org/10.1038/srep38495
  • Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T. (2019). Quantifying the carbon emissions of machine learning. arXiv preprint arXiv:1910.09700. https://doi.org/10.48550/arxiv.1910.09700
  • Li, D. (2016). Review of recycling and processing of waste electronic equipment. Proceedings of the 2016 International Conference on Electronics, Mechanical Engineering and Computer Science. https://doi.org/10.2991/icemct-16.2016.219
  • Li, G., Luo, T., Liu, R., Song, C., Zhao, C., Wu, S., Liu, Z. (2024). Integration of carbon dioxide removal (CDR) technology and artificial intelligence (AI) in energy system optimization. Processes, 12(2), 402. https://doi.org/10.3390/pr12020402
  • Li, P., Yang, J., Islam, M. A., Ren, S. (2023). Making AI less “thirsty”: Uncovering and addressing the secret water footprint of AI models. arXiv preprint arXiv:2304.03271.
  • Li, X., Zhuang, Y., Yang, S. X. (2017). Cloud computing for big data processing. Intelligent Automation & Soft Computing, 23(4), 545-546.
  • Liu, J., Yu, Q., Y, Y., Yang, Z. (2022). Can artificial intelligence improve the energy efficiency of manufacturing companies? Evidence from China. International Journal of Environmental Research and Public Health, 19(4), 2091. https://doi.org/10.3390/ijerph19042091
  • M, S., Alam, M. M., Hossain, M. S., Andersson, K. (2022). Sustainable data centers: A systematic review of energy and water efficiency techniques. Sustainable Computing: Informatics and Systems, 33, 100623. https://doi.org/10.1016/j.suscom.2021.100623
  • Mallipeddi, R. (2022). Harnessing AI and IoT technologies for sustainable business operations in the energy sector. Asia Pacific Journal of Energy and Environment, 9(1), 735–749. https://doi.org/10.18034/apjee.v9i1.735
  • Mekonnen, M. M., Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323
  • Naeeni, S.K., Nouhi, N. (2023). The environmental impacts of AI and digital technologies. Aitechbesosci, 1(4), 3–15. https://doi.org/10.61838/kman.aitech.1.4.3
  • Nishant, R., Kennedy, M., Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2020.102104
  • Oladoyinbo, T. O., Olabanji, S. O., Olaniyi, O. O., Adebiyi, O. O., Okunleye, O. J., Ismaila Alao, A. (2024). (2024). Exploring the challenges of artificial intelligence in data integrity and its influence on social dynamics. Asian Journal of Advanced Research and Reports, 18(2), 1–10. https://doi.org/10.9734/ajarr/2024/v18i2601
  • Olatunde, T. M., Okwandu, A. C., Akande, D. O., Sikhakhane, Z. Q. (2024). Reviewing the role of artificial intelligence in energy efficiency optimization. Engineering Science Technology Journal, 5(4), 1243–1256. https://doi.org/10.51594/estj.v5i4.1015
  • OpenAI. (2024). Training large language models and their environmental costs. Scientific American. Retrieved from https://www.scientificamerican.com
  • Oró, E., Depoorter, V., Garcia, A., Salom, J. (2015). Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renewable and Sustainable Energy Reviews, 50, 1035–1045. https://doi.org/10.1016/j.rser.2014.10.035
  • Osibo, B., Adamo, S. (2023). Data centers and green energy: Paving the way for a sustainable digital future. International Journal of Latest Technology in Engineering Management Applied Science, 12(1), 1–10. https://doi.org/10.51583/ijltemas.2023.121103
  • Othman, N., Mohammad, R., Kamaruddin, S. A. (2015). Prediction of electronic waste disposals from residential areas in Malaysia. Jurnal Teknologi, 74(1), 1–10. https://doi.org/10.11113/jt.v74.4826
  • Peng, X., Bhattacharya, T., Cao, T., Mao, J., Tekreeti, T., Qin, X.  (2022). Exploiting renewable energy and UPS systems to reduce power consumption in data centers. Big Data Research, 28, 100306. https://doi.org/10.1016/j.bdr.2021.100306
  • Perucica, N., Andjelković, K. (2022). Is the future of AI sustainable? A case study of the European Union. Transforming Government: People, Process and Policy, 16(3), 1–20. https://doi.org/10.1108/tg-06-2021-0106
  • Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J., Kendy, E., Warner, A. (2015). The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147–170. https://doi.org/10.1111/j.1365-2427.2009.02204.x
  • Qian, K., Mao, L., Liang, X., Ding, Y., Gao, J., Wei, X., Li, J. (2023). Towards Sustainable Urban Planning via Multi-Agent Reinforcement Learning. arXiv preprint arXiv:2310.16772. https://arxiv.org/abs/2310.16772
  • Ramli, M. A., Jambari, D. I. (2018). Cooling system optimization in data centers: A review. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1–4), 1–6.
  • Rojek, I., Mroziński, A., Kotlarz, P., Macko, M., Mikołajewski, D. (2023). AI-based computational model in sustainable transformation of energy markets. Energies, 16(24), 8059. https://doi.org/10.3390/en16248059
  • Rolnick, D., Donti, P., Kaack, L., Kochanski, K., Lacoste, A., Sankaran, K., Bengio, Y. (2022). Tackling climate change with machine learning. ACM Computing Surveys, 55(2), 1–96. https://doi.org/10.1145/3485128
  • Schwartz, R., Dodge, J., Smith, N., Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63. https://doi.org/10.1145/3381831
  • Șerban, A., Lytras, M. (2020). Artificial intelligence for smart renewable energy sector in Europe—smart energy infrastructures for next generation smart cities. IEEE Access, 8, 77364–77377. https://doi.org/10.1109/access.2020.2990123
  • Shin, D. (2019). Toward fair, accountable, and transparent algorithms: Case studies on algorithm initiatives in Korea and China. Javnost-The Public, 26(3), 274–290.
  • Sîrbu, A., Babaoğlu, O. (2015). Towards sustainable cloud computing: A survey on achieving energy efficiency in software architectures. Sustainable Computing: Informatics and Systems, 6, 65–85. https://doi.org/10.1016/j.suscom.2015.01.001
  • Stanford University. (2024). Artificial Intelligence Index Report 2024. Stanford Institute for Human-Centered AI. Retrieved from https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_2024_AI-Index-Report.pdf.
  • Sun, X., Ansari, N., Wang, R. (2016). Optimizing resource utilization of a data center. IEEE Communications Surveys & Tutorials, 18(4), 2822-2846.
  • Sun, Z., Cao, H., Stojmenovic, M., Stojmenovic, I. (2016). Reducing the energy cost in cloud computing by using energy aware algorithms. IEEE Communications Letters, 20(8), 1524–1527. https://doi.org/10.1109/LCOMM.2016.2574999
  • Tamburrini, G. (2022). The AI carbon footprint and responsibilities of AI scientists. Philosophies, 7(1), 4. https://doi.org/10.3390/philosophies7010004
  • Uzaman, F. U., Alam, M. M., Hossain, M. S., Andersson, K. (2019). Towards sustainable data centers: A review and synthesis. Sustainable Computing: Informatics and Systems, 21, 168–186. https://doi.org/10.1016/j.suscom.2018.12.002
  • Villiers, C., Dimes, R., Molinari, M., (2023). How will AI text generation and processing impact sustainability reporting? Critical analysis, a conceptual framework and avenues for future research. Sustainability Accounting Management and Policy Journal. https://doi.org/10.1108/sampj-02-2023-0097
  • Wang, H., Tang, D. (2022). Challenges and opportunities for the energy management of sustainable data centers in smart grids. IOP Conference Series: Earth and Environmental Science, 984(1), 012005. https://doi.org/10.1088/1755-1315/984/1/012005
  • Wang, X., Ji, K., Xie, T. (2023). AI carbon footprint management with multi-agent participation: A tripartite evolutionary game analysis based on a case in China. Sustainability, 15(11), 9013. https://doi.org/10.3390/su15119013
  • Xiao, D. (2023). Neuroscience-inspired continuous learning: A sustainable approach to AI energy challenge. https://doi.org/10.31219/osf.io/twn9q
  • Xu, H., Wei, Q., Liu, Y. (2019). The exploring of electronic waste recycling in Chongqing. Proceedings of the 2019 International Conference on Humanities and Social Science Research. https://doi.org/10.2991/ichssr-19.2019.146
  • Yang, C., Huang, Q., Li, Z., Liu, K., Hu, F. (2017). Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 13-53.
  • Yang, J., Xiao, W., Jiang, C., Hossain, M. S., Muhammad, G., Amin, S. U.  (2019). AI-powered green cloud and data center. IEEE Access, 7, 28888–28899. https://doi.org/ 10.1109/ACCESS.2018.2888976
  • Zhang, S., Ding, Y., Liu, B., Pan, D. A., Chang, C. C.,Volinsky, A. A. (2015). Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China. Waste Management, 45, 1–12. https://doi.org/10.1016/j.wasman.2015.05.015
  • Zhang, J., Sang, L., Xu, Y., Sun, H. (2023). A Multi-agent Safe Reinforcement Learning Framework for Carbon-Constrained Demand Response. arXiv preprint arXiv:2311.15594. https://arxiv.org/abs/2311.15594
  • Zhao, Y., Fariñas, J. (2022). Artificial intelligence and sustainable decisions. European Business Organization Law Review, 23(2), 215–234. https://doi.org/10.1007/s40804-022-00262-2
  • Zhou, G. L., Zhu, Y. R., Mao, L. N. (2014). Design of the electronic waste recycle network system based on GIS. Applied Mechanics and Materials, 518, 381–385. https://doi.org/10.4028/www.scientific.net/amm.518.381
  • Zu, Y. X., Jia, S. S., Li, Z., Jia, Y.  (2012). Study on the layout and structure of the waste electronic products recycling network. Advanced Materials Research, 518–523, 3613–3617. https://doi.org/10.4028/www.scientific.net/amr.518-523.3613

Yapay zekanın çevresel ayak izi: Enerji, su ve elektronik atık üzerine çok yönlü bir analiz

Year 2025, Volume: 7 Issue: 2, 78 - 89

Abstract

Yapay zeka (Artificial Intelligence - AI), modern teknolojinin en yenilikçi alanlarından biri olarak, endüstriyel süreçlerin optimizasyonundan çevresel sorunların çözümüne kadar geniş bir uygulama potansiyeline sahiptir. Bununla birlikte, hızla artan kullanımı, önemli çevresel etkilerin ortaya çıkmasına yol açmaktadır. Bu çalışma, yapay zekanın çevresel etkilerinden enerji tüketimi, karbon emisyonları, su kullanımı ve elektronik atık konuları çerçevesinde mevcut literatürü derleyerek kapsamlı bir şekilde analiz etmeyi ve bu etkilerin azaltılmasına yönelik sürdürülebilir stratejiler geliştirmeyi amaçlamaktadır.Çalışmada ayrıca, enerji verimliliğine dayalı algoritmaların geliştirilmesi, yenilenebilir enerji kaynaklarının entegrasyonu, şeffaf karbon raporlaması ve sürdürülebilir tasarım yaklaşımları gibi stratejik müdahaleler değerlendirilmiştir. Bu analizler, yapay zekanın çevresel maliyetlerinin azaltılmasının yalnızca teknolojik yeniliklerle değil, aynı zamanda politika geliştirme, düzenlemeler ve paydaşlar arası iş birliği ile mümkün olduğunu ortaya koymaktadır. Bulgular, yapay zekanın çevresel etkilerinin etkin bir şekilde yönetilmesi durumunda, teknolojik ilerlemenin çevresel sürdürülebilirlikle uyumlu bir şekilde sağlanabileceğini göstermektedir. Çalışma, gelecekteki araştırmalar ve politika geliştirme süreçleri için temel bir çerçeve sunmakta ve yapay zekanın sürdürülebilirlik odaklı bir yaklaşımla geliştirilmesi gerektiğini vurgulamaktadır.

References

  • Aderibigbe, A. O., Ani, E. C., Ohenhen, P. E., Ohalete, N. C., Daraojimba, D. O. (2023). Enhancing energy efficiency with AI: A review of machine learning models in electricity demand forecasting. Engineering Science Technology Journal, 4(6), 636–645. https://doi.org/10.51594/estj.v4i6.636
  • Adewumi, A., Okoli, C. E., Usman, F. O., Olu-Lawal, K. A., Soyombo, O. T. (2024). Reviewing the impact of AI on renewable energy efficiency and management. International Journal of Science and Research Archive, 11(1), 1518–1527. https://doi.org/10.30574/ijsra.2024.11.1.0245
  • Ahmad Ibrahim, S. R., Yahaya, J., Sallehudin, H. . (2022). Green software process factors: A qualitative study. Sustainability, 14(18), 11180. https://doi.org/10.3390/su141811180
  • Albers, S. (2019). Sustainable data centers: Balancing energy and water usage. IEEE Transactions on Sustainable Computing, 4(2), 145–157. https://doi.org/10.1109/TSUSC.2019.2897700
  • Ali, S., Choi, B. (2020). State-of-the-art artificial intelligence techniques for distributed smart grids: a review. Electronics, 9(6), 1030. https://doi.org/10.3390/electronics9061030
  • Alkrush, A. A., Salem, M. S., Abdelrehim, O., Hegazi, A. A. (2024). Data Centers Cooling: A Critical Review of Techniques, Challenges, and Energy Saving Solutions. International Journal of Refrigeration..
  • Ardito, L., Procaccianti, G., Torchiano, M., Vetro, A. Understanding green software development: A conceptual framework. IT Professional, 17(4), 16–23. https://doi.org/10.1109/mitp.2015.16
  • Austen, K. (2023). The thirsty future of artificial intelligence. Nature, 603(7901), 366–369. https://doi.org/10.1038/d41586-023-00540-1
  • Austen, M. F., Subroto, A. (2023). Enabling practical decision making for sustainable green data center planning. Jurnal Ekonomi, 28(2), 1–15. https://doi.org/10.24912/je.v28i2.1540
  • Azmi, F., Saleh, A. (2024). Utilizing machine learning techniques for power estimation in residential electricity consumption. International Journal of Research and Review, 11(6), 326–333. https://doi.org/10.52403/ijrr.20240637
  • Bahrami, M., Khashroum, Z. (2023). Review of machine learning techniques for power electronics control and optimization. CRPASE, 9(3), 1–8. https://doi.org/10.61186/crpase.9.3.2860
  • Basmadjian, R., De Meer, H., Lent, R., Giuliani, G. (2015). Cloud computing and its interest in saving energy: The use case of a private cloud. Journal of Cloud Computing, 4(1), 1–25. https://doi.org/10.1186/s13677-015-0032-4
  • Bayer, F. M., Pruckner, M. (2023). Multi-agent reinforcement learning for sustainable building climate control. arXiv preprint arXiv:2309.06940. https://arxiv.org/abs/2309.06940
  • BBC News. (2024). The environmental challenges of AI. BBC News Science Technology. Erişim tarihi: 20 Aralık 2024, https://www.bbc.com
  • Biglari, A., Tang, W. (2023). A review of embedded machine learning based on hardware, application, and sensing scheme. Sensors, 23(4), 2131. https://doi.org/10.3390/s23042131
  • Bolte, L., Vandemeulebroucke, T., Wynsberghe, A. (2022). From an ethics of carefulness to an ethics of desirability: Going beyond current ethics approaches to sustainable AI. Sustainability, 14(8), 4472. https://doi.org/10.3390/su14084472
  • Bouaouda, A., Afdel, K., Abounacer, R. (2024). Unveiling genetic reinforcement learning (GRLA) and hybrid attention-enhanced gated recurrent unit with random forest (HAGRU-RF) for energy-efficient containerized data centers empowered by solar energy and AI. Sustainability, 16(11), 4438. https://doi.org/10.3390/su16114438
  • Celestine, A. D. N., Sulic, M., Wieliczko, M., Stetson, N. T. (2021). Hydrogen-based energy storage systems for large-scale data center applications. Sustainability, 13(22), 12654. https://doi.org/10.3390/su132212654
  • Chavali, D., Baburajan, B., Gurusamy, A., Dhiman, V. K., Katari, S. C. (2024). Regulating artificial intelligence: Developments and challenges. International Journal of Pharmaceutical Science, 2(3), 1250–1261.
  • Chen, T., Wang, X., Giannakis, G. B. (2015). Cooling-aware energy and workload management in data centers via stochastic optimization. IEEE Journal of Selected Topics in Signal Processing, 10(2), 402-415.
  • Cowls, J., Tsamados, A., Taddeo, M., Floridi, L. (2021). The AI gambit: Leveraging artificial intelligence to combat climate change—Opportunities, challenges, and recommendations. AI Society, 38(1), 283–307. https://doi.org/10.1007/s00146-021-01294-x
  • Dayarathna, M., Wen, Y., Fan, R. (2016). Data center energy consumption modeling: A survey. IEEE Communications Surveys Tutorials, 18(1), 732–794. https://doi.org/10.1109/COMST.2015.2481183
  • Desislavov, R. (2021). Compute and energy consumption trends in deep learning inference. arXiv preprint. https://doi.org/10.48550/arxiv.2109.05472
  • Ferreira, L. L., Dupont, C., Stolf, P., Da Costa, G., Pierson, J. M. (2019). Towards energy-efficient, thermal-aware scheduling in data centers. Sustainable Computing: Informatics and Systems, 23, 240–251. https://doi.org/10.1016/j.suscom.2019.08.003
  • George, A. S., George, A. H., Martin, A. G. (2023). The environmental impact of ai: A case study of water consumption by chat gpt. Partners Universal International Innovation Journal, 1(2), 97-104.
  • Ghamkhari, M., Mohsenian-Rad, H., Mohsenian-Rad, A. (2017). Optimal integration of renewable energy resources in data centers with behind-the-meter renewable generator. IEEE Transactions on Sustainable Energy, 8(2), 625–636. https://doi.org/10.1109/TSTE.2016.2623678
  • Goudarzi, S., Anisi, M., Kama, N., Doctor, F., Soleymani, S., Sangaiah, A. (2019). Predictive modelling of building energy consumption based on a hybrid nature-inspired optimization algorithm. Energy and Buildings, 196, 83–93. https://doi.org/10.1016/j.enbuild.2019.05.031
  • Gupta, U., Kim, Y. G., Lee, S., Tse, J., Lee, H. H. S., Wei, G. Y., Wu, C. J.  (2021). Chasing carbon: The elusive environmental footprint of computing. 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). https://doi.org/10.1109/hpca51647.2021.00076
  • Gürsakal, N., Çelik, S., Batmaz, B. (2022). Problems and opportunities of artificial intelligence. Akademik Yaklaşımlar Dergisi, 13(1), 203–225. https://doi.org/10.54688/ayd.1104830
  • Hamid, M., Ganne, A. (2023). Artificial intelligence in energy markets and power systems. International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets35943
  • Hassan, Q., Sameen, A., Salman, H., Al-Jiboory, A., Jaszczur, M. (2023). The role of renewable energy and artificial intelligence towards environmental sustainability and net zero. https://doi.org/10.21203/rs.3.rs-2970234/v1
  • He, W., Xu, Q., Zhao, S., Liu, S., Li, H. (2023). Performance analysis of data centers applying hybrid renewable energy power systems. Energy Proceedings, 1(1), 1–10. https://doi.org/10.46855/energy-proceedings-10347
  • He, W., Xu, Q., Guo, R., Liu, S., Wang, Y., Guo, H., Jin, S. (2024). Comparative performance analysis of two hybrid energy systems for data centers with different replenishment energy sources. Energy Proceedings, 1(1), 1–10. https://doi.org/10.46855/energy-proceedings-11223
  • Hurson, A., Sarvestani, S., Wisely, M. (2016). Energy-aware virtual machine placement in cloud data centers. Sustainable Computing: Informatics and Systems, 11, 1–13. https://doi.org/10.1016/j.suscom.2016.03.001
  • International Energy Agency. (2024). Electricity 2024: Executive summary. IEA. Retrieved from https://www.iea.org/reports/electricity-2024/executive-summary.
  • International Telecommunication Union (ITU) United Nations Institute for Training and Research (UNITAR). (2024). Global E-Waste Monitor 2024: Electronic waste rising five times faster than documented e-waste recycling. Retrieved from https://unitar.org/about/news-stories/press/global-e-waste-monitor-2024-electronic-waste-rising-five-times-faster-documented-e-waste-recycling.
  • Kang, D. K., Yang, E. J., Youn, C. H. (2018). Deep learning-based sustainable data center energy cost minimization with temporal MACRO/MICRO scale management. IEEE Access, 7, 28888–28899. https://doi.org/10.1109/access.2018.2888839
  • Krumay, B., Brandtweiner, R. (2016). Measuring the environmental impact of ICT hardware. International Journal of Sustainable Development and Planning, 11(6), 1064–1076. https://doi.org/10.2495/sdp-v11-n6-1064-1076
  • Kumar, R., Dahyalal ,S., (2014). Review: Current status of recycling of waste printed circuit boards in India. Journal of Environmental Protection, 5(1), 1–10. https://doi.org/10.4236/jep.2014.51002
  • Kumar, R., Khatri, S., Diván, M. (2022). Optimization of power consumption in data centers using machine learning based approaches: a review. International Journal of Electrical and Computer Engineering (Ijece), 12(3), 3192. https://doi.org/10.11591/ijece.v12i3.pp3192-3203
  • Kummu, M., Guillaume, J. H., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Ward, P. J. (2016). The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports, 6(1), 1–16. https://doi.org/10.1038/srep38495
  • Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T. (2019). Quantifying the carbon emissions of machine learning. arXiv preprint arXiv:1910.09700. https://doi.org/10.48550/arxiv.1910.09700
  • Li, D. (2016). Review of recycling and processing of waste electronic equipment. Proceedings of the 2016 International Conference on Electronics, Mechanical Engineering and Computer Science. https://doi.org/10.2991/icemct-16.2016.219
  • Li, G., Luo, T., Liu, R., Song, C., Zhao, C., Wu, S., Liu, Z. (2024). Integration of carbon dioxide removal (CDR) technology and artificial intelligence (AI) in energy system optimization. Processes, 12(2), 402. https://doi.org/10.3390/pr12020402
  • Li, P., Yang, J., Islam, M. A., Ren, S. (2023). Making AI less “thirsty”: Uncovering and addressing the secret water footprint of AI models. arXiv preprint arXiv:2304.03271.
  • Li, X., Zhuang, Y., Yang, S. X. (2017). Cloud computing for big data processing. Intelligent Automation & Soft Computing, 23(4), 545-546.
  • Liu, J., Yu, Q., Y, Y., Yang, Z. (2022). Can artificial intelligence improve the energy efficiency of manufacturing companies? Evidence from China. International Journal of Environmental Research and Public Health, 19(4), 2091. https://doi.org/10.3390/ijerph19042091
  • M, S., Alam, M. M., Hossain, M. S., Andersson, K. (2022). Sustainable data centers: A systematic review of energy and water efficiency techniques. Sustainable Computing: Informatics and Systems, 33, 100623. https://doi.org/10.1016/j.suscom.2021.100623
  • Mallipeddi, R. (2022). Harnessing AI and IoT technologies for sustainable business operations in the energy sector. Asia Pacific Journal of Energy and Environment, 9(1), 735–749. https://doi.org/10.18034/apjee.v9i1.735
  • Mekonnen, M. M., Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323
  • Naeeni, S.K., Nouhi, N. (2023). The environmental impacts of AI and digital technologies. Aitechbesosci, 1(4), 3–15. https://doi.org/10.61838/kman.aitech.1.4.3
  • Nishant, R., Kennedy, M., Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2020.102104
  • Oladoyinbo, T. O., Olabanji, S. O., Olaniyi, O. O., Adebiyi, O. O., Okunleye, O. J., Ismaila Alao, A. (2024). (2024). Exploring the challenges of artificial intelligence in data integrity and its influence on social dynamics. Asian Journal of Advanced Research and Reports, 18(2), 1–10. https://doi.org/10.9734/ajarr/2024/v18i2601
  • Olatunde, T. M., Okwandu, A. C., Akande, D. O., Sikhakhane, Z. Q. (2024). Reviewing the role of artificial intelligence in energy efficiency optimization. Engineering Science Technology Journal, 5(4), 1243–1256. https://doi.org/10.51594/estj.v5i4.1015
  • OpenAI. (2024). Training large language models and their environmental costs. Scientific American. Retrieved from https://www.scientificamerican.com
  • Oró, E., Depoorter, V., Garcia, A., Salom, J. (2015). Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renewable and Sustainable Energy Reviews, 50, 1035–1045. https://doi.org/10.1016/j.rser.2014.10.035
  • Osibo, B., Adamo, S. (2023). Data centers and green energy: Paving the way for a sustainable digital future. International Journal of Latest Technology in Engineering Management Applied Science, 12(1), 1–10. https://doi.org/10.51583/ijltemas.2023.121103
  • Othman, N., Mohammad, R., Kamaruddin, S. A. (2015). Prediction of electronic waste disposals from residential areas in Malaysia. Jurnal Teknologi, 74(1), 1–10. https://doi.org/10.11113/jt.v74.4826
  • Peng, X., Bhattacharya, T., Cao, T., Mao, J., Tekreeti, T., Qin, X.  (2022). Exploiting renewable energy and UPS systems to reduce power consumption in data centers. Big Data Research, 28, 100306. https://doi.org/10.1016/j.bdr.2021.100306
  • Perucica, N., Andjelković, K. (2022). Is the future of AI sustainable? A case study of the European Union. Transforming Government: People, Process and Policy, 16(3), 1–20. https://doi.org/10.1108/tg-06-2021-0106
  • Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J., Kendy, E., Warner, A. (2015). The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147–170. https://doi.org/10.1111/j.1365-2427.2009.02204.x
  • Qian, K., Mao, L., Liang, X., Ding, Y., Gao, J., Wei, X., Li, J. (2023). Towards Sustainable Urban Planning via Multi-Agent Reinforcement Learning. arXiv preprint arXiv:2310.16772. https://arxiv.org/abs/2310.16772
  • Ramli, M. A., Jambari, D. I. (2018). Cooling system optimization in data centers: A review. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1–4), 1–6.
  • Rojek, I., Mroziński, A., Kotlarz, P., Macko, M., Mikołajewski, D. (2023). AI-based computational model in sustainable transformation of energy markets. Energies, 16(24), 8059. https://doi.org/10.3390/en16248059
  • Rolnick, D., Donti, P., Kaack, L., Kochanski, K., Lacoste, A., Sankaran, K., Bengio, Y. (2022). Tackling climate change with machine learning. ACM Computing Surveys, 55(2), 1–96. https://doi.org/10.1145/3485128
  • Schwartz, R., Dodge, J., Smith, N., Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63. https://doi.org/10.1145/3381831
  • Șerban, A., Lytras, M. (2020). Artificial intelligence for smart renewable energy sector in Europe—smart energy infrastructures for next generation smart cities. IEEE Access, 8, 77364–77377. https://doi.org/10.1109/access.2020.2990123
  • Shin, D. (2019). Toward fair, accountable, and transparent algorithms: Case studies on algorithm initiatives in Korea and China. Javnost-The Public, 26(3), 274–290.
  • Sîrbu, A., Babaoğlu, O. (2015). Towards sustainable cloud computing: A survey on achieving energy efficiency in software architectures. Sustainable Computing: Informatics and Systems, 6, 65–85. https://doi.org/10.1016/j.suscom.2015.01.001
  • Stanford University. (2024). Artificial Intelligence Index Report 2024. Stanford Institute for Human-Centered AI. Retrieved from https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_2024_AI-Index-Report.pdf.
  • Sun, X., Ansari, N., Wang, R. (2016). Optimizing resource utilization of a data center. IEEE Communications Surveys & Tutorials, 18(4), 2822-2846.
  • Sun, Z., Cao, H., Stojmenovic, M., Stojmenovic, I. (2016). Reducing the energy cost in cloud computing by using energy aware algorithms. IEEE Communications Letters, 20(8), 1524–1527. https://doi.org/10.1109/LCOMM.2016.2574999
  • Tamburrini, G. (2022). The AI carbon footprint and responsibilities of AI scientists. Philosophies, 7(1), 4. https://doi.org/10.3390/philosophies7010004
  • Uzaman, F. U., Alam, M. M., Hossain, M. S., Andersson, K. (2019). Towards sustainable data centers: A review and synthesis. Sustainable Computing: Informatics and Systems, 21, 168–186. https://doi.org/10.1016/j.suscom.2018.12.002
  • Villiers, C., Dimes, R., Molinari, M., (2023). How will AI text generation and processing impact sustainability reporting? Critical analysis, a conceptual framework and avenues for future research. Sustainability Accounting Management and Policy Journal. https://doi.org/10.1108/sampj-02-2023-0097
  • Wang, H., Tang, D. (2022). Challenges and opportunities for the energy management of sustainable data centers in smart grids. IOP Conference Series: Earth and Environmental Science, 984(1), 012005. https://doi.org/10.1088/1755-1315/984/1/012005
  • Wang, X., Ji, K., Xie, T. (2023). AI carbon footprint management with multi-agent participation: A tripartite evolutionary game analysis based on a case in China. Sustainability, 15(11), 9013. https://doi.org/10.3390/su15119013
  • Xiao, D. (2023). Neuroscience-inspired continuous learning: A sustainable approach to AI energy challenge. https://doi.org/10.31219/osf.io/twn9q
  • Xu, H., Wei, Q., Liu, Y. (2019). The exploring of electronic waste recycling in Chongqing. Proceedings of the 2019 International Conference on Humanities and Social Science Research. https://doi.org/10.2991/ichssr-19.2019.146
  • Yang, C., Huang, Q., Li, Z., Liu, K., Hu, F. (2017). Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 13-53.
  • Yang, J., Xiao, W., Jiang, C., Hossain, M. S., Muhammad, G., Amin, S. U.  (2019). AI-powered green cloud and data center. IEEE Access, 7, 28888–28899. https://doi.org/ 10.1109/ACCESS.2018.2888976
  • Zhang, S., Ding, Y., Liu, B., Pan, D. A., Chang, C. C.,Volinsky, A. A. (2015). Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China. Waste Management, 45, 1–12. https://doi.org/10.1016/j.wasman.2015.05.015
  • Zhang, J., Sang, L., Xu, Y., Sun, H. (2023). A Multi-agent Safe Reinforcement Learning Framework for Carbon-Constrained Demand Response. arXiv preprint arXiv:2311.15594. https://arxiv.org/abs/2311.15594
  • Zhao, Y., Fariñas, J. (2022). Artificial intelligence and sustainable decisions. European Business Organization Law Review, 23(2), 215–234. https://doi.org/10.1007/s40804-022-00262-2
  • Zhou, G. L., Zhu, Y. R., Mao, L. N. (2014). Design of the electronic waste recycle network system based on GIS. Applied Mechanics and Materials, 518, 381–385. https://doi.org/10.4028/www.scientific.net/amm.518.381
  • Zu, Y. X., Jia, S. S., Li, Z., Jia, Y.  (2012). Study on the layout and structure of the waste electronic products recycling network. Advanced Materials Research, 518–523, 3613–3617. https://doi.org/10.4028/www.scientific.net/amr.518-523.3613
There are 86 citations in total.

Details

Primary Language Turkish
Subjects Energy Systems Engineering (Other)
Journal Section Review Paper
Authors

Tülay Turan 0000-0002-0888-0343

Gökhan Turan 0000-0002-9698-8986

İbrahim Kırbaş 0000-0002-5560-638X

Early Pub Date June 13, 2025
Publication Date
Submission Date January 9, 2025
Acceptance Date May 6, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Turan, T., Turan, G., & Kırbaş, İ. (2025). Yapay zekanın çevresel ayak izi: Enerji, su ve elektronik atık üzerine çok yönlü bir analiz. Uluslararası Mühendislik Tasarım Ve Teknoloji Dergisi, 7(2), 78-89.