Research Article
BibTex RIS Cite

Microstructural and mechanical characterization of MgO-reinforced Al-Cu metal matrix composites fabricated via powder metallurgy

Year 2025, Volume: 7 Issue: 2, 54 - 60
https://doi.org/10.70669/ijedt.1681345

Abstract

Metal matrix composites (MMCs) incorporating ceramic particulates exhibit enhanced mechanical properties, including increased tensile strength, wear resistance, and thermal stability, compared to their unreinforced counterparts. This research investigates how varying amounts of magnesium oxide (MgO) affect Al-Cu composites’ microstructure, porosity, and hardness produced through powder metallurgy. MgO was added in weight percentages of 1%, 3%, and 5%, and the composites were assessed using several methods, such as Vickers microhardness testing, Archimedean density measurement, and scanning electron microscopy for microstructural analysis. The findings indicate that incorporating MgO leads to a slight increase in composite density, with the highest hardness measured at 1% MgO. This increase in hardness is associated with the presence of rigid ceramic reinforcements and intermetallic compounds that resist plastic deformation. Additionally, MgO particles promote grain refinement, likely due to their nucleating effect, which further enhances mechanical properties. This research provides valuable insights into the role of MgO as a reinforcement in Al-Cu composites, underscoring its potential applications in industries that demand materials with high strength and low density.

References

  • Aktar Zahid Sohag, M., Gupta, P., Kondal, N., Kumar, D., Singh, N., and Jamwal, A. (2020). Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al-Cu alloy metal matrix composite. Materials Today: Proceedings, 21, 1407-1411.
  • Al-Twejri, B. A., Hamood, B. K., Abed, R. M., and Al-Alkawi, H. J. M. (2023). Electrical, Magnetic, And Mechanical Properties Of Al 7075-T6/Al2o3-T6 Composites Processed By Stir Casting Route. Journal of Engineering Science and Technology, 18(6), 2867-2879.
  • Angelo, P. C., Subramanian, R., and Ravisankar, B. (2022). Powder metallurgy: science, technology and applications (Vol. 10): PHI Learning Pvt. Ltd.
  • Aslan, M. (2023a). Investigation of effect of W-Zn-Co alloy on microstructure and hardness of the epoxy composites. International Journal of Engineering and Applied Sciences, 15(4), 144-149.
  • Aslan, M. (2023b). Mechanical and Optical Properties of Multiwall Carbon Nanotube-Reinforced ZA27-Al2O3 Hybrid Composites Fabricated by Powder Metallurgy Routine. International Journal of Engineering and Applied Sciences, 15(3), 86-94.
  • Aslan, M. (2024). The Microstructure, Hardness, and Density Investigation of Mg Composites Reinforced with Kaolin. International Journal of Engineering and Applied Sciences, 16(3), 116-122.
  • Aslan, M., Eskalen, H., and Kavgaci, M. (2023). Carbon Quantum Dot (CQD) Nanoparticles Synthesized by Sucrose and Urea: Application as Reinforcement Effect on Al–Mg–Cu–Zn Composite. Russian Journal of General Chemistry, 93(8), 2152-2160.
  • Aslan, M., Yaykaşlı, H., and Eskalen, H. (2023). The W-Zn-Co-Y2O3 alloys synthesized by a secondary ball milling method and their effects on adhesion performance of single lap joints of aluminum composites. Materials Today Communications, 36, 106723.
  • Ateş, S., and Coşman, S. (2025). Hardness, wear and thermal properties of SiC/carbon black-reinforced al6061 matrix composites produced via powder metallurgy. Science of Sintering(00), 16-16.
  • Beder, M., Varol, T., and Akçay, S. B. (2024). Impact of high Al2O3 content on the microstructure, mechanical properties, and wear behavior Al–Cu–Mg/Al2O3 composites prepared by mechanical milling. Ceramics International, 50(20, Part A), 38610-38631.
  • Chen, S. (2024). Advancements in surface treatments for aluminum alloys in sports equipment. Reviews on Advanced Materials Science, 63(1), 20240065.
  • Çankaya, K. (2022). Yerli grafen nano plakalarla takviye edilmiş Al-Cu esaslı alaşım matrisli kompozitlerin toz metalurjisi yöntemi ile üretimi, ısıl işlemi ve karakterizasyonu.
  • Erdemir, F., Canakci, A., and Varol, T. (2015). Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques. Transactions of Nonferrous Metals Society of China, 25(11), 3569-3577.
  • Foltz, J. V., and Blackmon, C. M. (1998). Metal matrix composites. Advanced Materials & Processes, 154(6), 19.
  • Godbole, K., Bhushan, B., Murty, S. V. S. N., and Mondal, K. (2024). Al-Si controlled expansion alloys for electronic packaging applications. Progress in Materials Science, 101268.
  • Guo, X., Song, K., Xu, W., Li, G., and Zhang, Z. (2020). Effect of TiB2 particle size on the material transfer behaviour of Cu–TiB2 composites. Materials Science and Technology, 36(15), 1685-1694.
  • Hassan, A. M., Mayyas, A. T., Alrashdan, A., and Hayajneh, M. T. (2008). Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. Journal of Materials Science, 43, 5368-5375.
  • Huang, L. J., Geng, L., and Peng, H. X. (2015). Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal? Progress in Materials Science, 71, 93-168.
  • Jain, S., Rana, R. S., and Jain, P. (2016). Study of microstructure and mechanical properties of Al-Cu metal matrix reinforced with B4C particles Composite. International Research Journal of Engineering and Technology, 3(1), 499-504.
  • Kaftelen, H., Ünlü, N., Göller, G., Lütfi Öveçoğlu, M., and Henein, H. (2011). Comparative processing-structure–property studies of Al–Cu matrix composites reinforced with TiC particulates. Composites Part A: Applied Science and Manufacturing, 42(7), 812-824.
  • Kaku, S. M. Y., Khanra, A. K., and Davidson, M. J. (2018). Effect of deformation on properties of Al/Al-alloy ZrB2 powder metallurgy composite. Journal of Alloys and Compounds, 747, 666-675.
  • Kar, A., Maji, S., Halder, S., Roy, S., and Das, B. C. (2024). Nanoceramics in advanced materials industry for renewable energy and storage. In Industrial Applications of Nanoceramics (pp. 293-319): Elsevier.
  • Kaya, E., and Birgin, P. Ç. T. (2024). Microstructural, Mechanical, and Tribological Characteristics of Ceramic Reinforced Al/Cu Hybrid Matrix Composites. Physics of Metals and Metallography, 125(7), 797-808.
  • Kocaman, R., and Ateş, S. (2023). Al6061 Matrisli SiC Al2O3 ve Kömür Cürufu Tozu Takviyeli Hibrit Kompozitlerin Sertlik ve Aşınma Davranışlarının İncelenmesi. International Journal of Engineering Research and Development, 15(2), 598-609.
  • kundu, s., and Mondal, S. C. (2024). Electro-thermal and mechanical property analysis of powder metallurgy processed, multi-stage ball milled aluminium-copper-multi walled carbon nanotube composite. Engineering Research Express.
  • Moustafa, E. B., Aljabri, A., Abushanab, W. S., Ghandourah, E., Taha, M. A., Khoshaim, A. B., Youness, R. A., and Mohamed, S. S. (2024). A comprehensive study of Al-Cu-Mg system reinforced with nano-ZrO2 particles synthesized by powder metallurgy technique. Scientific Reports, 14(1), 2862.
  • Oyewo, A. T., Oluwole, O. O., Ajide, O. O., Omoniyi, T. E., and Hussain, M. (2024). A summary of current advancements in hybrid composites based on aluminium matrix in aerospace applications. Hybrid Advances, 5, 100117.
  • Rodríguez-Cabriales, G., Lometo-Sánchez, A. M., Guía-Tello, J. C., Medrano-Prieto, H. M., Gutiérrez-Castañeda, E. J., Estrada-Guel, I., Garay-Reyes, C. G., Hernández-Rivera, J. L., Cruz-Rivera, J. J., and Maldonado-Orozco, M. C. (2020). Synthesis and characterization of Al-Cu-Mg system reinforced with tungsten carbide through powder metallurgy. Materials Today Communications, 22, 100758.
  • Sadooghi, A., and Hashemi, S. J. (2019). Investigating the influence of ZnO, CuO, Al2O3 reinforcing nanoparticles on strength and wearing properties of aluminum matrix nanocomposites produced by powder metallurgy process. Materials Research Express, 6(10), 105019.
  • Sadoun, A. M., Mohammed, M. M., Elsayed, E. M., Meselhy, A. F., and El-Kady, O. A. (2020). Effect of nano Al2O3 coated Ag addition on the corrosion resistance and electrochemical behavior of Cu-Al2O3 nanocomposites. [s]. Journal of Materials Research and Technology, 9(3), 4485-4493.
  • Schwartz, M. M. (1984). Composite Materials Handbook. McGraw-Hill google schola, 2, 1623-1638.
  • Tok, A., and Ateş, S. (2023). Al6061 Matrisli Hibrit Kompozitlerin Sertlik ve Çekme Dayanımına SiC Al2O3 ve Yumurta Kabuğu Tozu Takviyesinin Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1307-1317.
  • Wang, Z., Song, M., Sun, C., and He, Y. (2011). Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Materials Science and Engineering: A, 528(3), 1131-1137.
  • Wu, X., and Zhang, W. (2024). A review on aluminum matrix composites’ characteristics and applications for automotive sector. Heliyon, 10, 1-16.
  • Yar, A. A., Montazerian, M., Abdizadeh, H., and Baharvandi, H. R. (2009). Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. Journal of Alloys and Compounds, 484(1-2), 400-404.
  • Yu, P., Deng, C.-J., Ma, N.-G., Yau, M.-Y., and Ng, D. H. L. (2003). Formation of nanostructured eutectic network in α-Al2O3 reinforced Al–Cu alloy matrix composite. Acta Materialia, 51(12), 3445-3454.
  • Zhao, D. G., Liu, X. F., Pan, Y. C., Bian, X. F., and Liu, X. J. (2007). Microstructure and mechanical properties of in situ synthesized (TiB2+ Al2O3)/Al–Cu composites. Journal of Materials Processing Technology, 189(1-3), 237-241.

Toz metalurji yöntemiyle üretilen MgO-ile takviyeli Al-Cu metal matriks kompozitlerinin mikroyapisal ve mekanik karakterizasyonu

Year 2025, Volume: 7 Issue: 2, 54 - 60
https://doi.org/10.70669/ijedt.1681345

Abstract

Seramik parçacıkları ile takviye edilmiş metal matriks kompozitleri (MMCs), takviye edilmemiş matrislere kıyasla artırılmış dayanım, aşınma direnci ve termal stabilite gibi üstün özellikler sunar. Bu çalışma, toz metalurjisi ile üretilen Al-Cu kompozitlerinin mikroyapısı, yoğunluğu ve sertliği üzerindeki değişen magnezyum oksit (MgO) içeriğinin etkilerini incelemektedir. MgO, %1, %3 ve %5 ağırlık oranlarında eklenmiş ve kompozitler, Vickers mikrosertlik testi, Arşimet Prensibi ile yoğunluk ölçümü ve mikroyapısal analizler gibi çeşitli yöntemlerle karakterize edilmiştir. Sonuçlar, MgO eklenmesinin kompozit yoğunluğunda hafif bir artışa yol açtığını, en yüksek sertlik değerlerinin ise %1 MgO içeren kompozitte gözlendiğini göstermektedir. MgO parçacıklarının varlığı, sert seramik parçacıkları ve intermetalik fazların oluşumu yoluyla plastik deformasyonu sınırlayarak sertliği artırmaktadır. Ayrıca, MgO’nun eklenmesi, muhtemelen çekirdeklenme ajanı olarak rol oynayarak tane yapısını iyileştirmiş ve bu da mekanik özelliklerin daha da gelişmesine katkı sağlamıştır. Bu çalışma, MgO’nun Al-Cu kompozitlerinin özelliklerini iyileştirmedeki rolüne dair değerli bilgiler sunmakta ve yüksek dayanıklı, hafif malzemelere ihtiyaç duyan sanayilerdeki potansiyel uygulamaları vurgulamaktadır.

References

  • Aktar Zahid Sohag, M., Gupta, P., Kondal, N., Kumar, D., Singh, N., and Jamwal, A. (2020). Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al-Cu alloy metal matrix composite. Materials Today: Proceedings, 21, 1407-1411.
  • Al-Twejri, B. A., Hamood, B. K., Abed, R. M., and Al-Alkawi, H. J. M. (2023). Electrical, Magnetic, And Mechanical Properties Of Al 7075-T6/Al2o3-T6 Composites Processed By Stir Casting Route. Journal of Engineering Science and Technology, 18(6), 2867-2879.
  • Angelo, P. C., Subramanian, R., and Ravisankar, B. (2022). Powder metallurgy: science, technology and applications (Vol. 10): PHI Learning Pvt. Ltd.
  • Aslan, M. (2023a). Investigation of effect of W-Zn-Co alloy on microstructure and hardness of the epoxy composites. International Journal of Engineering and Applied Sciences, 15(4), 144-149.
  • Aslan, M. (2023b). Mechanical and Optical Properties of Multiwall Carbon Nanotube-Reinforced ZA27-Al2O3 Hybrid Composites Fabricated by Powder Metallurgy Routine. International Journal of Engineering and Applied Sciences, 15(3), 86-94.
  • Aslan, M. (2024). The Microstructure, Hardness, and Density Investigation of Mg Composites Reinforced with Kaolin. International Journal of Engineering and Applied Sciences, 16(3), 116-122.
  • Aslan, M., Eskalen, H., and Kavgaci, M. (2023). Carbon Quantum Dot (CQD) Nanoparticles Synthesized by Sucrose and Urea: Application as Reinforcement Effect on Al–Mg–Cu–Zn Composite. Russian Journal of General Chemistry, 93(8), 2152-2160.
  • Aslan, M., Yaykaşlı, H., and Eskalen, H. (2023). The W-Zn-Co-Y2O3 alloys synthesized by a secondary ball milling method and their effects on adhesion performance of single lap joints of aluminum composites. Materials Today Communications, 36, 106723.
  • Ateş, S., and Coşman, S. (2025). Hardness, wear and thermal properties of SiC/carbon black-reinforced al6061 matrix composites produced via powder metallurgy. Science of Sintering(00), 16-16.
  • Beder, M., Varol, T., and Akçay, S. B. (2024). Impact of high Al2O3 content on the microstructure, mechanical properties, and wear behavior Al–Cu–Mg/Al2O3 composites prepared by mechanical milling. Ceramics International, 50(20, Part A), 38610-38631.
  • Chen, S. (2024). Advancements in surface treatments for aluminum alloys in sports equipment. Reviews on Advanced Materials Science, 63(1), 20240065.
  • Çankaya, K. (2022). Yerli grafen nano plakalarla takviye edilmiş Al-Cu esaslı alaşım matrisli kompozitlerin toz metalurjisi yöntemi ile üretimi, ısıl işlemi ve karakterizasyonu.
  • Erdemir, F., Canakci, A., and Varol, T. (2015). Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques. Transactions of Nonferrous Metals Society of China, 25(11), 3569-3577.
  • Foltz, J. V., and Blackmon, C. M. (1998). Metal matrix composites. Advanced Materials & Processes, 154(6), 19.
  • Godbole, K., Bhushan, B., Murty, S. V. S. N., and Mondal, K. (2024). Al-Si controlled expansion alloys for electronic packaging applications. Progress in Materials Science, 101268.
  • Guo, X., Song, K., Xu, W., Li, G., and Zhang, Z. (2020). Effect of TiB2 particle size on the material transfer behaviour of Cu–TiB2 composites. Materials Science and Technology, 36(15), 1685-1694.
  • Hassan, A. M., Mayyas, A. T., Alrashdan, A., and Hayajneh, M. T. (2008). Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. Journal of Materials Science, 43, 5368-5375.
  • Huang, L. J., Geng, L., and Peng, H. X. (2015). Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal? Progress in Materials Science, 71, 93-168.
  • Jain, S., Rana, R. S., and Jain, P. (2016). Study of microstructure and mechanical properties of Al-Cu metal matrix reinforced with B4C particles Composite. International Research Journal of Engineering and Technology, 3(1), 499-504.
  • Kaftelen, H., Ünlü, N., Göller, G., Lütfi Öveçoğlu, M., and Henein, H. (2011). Comparative processing-structure–property studies of Al–Cu matrix composites reinforced with TiC particulates. Composites Part A: Applied Science and Manufacturing, 42(7), 812-824.
  • Kaku, S. M. Y., Khanra, A. K., and Davidson, M. J. (2018). Effect of deformation on properties of Al/Al-alloy ZrB2 powder metallurgy composite. Journal of Alloys and Compounds, 747, 666-675.
  • Kar, A., Maji, S., Halder, S., Roy, S., and Das, B. C. (2024). Nanoceramics in advanced materials industry for renewable energy and storage. In Industrial Applications of Nanoceramics (pp. 293-319): Elsevier.
  • Kaya, E., and Birgin, P. Ç. T. (2024). Microstructural, Mechanical, and Tribological Characteristics of Ceramic Reinforced Al/Cu Hybrid Matrix Composites. Physics of Metals and Metallography, 125(7), 797-808.
  • Kocaman, R., and Ateş, S. (2023). Al6061 Matrisli SiC Al2O3 ve Kömür Cürufu Tozu Takviyeli Hibrit Kompozitlerin Sertlik ve Aşınma Davranışlarının İncelenmesi. International Journal of Engineering Research and Development, 15(2), 598-609.
  • kundu, s., and Mondal, S. C. (2024). Electro-thermal and mechanical property analysis of powder metallurgy processed, multi-stage ball milled aluminium-copper-multi walled carbon nanotube composite. Engineering Research Express.
  • Moustafa, E. B., Aljabri, A., Abushanab, W. S., Ghandourah, E., Taha, M. A., Khoshaim, A. B., Youness, R. A., and Mohamed, S. S. (2024). A comprehensive study of Al-Cu-Mg system reinforced with nano-ZrO2 particles synthesized by powder metallurgy technique. Scientific Reports, 14(1), 2862.
  • Oyewo, A. T., Oluwole, O. O., Ajide, O. O., Omoniyi, T. E., and Hussain, M. (2024). A summary of current advancements in hybrid composites based on aluminium matrix in aerospace applications. Hybrid Advances, 5, 100117.
  • Rodríguez-Cabriales, G., Lometo-Sánchez, A. M., Guía-Tello, J. C., Medrano-Prieto, H. M., Gutiérrez-Castañeda, E. J., Estrada-Guel, I., Garay-Reyes, C. G., Hernández-Rivera, J. L., Cruz-Rivera, J. J., and Maldonado-Orozco, M. C. (2020). Synthesis and characterization of Al-Cu-Mg system reinforced with tungsten carbide through powder metallurgy. Materials Today Communications, 22, 100758.
  • Sadooghi, A., and Hashemi, S. J. (2019). Investigating the influence of ZnO, CuO, Al2O3 reinforcing nanoparticles on strength and wearing properties of aluminum matrix nanocomposites produced by powder metallurgy process. Materials Research Express, 6(10), 105019.
  • Sadoun, A. M., Mohammed, M. M., Elsayed, E. M., Meselhy, A. F., and El-Kady, O. A. (2020). Effect of nano Al2O3 coated Ag addition on the corrosion resistance and electrochemical behavior of Cu-Al2O3 nanocomposites. [s]. Journal of Materials Research and Technology, 9(3), 4485-4493.
  • Schwartz, M. M. (1984). Composite Materials Handbook. McGraw-Hill google schola, 2, 1623-1638.
  • Tok, A., and Ateş, S. (2023). Al6061 Matrisli Hibrit Kompozitlerin Sertlik ve Çekme Dayanımına SiC Al2O3 ve Yumurta Kabuğu Tozu Takviyesinin Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(5), 1307-1317.
  • Wang, Z., Song, M., Sun, C., and He, Y. (2011). Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Materials Science and Engineering: A, 528(3), 1131-1137.
  • Wu, X., and Zhang, W. (2024). A review on aluminum matrix composites’ characteristics and applications for automotive sector. Heliyon, 10, 1-16.
  • Yar, A. A., Montazerian, M., Abdizadeh, H., and Baharvandi, H. R. (2009). Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. Journal of Alloys and Compounds, 484(1-2), 400-404.
  • Yu, P., Deng, C.-J., Ma, N.-G., Yau, M.-Y., and Ng, D. H. L. (2003). Formation of nanostructured eutectic network in α-Al2O3 reinforced Al–Cu alloy matrix composite. Acta Materialia, 51(12), 3445-3454.
  • Zhao, D. G., Liu, X. F., Pan, Y. C., Bian, X. F., and Liu, X. J. (2007). Microstructure and mechanical properties of in situ synthesized (TiB2+ Al2O3)/Al–Cu composites. Journal of Materials Processing Technology, 189(1-3), 237-241.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Paper
Authors

Mikail Aslan 0000-0003-0578-5049

Early Pub Date June 12, 2025
Publication Date
Submission Date April 21, 2025
Acceptance Date May 15, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Aslan, M. (2025). Toz metalurji yöntemiyle üretilen MgO-ile takviyeli Al-Cu metal matriks kompozitlerinin mikroyapisal ve mekanik karakterizasyonu. Uluslararası Mühendislik Tasarım Ve Teknoloji Dergisi, 7(2), 54-60. https://doi.org/10.70669/ijedt.1681345