Research Article
BibTex RIS Cite

Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının ve Toksisite Azaltımının İncelenmesi

Year 2024, Volume: 8 Issue: 2, 118 - 127, 31.12.2024

Abstract

Su ortamlarında zararlı alg çoğalmalarının son yıllarda artması ve su ortamında meydana getirdiği toksik siyanobakteri büyümesi konusunda farkındalığın artması, sağlık, eğlence, tarım, su ürünleri yetiştiriciliği ve içme suyu teminindeki siyanobakteriyel toksinlerin arıtımını zorunlu kılmaktadır. Geleneksel içme suyu arıtma prosesleri, suda tat, koku vb. problemlere neden olan siyanobakteriyel hücrelerin parçalanmasına ve ardından siyanotoksinlerin suda salınmasına ve toksik yan ürünler üretme olasılığına yol açmaktadır. Bu toksik ürünler ise klasik arıtma yöntemleriyle gderilememektedir. Ayrıca bu bileşikler su ortamında kısmi olarak arıtılsalar bile meydana getirdikleri yan ürünlerin toksisitesi içme suyu için hala bir tehdit oluşturmaktadır. Bu nedenle bileşiklerin toksik olmayan yan ürünler üreten İleri Oksidasyon prosesleri (İOP) ile arıtılmasına ihtiyaç duyulmaktadır. Bu nedenle bu çalışmada su ortamında yaygın olarak bulunan siyanobakteriyel toksin bileşiklerinden MC-RR’nin düşük ve yüksek frekanslarda ultrasonik oksidasyonu incelenerek oksidasyon sonrası ürünlerin toksisitesi değerlendirilmiştir. Çalışma sonunda, MC-RR’nin 30 dakika boyunca 578 kHz frekansta ultrasonik oksidasyonunun 2. mertebe kientiğe uyduğu ve %10-12 oranında bir konsantrasyon azalması sağladığı belirlenmiştir. MC-RR’nin başlangıç konsantrasyonlarının (1,25 µg/L) sağlıklı fare karaciğer hücrelerinin canlılığını %85 civarına düşürmüş; tüm ultrasonik sistemlerde oksidasyon sonunda, hücre canlılıkları ya aynı kalmış ya da başlangıç konsantrasyonuna göre %5 oranında daha artmıştır.

Project Number

TUBİTAK 119Y414

References

  • [1] He, X., Liu, Y. L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., & Walker, H. W. 2016. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment, Harmful algae, 54, 174-193.
  • [2] Anderson, D. M., Glibert, P. M., & Burkholder, J. M. 2002. Harmful algal blooms and eutrophication: nutrientsources, composition, and consequences. Estuaries, 25, 704- 726.
  • 3] Funari, E., Testai, E. 2008. Human health risk assessment related to cyanotoxins exposure, Critical reviews in toxicology, 38(2), 97-125.
  • [4] USEPA 2022. Indicators: Cyanobacteria, https://www.epa.gov, Access Date: 29.01.2023.
  • [5] WHO,1998. Cyanobacterial toxins: microcystin-LR, In: Guidelines for Drinking- Water Quality, second ed. Addendum to Volume 2, Health Criteria and Other Supporting Information. WHO, Geneva, Switzerland, pp. 95–110.
  • [6] Chen, W., Song, L., Gan, N., & Li, L. 2006. Sorption, degradation and mobility of microcystins in Chinese agriculture soils: risk assessment for groundwater protection, Environmental Pollution, 144(3), 752-758.
  • [7] Mishra, A. K., Tiwari, D. N., & Rai, A. N. (Eds.). 2018. Cyanobacteria: from basic science to applications, Academic Press.
  • [8] WHO, 1999. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, Routledge, London and New York.
  • [9] Turner, A. D., Dhanji-Rapkova, M., O’Neill, A., Coates, L., Lewis, A., & Lewis, K. 2018. Analysis of microcystins in cyanobacterial blooms from freshwater bodies in England. Toxin s, 10(1), 39, 1-29.
  • [10] Wu, H., Kimball, J. S., Mantua, N., & Stanford, J., 2011. Automated upscaling of river networks for macroscale hydrological modeling. Water Resources Research, 47(3).
  • [11] Antoniou, M. G., De La Cruz, A. A., Pelaez, M. A., Han, C., He, X., Dionysiou, D. D., & Sharma,V.K., 2014. Practices that prevent the formation of cyanobacterial blooms in water resources and remove cyanotoxins during physical treatment of drinking water, Elsevier Inc..
  • [12] Mason, T. J., Cobley, A. J., Graves, J. E., & Morgan, D. 2011. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound, Ultrasonics sonochemistry, 18(1), 226-230.
  • [13] Nowak, F. M. (Ed.). 2010. Sonochemistry: Theory, reactions, syntheses, and applications. Nova Science Publishers, Incorporated.
  • [14] Eren, Z. 2012. Ultrasound as a basic and auxiliary process for dye remediation: a review. Journal of Environmental Management, 104, 127-141.
  • [15] Li, W., Duan, J., Niu, C., Qiang, N., & Mulcahy, D. 2011. Determination of microcystin-LR in drinking water using UPLC tandem mass spectrometry-matrix effects and measurement, Journal of chromatographic science, 49(9), 665-670.
  • [16] Jaramillo, M., O'Shea, K. E. 2019. Analytical methods for assessment of cyanotoxin contamination in drinking water sources, Current Opinion in Environmental Science & Health, 7, 45-51.
  • [17] Liu, M., Lu, J., Hu, J., Chen, Y., Deng, X., Wang, J., ... & Guan, S., 2024. Sodium sulfite triggered hepatic apoptosis, necroptosis, and pyroptosis by inducing mitochondrial damage in mice and AML-12 cells. Journal of Hazardous Materials, 467, 133719.
  • [18] Huber, M. M., Canonica, S., Park, G. Y., & Von Gunten, U., 200). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental science & technology, 37(5), 1016-1024.
  • [19] He, X., de la Cruz, A. A., Hiskia, A., Kaloudis, T., O'Shea, K., & Dionysiou, D. D. 2015. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): Influence of variable amino acids on the degradation kinetics and reaction mechanisms. water research, 74, 227-238.
  • [20] de Andrade, F. V., Augusti, R., & de Lima, G. M. 2021. Ultrasound for the remediation of contaminated waters with persistent organic pollutants: A short review. Ultrasonics Sonochemistry, 78, 105719.
  • [21] Eren, Z., & O’Shea, K. 2019. Hydroxyl radical generation and partitioning in degradation of methylene blue and DEET by dual-frequency ultrasonic irradiation. Journalof Environmental Engineering, 145(10), 04019070.
  • [22] Sivakumar, M., Tatake, P. A., & Pandit, A. B. 2002. Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system, Chemical Engineering Journal, 85(2-3), 327-338.
  • [23] Servant, G., Laborde, J. L., Hita, A., Caltagirone, J. P., & Gerard, A. 2003. On the interaction between ultrasound waves and bubble clouds in mono-and dual-frequency sonoreactors, Ultrasonics Sonochemistry, 10(6), 347-355.
  • [24] Song, W., De La Cruz, A. A., Rein, K., & O'Shea, K. E. 2006. Ultrasonically induced degradation of microcystin-LR and-RR: Identification of products, effect of pH, formation and destruction of peroxides. Environmental science & technology, 40(12), 3941-3946.
  • [25] Miao, H. F., Qin, F., Tao, G. J., Tao, W. Y., & Ruan, W. Q., 2010. Detoxification and degradation of microcystin-LR and-RR by ozonation. Chemosphere, 79(4), 355-361.
  • [26] Qiao, R. P., Li, N., Qi, X. H., Wang, Q. S., & Zhuang, Y. Y. 2005. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon, 45(6), 745-752.
  • [27] Park, J. A., Yang, B., Park, C., Choi, J. W., van Genuchten, C. M., & Lee, S. H., 2017. Oxidation of microcystin-LR by the Fenton process: Kinetics, degradation intermediates, water quality and toxicity assessment. Chemical Engineering Journal, 309, 339-348.
  • [28] Hudder, A., Song, W., O’Shea, K. E., Walsh, P. J. 2007. Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation, Toxicology and applied pharmacology, 220(3), 357-364.

The Investigation of Ultrasonic Degradation and Toxicity Reduction of MC-RR sourced by Harmful Algal Bloom

Year 2024, Volume: 8 Issue: 2, 118 - 127, 31.12.2024

Abstract

In recent years, the increase in harmful algal blooms in aquatic environments and awareness about the toxic cyanobacteria growth in the aquatic environment has become mandatory the treatment of cyanobacterial toxins for the health, entertainment, agriculture, aquaculture and drinking water supply. Traditional drinking water treatment processes leads to the lysis of the cyanobacterial cells and the subsequent release of cyanotoxins and potentially producing toxic by-products to the water supply causing the taste, odor, etc. problem. These toxic products cannot be removed by classical treatment processes. Moreover, even if these compounds are partially treated in the aquatic environment, the toxicity of the by-products still pose a threat to drinking water. Therefore, Advanced Oxidation processes (AOP) has been focused to treat for this kind of compounds that produce non-toxic by-products. Thus, the low and high frequencies of the ultrasonic oxidation of MC-RR, as an important AOP, one of the cyanobacterial toxin compounds commonly found in the aquatic environment was investigated and the toxicity of the post-oxidation products was evaluated in this study. According to results, it was determined that ultrasonic oxidation of MC-RR at a frequency of 578 kHz for 30 minutes provided a 10-12% concentration reduction with the second order degradation rate. Initial concentrations of MC-RR (1.25 µg/L) reduced the viability of healthy mouse liver cells to around 85%. At the end of oxidation in all ultrasonic frequencies, cell viability either remained the same or increased by 5% compared to the initial concentration.

Project Number

TUBİTAK 119Y414

References

  • [1] He, X., Liu, Y. L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., & Walker, H. W. 2016. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment, Harmful algae, 54, 174-193.
  • [2] Anderson, D. M., Glibert, P. M., & Burkholder, J. M. 2002. Harmful algal blooms and eutrophication: nutrientsources, composition, and consequences. Estuaries, 25, 704- 726.
  • 3] Funari, E., Testai, E. 2008. Human health risk assessment related to cyanotoxins exposure, Critical reviews in toxicology, 38(2), 97-125.
  • [4] USEPA 2022. Indicators: Cyanobacteria, https://www.epa.gov, Access Date: 29.01.2023.
  • [5] WHO,1998. Cyanobacterial toxins: microcystin-LR, In: Guidelines for Drinking- Water Quality, second ed. Addendum to Volume 2, Health Criteria and Other Supporting Information. WHO, Geneva, Switzerland, pp. 95–110.
  • [6] Chen, W., Song, L., Gan, N., & Li, L. 2006. Sorption, degradation and mobility of microcystins in Chinese agriculture soils: risk assessment for groundwater protection, Environmental Pollution, 144(3), 752-758.
  • [7] Mishra, A. K., Tiwari, D. N., & Rai, A. N. (Eds.). 2018. Cyanobacteria: from basic science to applications, Academic Press.
  • [8] WHO, 1999. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, Routledge, London and New York.
  • [9] Turner, A. D., Dhanji-Rapkova, M., O’Neill, A., Coates, L., Lewis, A., & Lewis, K. 2018. Analysis of microcystins in cyanobacterial blooms from freshwater bodies in England. Toxin s, 10(1), 39, 1-29.
  • [10] Wu, H., Kimball, J. S., Mantua, N., & Stanford, J., 2011. Automated upscaling of river networks for macroscale hydrological modeling. Water Resources Research, 47(3).
  • [11] Antoniou, M. G., De La Cruz, A. A., Pelaez, M. A., Han, C., He, X., Dionysiou, D. D., & Sharma,V.K., 2014. Practices that prevent the formation of cyanobacterial blooms in water resources and remove cyanotoxins during physical treatment of drinking water, Elsevier Inc..
  • [12] Mason, T. J., Cobley, A. J., Graves, J. E., & Morgan, D. 2011. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound, Ultrasonics sonochemistry, 18(1), 226-230.
  • [13] Nowak, F. M. (Ed.). 2010. Sonochemistry: Theory, reactions, syntheses, and applications. Nova Science Publishers, Incorporated.
  • [14] Eren, Z. 2012. Ultrasound as a basic and auxiliary process for dye remediation: a review. Journal of Environmental Management, 104, 127-141.
  • [15] Li, W., Duan, J., Niu, C., Qiang, N., & Mulcahy, D. 2011. Determination of microcystin-LR in drinking water using UPLC tandem mass spectrometry-matrix effects and measurement, Journal of chromatographic science, 49(9), 665-670.
  • [16] Jaramillo, M., O'Shea, K. E. 2019. Analytical methods for assessment of cyanotoxin contamination in drinking water sources, Current Opinion in Environmental Science & Health, 7, 45-51.
  • [17] Liu, M., Lu, J., Hu, J., Chen, Y., Deng, X., Wang, J., ... & Guan, S., 2024. Sodium sulfite triggered hepatic apoptosis, necroptosis, and pyroptosis by inducing mitochondrial damage in mice and AML-12 cells. Journal of Hazardous Materials, 467, 133719.
  • [18] Huber, M. M., Canonica, S., Park, G. Y., & Von Gunten, U., 200). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental science & technology, 37(5), 1016-1024.
  • [19] He, X., de la Cruz, A. A., Hiskia, A., Kaloudis, T., O'Shea, K., & Dionysiou, D. D. 2015. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): Influence of variable amino acids on the degradation kinetics and reaction mechanisms. water research, 74, 227-238.
  • [20] de Andrade, F. V., Augusti, R., & de Lima, G. M. 2021. Ultrasound for the remediation of contaminated waters with persistent organic pollutants: A short review. Ultrasonics Sonochemistry, 78, 105719.
  • [21] Eren, Z., & O’Shea, K. 2019. Hydroxyl radical generation and partitioning in degradation of methylene blue and DEET by dual-frequency ultrasonic irradiation. Journalof Environmental Engineering, 145(10), 04019070.
  • [22] Sivakumar, M., Tatake, P. A., & Pandit, A. B. 2002. Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system, Chemical Engineering Journal, 85(2-3), 327-338.
  • [23] Servant, G., Laborde, J. L., Hita, A., Caltagirone, J. P., & Gerard, A. 2003. On the interaction between ultrasound waves and bubble clouds in mono-and dual-frequency sonoreactors, Ultrasonics Sonochemistry, 10(6), 347-355.
  • [24] Song, W., De La Cruz, A. A., Rein, K., & O'Shea, K. E. 2006. Ultrasonically induced degradation of microcystin-LR and-RR: Identification of products, effect of pH, formation and destruction of peroxides. Environmental science & technology, 40(12), 3941-3946.
  • [25] Miao, H. F., Qin, F., Tao, G. J., Tao, W. Y., & Ruan, W. Q., 2010. Detoxification and degradation of microcystin-LR and-RR by ozonation. Chemosphere, 79(4), 355-361.
  • [26] Qiao, R. P., Li, N., Qi, X. H., Wang, Q. S., & Zhuang, Y. Y. 2005. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon, 45(6), 745-752.
  • [27] Park, J. A., Yang, B., Park, C., Choi, J. W., van Genuchten, C. M., & Lee, S. H., 2017. Oxidation of microcystin-LR by the Fenton process: Kinetics, degradation intermediates, water quality and toxicity assessment. Chemical Engineering Journal, 309, 339-348.
  • [28] Hudder, A., Song, W., O’Shea, K. E., Walsh, P. J. 2007. Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation, Toxicology and applied pharmacology, 220(3), 357-364.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Environmental Pollution and Prevention
Journal Section Articles
Authors

Melikşah Tekin 0000-0002-2607-2569

Zeynep Eren

Project Number TUBİTAK 119Y414
Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 15, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Tekin, M., & Eren, Z. (2024). Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının ve Toksisite Azaltımının İncelenmesi. Uluslararası Çevresel Eğilimler Dergisi, 8(2), 118-127.
AMA Tekin M, Eren Z. Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının ve Toksisite Azaltımının İncelenmesi. IJENT. December 2024;8(2):118-127.
Chicago Tekin, Melikşah, and Zeynep Eren. “Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının Ve Toksisite Azaltımının İncelenmesi”. Uluslararası Çevresel Eğilimler Dergisi 8, no. 2 (December 2024): 118-27.
EndNote Tekin M, Eren Z (December 1, 2024) Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının ve Toksisite Azaltımının İncelenmesi. Uluslararası Çevresel Eğilimler Dergisi 8 2 118–127.
IEEE M. Tekin and Z. Eren, “Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının ve Toksisite Azaltımının İncelenmesi”, IJENT, vol. 8, no. 2, pp. 118–127, 2024.
ISNAD Tekin, Melikşah - Eren, Zeynep. “Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının Ve Toksisite Azaltımının İncelenmesi”. Uluslararası Çevresel Eğilimler Dergisi 8/2 (December 2024), 118-127.
JAMA Tekin M, Eren Z. Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının ve Toksisite Azaltımının İncelenmesi. IJENT. 2024;8:118–127.
MLA Tekin, Melikşah and Zeynep Eren. “Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının Ve Toksisite Azaltımının İncelenmesi”. Uluslararası Çevresel Eğilimler Dergisi, vol. 8, no. 2, 2024, pp. 118-27.
Vancouver Tekin M, Eren Z. Zararlı Alg Çoğalması Kaynaklı MC-RR’nin Ultrasonik Arıtımının ve Toksisite Azaltımının İncelenmesi. IJENT. 2024;8(2):118-27.

Environmental Engineering, Environmental Sustainability and Development, Industrial Waste Issues and Management, Global warming and Climate Change, Environmental Law, Environmental Developments and Legislation, Environmental Protection, Biotechnology and Environment, Fossil Fuels and Renewable Energy, Chemical Engineering, Civil Engineering, Geological Engineering, Mining Engineering, Agriculture Engineering, Biology, Chemistry, Physics,