Research Article
BibTex RIS Cite

Toprak Kaynaklı Isı Pompalarında Akış Hızlarının Deneysel Analizi: Güneydoğu Anadolu, Türkiye'de Bir Vaka Çalışması

Year 2025, Volume: 9 Issue: 1, 81 - 87, 30.06.2025
https://doi.org/10.46460/ijiea.1635913

Abstract

Jeotermal enerji, binalarda ve diğer altyapılarda uygulamalar için önemli bir potansiyele sahiptir. Bu çalışmada, binalarda enerji tüketimini en aza indirmek için Yatay Tip Yeraltı Kaynaklı Isı Pompası sisteminin uygulanması incelenmektedir. Araştırma, Batman bölgesinin iklim koşulları altında yeraltı kaynaklı ısı pompası sistemlerinin enerji performansını ve çeşitli özelliklerini değerlendirmektedir. Bunu kolaylaştırmak için Batman Üniversitesi Batı Raman Kampüsü'nde bir konteyner içerisine yatay yeraltı kaynaklı ısı pompası ve yeraltı devresi kuruldu. Deneysel ölçümler, iki metrenin altındaki derinliklerde toprak sıcaklığının 21°C'de sabit kaldığını gösterdi. Testler Aralık 2020'de üç farklı hacimsel debide gerçekleştirildi: maksimum (0.19 m³/h), orta (0.12 m³/h) ve minimum (0.09 m³/h). Deneyler boyunca ısı pompasının iç ve dış sıcaklıkları, su-mono etilen glikol karışımının giriş ve çıkış sıcaklıkları ve soğutma sıvısı bileşen sıcaklıkları kaydedildi. Isı pompası için gözlemlenen en yüksek performans katsayısı 2.43 olurken, genel sistem performans katsayısı ise 2.23 olarak hesaplanmıştır.

Project Number

BTUBAP-2018-DOKTORA-18.16

References

  • Türkiye İstatistik Kurumu. (2024, July 8). TEİAŞ. Retrieved July 8, 2024, from https://www.tuik.gov.tr
  • Buyukzeren, R., & Kahraman, A. (2024). A comparative study on the application of solar thermal collector and photovoltaic combinations to assist an air source heat pump. Journal of Thermal Analysis and Calorimetry, 149(17), 9413–9428.
  • Bae, S., Chae, S., & Nam, Y. (2022). Performance analysis of integrated photovoltaic-thermal and air source heat pump system through energy simulation. Energies, 15(2), 528.
  • Dikici, A., & Akbulut, A. (2011). An exergetic performance evaluation of multiple source heat pump systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(12), 1117–1138.
  • Shoeibi, H., Mehrpooya, M., Assareh, E., Izadi, M., & Pourfayaz, F. (2022). Transient simulation and exergy analysis of heat-pump systems integrated with solar compound parabolic collector. Iranian Journal of Chemistry and Chemical Engineering, 41(6), 2121–2134.
  • Zhong, X., Yang, H., Yang, K., & Xu, J. (2019). Development of a new-type multiple-source heat pump with two-stage compression. Journal of Thermal Science, 28, 635–642.
  • Zheng, Z., Zhou, J., Xu, F., Zhang, R., & Deng, G. (2022). Integrated operation of PV assisted ground source heat pump and air source heat pump system: Performance analysis and economic optimization. Energy Conversion and Management, 269, 116091.
  • Zhang, W., Wang, K., Guan, C., Yao, H., Li, W., Gao, Y., & Cui, P. (2023). Analysis and optimization of the performance for the ground source heat pump system with the middle-deep U-type well. Applied Thermal Engineering, 219, 119404.
  • Bae, S., & Nam, Y. (2022). Feasibility analysis for an integrated system using photovoltaic-thermal and ground source heat pump based on real-scale experiment. Renewable Energy, 185, 1152–1166.
  • Li, T., Wang, X., Li, G., Liu, Y., Liu, Q., Gong, Y., ... & Mao, Q. (2024). Thermal performance and energy flow analysis of a PV/T coupled ground source heat pump system. Applied Thermal Engineering, 240, 122265.
  • Maghrabie, H. M., Abdeltwab, M. M., & Tawfik, M. H. M. (2023). Ground-source heat pumps (GSHPs): Materials, models, applications, and sustainability. Energy and Buildings, 299, 113560.
  • Cui, Y., Zhu, J., Twaha, S., Chu, J., Bai, H., Huang, K., ... & Soleimani, Z. (2019). Techno-economic assessment of the horizontal geothermal heat pump systems: A comprehensive review. Energy Conversion and Management, 191, 208–236.
  • Duarte, W. M., Paulino, T. F., Tavares, S. G., Maia, A. A., & Machado, L. (2021). Feasibility of solar-geothermal hybrid source heat pump for producing domestic hot water in hot climates. International Journal of Refrigeration, 124, 184–196.
  • Arghand, T., Javed, S., & Dalenbäck, J. O. (2022). Combining direct ground cooling with ground-source heat pumps and district heating: Borehole sizing and land area requirements. Geothermics, 106, 102565.
  • Karabacak, R., & Acar, Ş. G. (2010). The experimental thermal performance analysis of the ground source heat pump system dependent on environmental conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(12), 1142–1158.
  • Usta, H. (2009). The modeling of the efficiency of the heat pump supported by heat pipe with solar energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(3), 232–245.
  • Karytsas, S. (2018). An empirical analysis on awareness and intention adoption of residential ground source heat pump systems in Greece. Energy Policy, 123, 167–179.
  • Zheng, Z., Zhou, J., Xu, F., Zhang, R., & Deng, G. (2022). Integrated operation of PV assisted ground source heat pump and air source heat pump system: Performance analysis and economic optimization. Energy Conversion and Management, 269, 116091.
  • Cheng, F., Xia, J., Ajo‐Franklin, J. B., Behm, M., Zhou, C., Dai, T., ... & Zhou, C. (2021). High‐resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra‐short observation. Journal of Geophysical Research: Solid Earth, 126(8), e2021JB021827.
  • Blum, P., Campillo, G., & Kölbel, T. (2011). Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany. Energy, 36(5), 3002–3011.
  • Michopoulos, A., Zachariadis, T., & Kyriakis, N. (2013). Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger. Energy, 51, 349–357.
  • Alavy, M., Nguyen, H. V., Leong, W. H., & Dworkin, S. B. (2013). A methodology and computerized approach for optimizing hybrid ground source heat pump system design. Renewable Energy, 57, 404–412.
  • Yang, W., Liang, X., Shi, M., & Chen, Z. (2014). A numerical model for the simulation of a vertical U-bend ground heat exchanger used in a ground-coupled heat pump. International Journal of Green Energy, 11(7), 761–785.
  • Ünal, F., Temir, G., & Köten, H. (2018). Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season. Journal of Mechanical Science and Technology, 32, 3929–3942.
  • Benli, H. (2011). Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Conversion and Management, 52(1), 581–589.
  • Özsolak, O., & Esen, M. (2014). Performance investigation of Slinky heat exchanger for solar assisted ground source heat pump. E-Journal of New World Sciences Academy, 84.
  • Akbulut, U., Utlu, Z., & Kincay, O. (2016). Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system. Energy, 107, 502–522.
  • Ercan, U. (2021). Batman ili iklim şartlarında toprak kaynaklı ısı pompası için enerji ve ekserji analizi (Doctoral dissertation, Batman University, Graduate School of Education).

Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey

Year 2025, Volume: 9 Issue: 1, 81 - 87, 30.06.2025
https://doi.org/10.46460/ijiea.1635913

Abstract

Geothermal energy offers considerable potential for use in buildings and infrastructure. This research investigates the application of a Horizontal Type Ground Source Heat Pump system to reduce energy consumption in buildings. The study assesses the energy efficiency and operational characteristics of ground source heat pump systems under the specific climatic conditions of the Batman region. To conduct this analysis, a horizontal ground source heat pump and an underground circuit were installed in a container at Batman University’s West Raman Campus. Experimental data revealed that soil temperatures below two meters remained constant at 21°C. Tests were carried out in December 2020 at three flow rates: maximum (0.19 m³/h), medium (0.12 m³/h), and minimum (0.09 m³/h). During the experiments, measurements were taken for the internal and external temperatures of the heat pump, the inlet and outlet temperatures of the water-monoethylene glycol mixture, and the temperatures of the cooling liquid components. The highest coefficient of performance for the heat pump was recorded at 2.43, while the overall system coefficient of performance reached 2.23.

Supporting Institution

BATMAN ÜNİVERSİTESİ- BAP

Project Number

BTUBAP-2018-DOKTORA-18.16

References

  • Türkiye İstatistik Kurumu. (2024, July 8). TEİAŞ. Retrieved July 8, 2024, from https://www.tuik.gov.tr
  • Buyukzeren, R., & Kahraman, A. (2024). A comparative study on the application of solar thermal collector and photovoltaic combinations to assist an air source heat pump. Journal of Thermal Analysis and Calorimetry, 149(17), 9413–9428.
  • Bae, S., Chae, S., & Nam, Y. (2022). Performance analysis of integrated photovoltaic-thermal and air source heat pump system through energy simulation. Energies, 15(2), 528.
  • Dikici, A., & Akbulut, A. (2011). An exergetic performance evaluation of multiple source heat pump systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(12), 1117–1138.
  • Shoeibi, H., Mehrpooya, M., Assareh, E., Izadi, M., & Pourfayaz, F. (2022). Transient simulation and exergy analysis of heat-pump systems integrated with solar compound parabolic collector. Iranian Journal of Chemistry and Chemical Engineering, 41(6), 2121–2134.
  • Zhong, X., Yang, H., Yang, K., & Xu, J. (2019). Development of a new-type multiple-source heat pump with two-stage compression. Journal of Thermal Science, 28, 635–642.
  • Zheng, Z., Zhou, J., Xu, F., Zhang, R., & Deng, G. (2022). Integrated operation of PV assisted ground source heat pump and air source heat pump system: Performance analysis and economic optimization. Energy Conversion and Management, 269, 116091.
  • Zhang, W., Wang, K., Guan, C., Yao, H., Li, W., Gao, Y., & Cui, P. (2023). Analysis and optimization of the performance for the ground source heat pump system with the middle-deep U-type well. Applied Thermal Engineering, 219, 119404.
  • Bae, S., & Nam, Y. (2022). Feasibility analysis for an integrated system using photovoltaic-thermal and ground source heat pump based on real-scale experiment. Renewable Energy, 185, 1152–1166.
  • Li, T., Wang, X., Li, G., Liu, Y., Liu, Q., Gong, Y., ... & Mao, Q. (2024). Thermal performance and energy flow analysis of a PV/T coupled ground source heat pump system. Applied Thermal Engineering, 240, 122265.
  • Maghrabie, H. M., Abdeltwab, M. M., & Tawfik, M. H. M. (2023). Ground-source heat pumps (GSHPs): Materials, models, applications, and sustainability. Energy and Buildings, 299, 113560.
  • Cui, Y., Zhu, J., Twaha, S., Chu, J., Bai, H., Huang, K., ... & Soleimani, Z. (2019). Techno-economic assessment of the horizontal geothermal heat pump systems: A comprehensive review. Energy Conversion and Management, 191, 208–236.
  • Duarte, W. M., Paulino, T. F., Tavares, S. G., Maia, A. A., & Machado, L. (2021). Feasibility of solar-geothermal hybrid source heat pump for producing domestic hot water in hot climates. International Journal of Refrigeration, 124, 184–196.
  • Arghand, T., Javed, S., & Dalenbäck, J. O. (2022). Combining direct ground cooling with ground-source heat pumps and district heating: Borehole sizing and land area requirements. Geothermics, 106, 102565.
  • Karabacak, R., & Acar, Ş. G. (2010). The experimental thermal performance analysis of the ground source heat pump system dependent on environmental conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(12), 1142–1158.
  • Usta, H. (2009). The modeling of the efficiency of the heat pump supported by heat pipe with solar energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(3), 232–245.
  • Karytsas, S. (2018). An empirical analysis on awareness and intention adoption of residential ground source heat pump systems in Greece. Energy Policy, 123, 167–179.
  • Zheng, Z., Zhou, J., Xu, F., Zhang, R., & Deng, G. (2022). Integrated operation of PV assisted ground source heat pump and air source heat pump system: Performance analysis and economic optimization. Energy Conversion and Management, 269, 116091.
  • Cheng, F., Xia, J., Ajo‐Franklin, J. B., Behm, M., Zhou, C., Dai, T., ... & Zhou, C. (2021). High‐resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra‐short observation. Journal of Geophysical Research: Solid Earth, 126(8), e2021JB021827.
  • Blum, P., Campillo, G., & Kölbel, T. (2011). Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany. Energy, 36(5), 3002–3011.
  • Michopoulos, A., Zachariadis, T., & Kyriakis, N. (2013). Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger. Energy, 51, 349–357.
  • Alavy, M., Nguyen, H. V., Leong, W. H., & Dworkin, S. B. (2013). A methodology and computerized approach for optimizing hybrid ground source heat pump system design. Renewable Energy, 57, 404–412.
  • Yang, W., Liang, X., Shi, M., & Chen, Z. (2014). A numerical model for the simulation of a vertical U-bend ground heat exchanger used in a ground-coupled heat pump. International Journal of Green Energy, 11(7), 761–785.
  • Ünal, F., Temir, G., & Köten, H. (2018). Energy, exergy and exergoeconomic analysis of solar-assisted vertical ground source heat pump system for heating season. Journal of Mechanical Science and Technology, 32, 3929–3942.
  • Benli, H. (2011). Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Conversion and Management, 52(1), 581–589.
  • Özsolak, O., & Esen, M. (2014). Performance investigation of Slinky heat exchanger for solar assisted ground source heat pump. E-Journal of New World Sciences Academy, 84.
  • Akbulut, U., Utlu, Z., & Kincay, O. (2016). Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system. Energy, 107, 502–522.
  • Ercan, U. (2021). Batman ili iklim şartlarında toprak kaynaklı ısı pompası için enerji ve ekserji analizi (Doctoral dissertation, Batman University, Graduate School of Education).
There are 28 citations in total.

Details

Primary Language English
Subjects Energy, Geothermal Energy Systems, Renewable Energy Resources
Journal Section Articles
Authors

Umut Ercan 0000-0003-1063-4480

Adem Yılmaz 0000-0001-7266-0866

Project Number BTUBAP-2018-DOKTORA-18.16
Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date February 8, 2025
Acceptance Date June 16, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Ercan, U., & Yılmaz, A. (2025). Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey. International Journal of Innovative Engineering Applications, 9(1), 81-87. https://doi.org/10.46460/ijiea.1635913
AMA Ercan U, Yılmaz A. Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey. IJIEA. June 2025;9(1):81-87. doi:10.46460/ijiea.1635913
Chicago Ercan, Umut, and Adem Yılmaz. “Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey”. International Journal of Innovative Engineering Applications 9, no. 1 (June 2025): 81-87. https://doi.org/10.46460/ijiea.1635913.
EndNote Ercan U, Yılmaz A (June 1, 2025) Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey. International Journal of Innovative Engineering Applications 9 1 81–87.
IEEE U. Ercan and A. Yılmaz, “Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey”, IJIEA, vol. 9, no. 1, pp. 81–87, 2025, doi: 10.46460/ijiea.1635913.
ISNAD Ercan, Umut - Yılmaz, Adem. “Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey”. International Journal of Innovative Engineering Applications 9/1 (June 2025), 81-87. https://doi.org/10.46460/ijiea.1635913.
JAMA Ercan U, Yılmaz A. Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey. IJIEA. 2025;9:81–87.
MLA Ercan, Umut and Adem Yılmaz. “Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey”. International Journal of Innovative Engineering Applications, vol. 9, no. 1, 2025, pp. 81-87, doi:10.46460/ijiea.1635913.
Vancouver Ercan U, Yılmaz A. Experimental Analysis of Flow Rates in Ground Source Heat Pumps for Heating: A Case Study Southeastern Anatolia, Turkey. IJIEA. 2025;9(1):81-7.

This work is licensed under CC BY-NC 4.0