Research Article
BibTex RIS Cite

Keban Baraj Gölü Üzerinde Kurulacak Yüzer Güneş Enerjisi Santrali İle Bölgedeki Terfili Sulama Sistemlerinin Enerji İhtiyaçlarının Sağlanmasının Araştırılması

Year 2025, Volume: 9 Issue: 1, 88 - 99, 30.06.2025
https://doi.org/10.46460/ijiea.1647566

Abstract

Hidroelektrik santralli (HES) barajlar; akan suyun gücünü elektriğe dönüştürürler. Elektrik üretirken; içme, kullanma ve tarım arazilerinin kontrollü sulanmasını sağlarlar. Feyezan ve taşkınları önlerler. Bu makalede yazarlar, Keban Baraj gölünün bir kısmı üzerinde yüzer güneş enerjisi santrali kurulduğu takdirde suyun sıcaklığının artmasını önleneceğini ve buharlaşmanın azalacağını bu sayede su tasarrufu sağlanacağını, tasarruf edilen suyla daha fazla hidroelektrik enerji üretileceğini ve bu enerjiyi terfili sulama projeleri için kullanılabileceğini, yapay sinir ağlarıi kullanarak analiz yapmayı amaçladılar. İncelenen Keban Barajı ve Hidroelektrik Santrali (HES), 1.330 MWe kurulu gücü ile Türkiye’nin 3.büyük hidroelektrik santralidir. Türkiye’nin en büyük dördüncü gölü ve Atatürk Baraj gölünden sonra en büyük ikinci baraj gölüdür. Keban Barajı ortalama 5.794.927.279 kilovatsaat elektrik üretimi ile 1.750.733 kişinin günlük hayatında ihtiyaç duyduğu elektrik enerjisinin ihtiyacını karşılayabilir. Baraj gölünün %10’ luk kısmını kaplayacak bir yüzer güneş enerjisi santrali sayesinde normal su kodunda yıllık toplam 31.305.282 m3 suyun buharlaşmasının engellendiği ve bu su sayesinde 6.624,84 MWe kurulu gücü olan santralle enerji faydası sağlanmış olacağı ayrıca yüzer güneş enerji santrali sayesinde buharlaşmaya engel olunan suyla, baraj türbinlerinden 11.297.018 kwh elektrik üretimi yapılabileceği analiz edilmiştir. Keban Baraj gölü etrafında Ağın, Pertek, Serince, Palu- Kovancılar, Uluova, Kuzova sulama projeleri için yaklaşık 72,39 MWe’lik bir enerjiye ihtiyaç vardır. Bu ovaların sulanması için; ihtiyaç duyulan su ve enerji; yüzer güneş enerji santrali sayesinde elde edilebileceği görülmüştür.

References

  • Exley, G., Armstrong, A., Trevor, P., Page, T., & Jones, I. D. (2021). Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Solar Energy, 219, 24–33.
  • Dörenkämper, M., Wahed, A., Kumar, A., Jong, M., Kroon, J., & Reindl, T. (2021). The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Solar Energy, 214, 239–247.
  • Melvin, G. K. X. (2015). Experimental study of the effect of floating solar panels on reducing evaporation in Singapore reservoirs (Master’s dissertation, National University of Singapore).
  • Redón Santafé, M., Torregrosa Soler, J. B., Sánchez Romero, F. J., Ferrer Gisbert, P. S., Ferrán Gozálvez, J. J., & Ferrer Gisbert, C. M. (2014). Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs. Energy, 67, 246–255.
  • Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289–296.
  • Farfan, J., & Breyer, C. (2018). Combining floating solar photovoltaic power plants and hydropower reservoirs: A virtual battery of great global potential. Energy Procedia, 155, 403–411.
  • Reindl, T., et al. (2019). Where sun meets water: Floating solar market report. Retrieved April 10, 2020, from https://esmap.org/where_sun_meets_water_floating_solar_market_report
  • Intersolar Europe. (2022). Floating PV: On the rise in Europe. Retrieved January 1, 2022, from https://www.intersolar.de/market-trends/floating-pv-europe
  • Farrar, L. W., Bahaj, A. S., James, P., Anwar, A., & Amdar, N. (2022). Floating solar PV to reduce water evaporation in water stressed regions and powering water pumping: Case study Jordan. Energy Conversion and Management, 260, 115598.
  • Işık, A. H., Arıcı, B., & Alhelali, S. Floating solar power plants technical guide. Clean Creative Technologies Consultancy and Engineering Inc.
  • Bulut, M., Kaplanoğlu, İ., & Geylani, V. (2018). Development of world hydro-floating SPP projects and their potential in Turkey. Power Systems Conference, Ankara, Turkey.
  • Huzaifa, R., Gull, M. S., & Arshad, N. (2019). Integrating floating solar PV with hydroelectric power plant: Analysis of Ghazi Barotha reservoir in Pakistan. Energy Procedia, 158, 816–821.
  • World Bank Group, ESMAP, & SERIS. (2019). Where sun meets water: Floating solar market report. Retrieved April 10, 2020, from https://www.worldbank.org/en/topic/energy/publication/where-sun-meets-water
  • Trapani, K., & Santafé, M. R. (2014). A review of floating photovoltaic installations: 2007–2013. Progress in Photovoltaics: Research and Applications, 22(4), 689–716.
  • Jeong, H. S., Choi, J., Lee, H. H., & Jo, H. S. (2020). A study on the power generation prediction model considering environmental characteristics of floating photovoltaic system. Applied Sciences, 10(13), 4527.
  • Aquilina, M., Mule` Stagno, L., Grech, M., & Sant, T. (2016). Determining the optimum shape and size of a platform for an offshore floating photovoltaic system. In 3rd Offshore Energy & Storage Symposium (OSES), Valletta, Malta.
  • Kajari-Schröder, S., Kunze, I., Eitner, U., & Köntges, M. (2011). Spatial and directional distribution of cracks in silicon PV modules after uniform mechanical loads. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA.
  • Bellini, E. (2019). Japan’s largest floating PV plant catches fire after Typhoon Faxai impact. PV Magazine International. Retrieved September 9, 2019, from https://www.pv-magazine.com/2019/09/09/japanslargest-floating-pv-plant-catches-fire-aftertyphoon-faxai-impact/
  • Alcan, Y., Demir, M., & Duman, S. (2018). Examination of Sinop Province's electricity production potential from solar energy in comparison with our country and Germany. El-Cezeri Journal of Science and Engineering, 5(1), 35–44.
  • Bolat, B. (2022). Investigation of the energy production potential of hydroelectric power plants and dam lakes with floating solar power plants (Master’s dissertation, Yıldız Technical University)
  • Güner, S., & Özgür, A. E. (n.d.). Investigating the applicability of Eğridir Lake Solar Power Plant. Süleyman Demirel University YEKARYUM e-Journal, 8(2), 80–93.
  • TRT Haber. (2024). Türkiye yüzer GES’lerden elektrik alacak. Retrieved May 14, 2024, from https://www.trthaber.com/haber/ekonomi/turkiye-yuzer-geslerden-elektrik-alacak-857398.html
  • ASKİ. (2024). Türkiye’de ilk: ASKİ, baraj üzerinde yüzer GES kurarak elektrik üretecek. Retrieved March 14, 2024, from https://www.aski.gov.tr/tr/HABER/Turk%C4%B1yede-Ilk-Ask%C4%B1-Baraj-Uzer%C4%B1nde-Yuzer-Ges-Kurarak-Elektr%C4%B1k-Uretecek/569
  • Kaymak, M. K. (2021). Design and application of adaptive floating solar power plant to weather-environmental conditions (Doctoral dissertation, Istanbul Technical University, Graduate Education Institute).
  • State Hydraulic Works (DSİ). (2024). Both clean energy and water savings with floating GES. Retrieved March 10, 2025, from https://www.dsi.gov.tr/Haber/Detay/12128
  • Ministry of Environment, Urbanisation and Climate Change & Turkish State Meteorological Service. (n.d.). [Institutional source – no specific title available].
  • Turkish State Meteorological Service. Official web site: Forecast cities. Retrieved January 9, 2025, from https://www.mgm.gov.tr/eng/forecast-cities.aspx
  • PyET Project. Estimation of potential evaporation. Retrieved from https://pypi.org/project/pyet/
  • Terzi, Ö. (2004). Development and application of evaporation models for Lake Eğirdir (Unpublished doctoral thesis, Süleyman Demirel University, Institute of Science and Technology, Isparta).
  • Efthimiou, N., Alexandris, S., Karavitis, C., & Mamassis, N. Comparative analysis of reference evapotranspiration estimation between various methods and the FAO56 Penman–Monteith procedure. [Conference or journal info not provided].
  • Hiroyuki, M., & Kazzutoshi, O. (2023). Alternative net longwave radiation equation for the FAO Penman–Monteith evaporation equation and the Penman evaporation equation. Theoretical and Applied Climatology, 153, 1355–1360.
  • Emerine, C. N., Isagba, E. S., & Idehen, O. F. (2018). Linacre derived potential evapotranspiration method and effect on supplementary irrigation water needs of tomato, cabbage, and carrot. Nigerian Journal of Environmental Sciences and Technology, 2(1), 108–117.
  • Karaatlı, M., Helvacıoğlu, Ö., Ömürberk, N., & Tokgöz, G. (2012). Automobile sales forecasting with artificial neural networks method. International Journal of Management Economics and Business, 8(17), 87–100.
  • Esen, H., & İnallı, M. (2009). Modelling of a vertical ground coupled heat pump system by using artificial neural networks. Expert Systems with Applications, 36(7), 10229–10238.
  • Wikipedia. Neural network (machine learning). Retrieved June 23, 2025, from https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
  • Çakmak, E., & Selvi, İ. H. (2022). Protein secondary structure prediction using deep learning (CNN, RNN, LSTM, GRU). Acta Infologica, 6(1), 43–52.
  • Esen, H., İnallı, M., Sengur, A., & Esen, M. (2008). Performance prediction of a ground-coupled heat pump system using artificial neural networks. Expert Systems with Applications, 35(4), 1940–1948.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
  • Akın, E., & Şahin, M. E. (2024). A review on deep learning and artificial neural network models. EMO Scientific Journal: Scientific Refereed Journal of Electrical, Electronics, Computer, Biomedical, Control Engineering, 14(1), 27–38.
  • Medium.LSTM cells in PyTorch. Retrieved June 23, 2025, from https://medium.com/@andre.holzner/lstm-cells-in-pytorch-fab924a78b1c
  • Yıldız, F. E., & Güler, İ. (2014). Comparison of evaporation methods for Sultan Sazlığı wetland. Gazi University Journal of Science and Technology Part C: Design and Technology, 2(3), 247–254.
  • Alok, S., Neha, Y., & Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815–824.
  • Tokuşlu, A. (2022). Assessing the impact of climate change on Turkish basins. International Journal of Environment and Geoinformatics, 9(1), 103.
  • Devlet Su İşleri. Toprak ve su kaynakları. Retrieved April 3, 2015, from http://www.dsi.gov.tr/toprak-ve-su-kaynaklari
  • WWF–Türkiye.Türkiye’de su kaynaklarının güncel durumu raporu. Retrieved April 10, 2025, from https://www.wwf.org.tr/kesfet/tatli_su/turkiyede_su_kaynaklarinin_guncel_durumu/

Investigation of the Benefits of the Floating Solar Power Plant to be Established on Keban Dam Lake using Penman, Linacre and Artificial Neural Networks Methods

Year 2025, Volume: 9 Issue: 1, 88 - 99, 30.06.2025
https://doi.org/10.46460/ijiea.1647566

Abstract

In this study, it will be calculated how much water evaporation will be prevented if a Floating Solar Power Plant (FSPP) is installed on a certain part of the Keban Dam lake in Elazığ (38.41˚N, 39.14˚E), Türkiye by using the Penman and Linacre methods and the Artificial Neural Networks (ANN) method, which are widely used in evaporation calculation. Thus, it will be calculated how much energy can be produced with this saved water. Keban Hydroelectric Power Plant (HPP), examined in this study, is Türkiye's 3rd largest hydroelectric power plant with an installed power of 1.330 MWe. It is the fourth largest lake in Türkiye and the second largest dam lake after the Atatürk Dam. Keban Dam meets the electrical energy needs of 1.750.733 people in their daily lives with an average electricity production of 5.794.927,279 kWh.
It has been calculated that thanks to a floating photovoltaic power plant that will cover 10% of the dam lake, a total of 31.305.282 m3 of water in normal water code will be prevented from evaporating annually, and thanks to this water, energy benefit will be provided with the power plant with an installed power of 6.624,84 MWe. In addition, it has been analyzed that 11.297.018 kWh of electricity can be produced from the dam turbines with the water prevented from evaporating thanks to FSPP. Approximately 72.39 MWe energy is needed for the Ağın, Pertek, Serince, Palu-Kovancılar, Uluova, Kuzova irrigation projects around the Keban Dam lake. It has been determined that the amount of water and energy needed for irrigation of these plains can be obtained thanks to FSPP.

References

  • Exley, G., Armstrong, A., Trevor, P., Page, T., & Jones, I. D. (2021). Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Solar Energy, 219, 24–33.
  • Dörenkämper, M., Wahed, A., Kumar, A., Jong, M., Kroon, J., & Reindl, T. (2021). The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Solar Energy, 214, 239–247.
  • Melvin, G. K. X. (2015). Experimental study of the effect of floating solar panels on reducing evaporation in Singapore reservoirs (Master’s dissertation, National University of Singapore).
  • Redón Santafé, M., Torregrosa Soler, J. B., Sánchez Romero, F. J., Ferrer Gisbert, P. S., Ferrán Gozálvez, J. J., & Ferrer Gisbert, C. M. (2014). Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs. Energy, 67, 246–255.
  • Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289–296.
  • Farfan, J., & Breyer, C. (2018). Combining floating solar photovoltaic power plants and hydropower reservoirs: A virtual battery of great global potential. Energy Procedia, 155, 403–411.
  • Reindl, T., et al. (2019). Where sun meets water: Floating solar market report. Retrieved April 10, 2020, from https://esmap.org/where_sun_meets_water_floating_solar_market_report
  • Intersolar Europe. (2022). Floating PV: On the rise in Europe. Retrieved January 1, 2022, from https://www.intersolar.de/market-trends/floating-pv-europe
  • Farrar, L. W., Bahaj, A. S., James, P., Anwar, A., & Amdar, N. (2022). Floating solar PV to reduce water evaporation in water stressed regions and powering water pumping: Case study Jordan. Energy Conversion and Management, 260, 115598.
  • Işık, A. H., Arıcı, B., & Alhelali, S. Floating solar power plants technical guide. Clean Creative Technologies Consultancy and Engineering Inc.
  • Bulut, M., Kaplanoğlu, İ., & Geylani, V. (2018). Development of world hydro-floating SPP projects and their potential in Turkey. Power Systems Conference, Ankara, Turkey.
  • Huzaifa, R., Gull, M. S., & Arshad, N. (2019). Integrating floating solar PV with hydroelectric power plant: Analysis of Ghazi Barotha reservoir in Pakistan. Energy Procedia, 158, 816–821.
  • World Bank Group, ESMAP, & SERIS. (2019). Where sun meets water: Floating solar market report. Retrieved April 10, 2020, from https://www.worldbank.org/en/topic/energy/publication/where-sun-meets-water
  • Trapani, K., & Santafé, M. R. (2014). A review of floating photovoltaic installations: 2007–2013. Progress in Photovoltaics: Research and Applications, 22(4), 689–716.
  • Jeong, H. S., Choi, J., Lee, H. H., & Jo, H. S. (2020). A study on the power generation prediction model considering environmental characteristics of floating photovoltaic system. Applied Sciences, 10(13), 4527.
  • Aquilina, M., Mule` Stagno, L., Grech, M., & Sant, T. (2016). Determining the optimum shape and size of a platform for an offshore floating photovoltaic system. In 3rd Offshore Energy & Storage Symposium (OSES), Valletta, Malta.
  • Kajari-Schröder, S., Kunze, I., Eitner, U., & Köntges, M. (2011). Spatial and directional distribution of cracks in silicon PV modules after uniform mechanical loads. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA.
  • Bellini, E. (2019). Japan’s largest floating PV plant catches fire after Typhoon Faxai impact. PV Magazine International. Retrieved September 9, 2019, from https://www.pv-magazine.com/2019/09/09/japanslargest-floating-pv-plant-catches-fire-aftertyphoon-faxai-impact/
  • Alcan, Y., Demir, M., & Duman, S. (2018). Examination of Sinop Province's electricity production potential from solar energy in comparison with our country and Germany. El-Cezeri Journal of Science and Engineering, 5(1), 35–44.
  • Bolat, B. (2022). Investigation of the energy production potential of hydroelectric power plants and dam lakes with floating solar power plants (Master’s dissertation, Yıldız Technical University)
  • Güner, S., & Özgür, A. E. (n.d.). Investigating the applicability of Eğridir Lake Solar Power Plant. Süleyman Demirel University YEKARYUM e-Journal, 8(2), 80–93.
  • TRT Haber. (2024). Türkiye yüzer GES’lerden elektrik alacak. Retrieved May 14, 2024, from https://www.trthaber.com/haber/ekonomi/turkiye-yuzer-geslerden-elektrik-alacak-857398.html
  • ASKİ. (2024). Türkiye’de ilk: ASKİ, baraj üzerinde yüzer GES kurarak elektrik üretecek. Retrieved March 14, 2024, from https://www.aski.gov.tr/tr/HABER/Turk%C4%B1yede-Ilk-Ask%C4%B1-Baraj-Uzer%C4%B1nde-Yuzer-Ges-Kurarak-Elektr%C4%B1k-Uretecek/569
  • Kaymak, M. K. (2021). Design and application of adaptive floating solar power plant to weather-environmental conditions (Doctoral dissertation, Istanbul Technical University, Graduate Education Institute).
  • State Hydraulic Works (DSİ). (2024). Both clean energy and water savings with floating GES. Retrieved March 10, 2025, from https://www.dsi.gov.tr/Haber/Detay/12128
  • Ministry of Environment, Urbanisation and Climate Change & Turkish State Meteorological Service. (n.d.). [Institutional source – no specific title available].
  • Turkish State Meteorological Service. Official web site: Forecast cities. Retrieved January 9, 2025, from https://www.mgm.gov.tr/eng/forecast-cities.aspx
  • PyET Project. Estimation of potential evaporation. Retrieved from https://pypi.org/project/pyet/
  • Terzi, Ö. (2004). Development and application of evaporation models for Lake Eğirdir (Unpublished doctoral thesis, Süleyman Demirel University, Institute of Science and Technology, Isparta).
  • Efthimiou, N., Alexandris, S., Karavitis, C., & Mamassis, N. Comparative analysis of reference evapotranspiration estimation between various methods and the FAO56 Penman–Monteith procedure. [Conference or journal info not provided].
  • Hiroyuki, M., & Kazzutoshi, O. (2023). Alternative net longwave radiation equation for the FAO Penman–Monteith evaporation equation and the Penman evaporation equation. Theoretical and Applied Climatology, 153, 1355–1360.
  • Emerine, C. N., Isagba, E. S., & Idehen, O. F. (2018). Linacre derived potential evapotranspiration method and effect on supplementary irrigation water needs of tomato, cabbage, and carrot. Nigerian Journal of Environmental Sciences and Technology, 2(1), 108–117.
  • Karaatlı, M., Helvacıoğlu, Ö., Ömürberk, N., & Tokgöz, G. (2012). Automobile sales forecasting with artificial neural networks method. International Journal of Management Economics and Business, 8(17), 87–100.
  • Esen, H., & İnallı, M. (2009). Modelling of a vertical ground coupled heat pump system by using artificial neural networks. Expert Systems with Applications, 36(7), 10229–10238.
  • Wikipedia. Neural network (machine learning). Retrieved June 23, 2025, from https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
  • Çakmak, E., & Selvi, İ. H. (2022). Protein secondary structure prediction using deep learning (CNN, RNN, LSTM, GRU). Acta Infologica, 6(1), 43–52.
  • Esen, H., İnallı, M., Sengur, A., & Esen, M. (2008). Performance prediction of a ground-coupled heat pump system using artificial neural networks. Expert Systems with Applications, 35(4), 1940–1948.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
  • Akın, E., & Şahin, M. E. (2024). A review on deep learning and artificial neural network models. EMO Scientific Journal: Scientific Refereed Journal of Electrical, Electronics, Computer, Biomedical, Control Engineering, 14(1), 27–38.
  • Medium.LSTM cells in PyTorch. Retrieved June 23, 2025, from https://medium.com/@andre.holzner/lstm-cells-in-pytorch-fab924a78b1c
  • Yıldız, F. E., & Güler, İ. (2014). Comparison of evaporation methods for Sultan Sazlığı wetland. Gazi University Journal of Science and Technology Part C: Design and Technology, 2(3), 247–254.
  • Alok, S., Neha, Y., & Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815–824.
  • Tokuşlu, A. (2022). Assessing the impact of climate change on Turkish basins. International Journal of Environment and Geoinformatics, 9(1), 103.
  • Devlet Su İşleri. Toprak ve su kaynakları. Retrieved April 3, 2015, from http://www.dsi.gov.tr/toprak-ve-su-kaynaklari
  • WWF–Türkiye.Türkiye’de su kaynaklarının güncel durumu raporu. Retrieved April 10, 2025, from https://www.wwf.org.tr/kesfet/tatli_su/turkiyede_su_kaynaklarinin_guncel_durumu/
There are 45 citations in total.

Details

Primary Language English
Subjects Solar Energy Systems, Mechanical Engineering (Other)
Journal Section Articles
Authors

Savaş Kurt 0000-0001-6612-3052

Hikmet Esen 0000-0001-8802-8080

Ünal Toka 0009-0007-4894-2944

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date February 27, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Kurt, S., Esen, H., & Toka, Ü. (2025). Investigation of the Benefits of the Floating Solar Power Plant to be Established on Keban Dam Lake using Penman, Linacre and Artificial Neural Networks Methods. International Journal of Innovative Engineering Applications, 9(1), 88-99. https://doi.org/10.46460/ijiea.1647566
AMA Kurt S, Esen H, Toka Ü. Investigation of the Benefits of the Floating Solar Power Plant to be Established on Keban Dam Lake using Penman, Linacre and Artificial Neural Networks Methods. IJIEA. June 2025;9(1):88-99. doi:10.46460/ijiea.1647566
Chicago Kurt, Savaş, Hikmet Esen, and Ünal Toka. “Investigation of the Benefits of the Floating Solar Power Plant to Be Established on Keban Dam Lake Using Penman, Linacre and Artificial Neural Networks Methods”. International Journal of Innovative Engineering Applications 9, no. 1 (June 2025): 88-99. https://doi.org/10.46460/ijiea.1647566.
EndNote Kurt S, Esen H, Toka Ü (June 1, 2025) Investigation of the Benefits of the Floating Solar Power Plant to be Established on Keban Dam Lake using Penman, Linacre and Artificial Neural Networks Methods. International Journal of Innovative Engineering Applications 9 1 88–99.
IEEE S. Kurt, H. Esen, and Ü. Toka, “Investigation of the Benefits of the Floating Solar Power Plant to be Established on Keban Dam Lake using Penman, Linacre and Artificial Neural Networks Methods”, IJIEA, vol. 9, no. 1, pp. 88–99, 2025, doi: 10.46460/ijiea.1647566.
ISNAD Kurt, Savaş et al. “Investigation of the Benefits of the Floating Solar Power Plant to Be Established on Keban Dam Lake Using Penman, Linacre and Artificial Neural Networks Methods”. International Journal of Innovative Engineering Applications 9/1 (June 2025), 88-99. https://doi.org/10.46460/ijiea.1647566.
JAMA Kurt S, Esen H, Toka Ü. Investigation of the Benefits of the Floating Solar Power Plant to be Established on Keban Dam Lake using Penman, Linacre and Artificial Neural Networks Methods. IJIEA. 2025;9:88–99.
MLA Kurt, Savaş et al. “Investigation of the Benefits of the Floating Solar Power Plant to Be Established on Keban Dam Lake Using Penman, Linacre and Artificial Neural Networks Methods”. International Journal of Innovative Engineering Applications, vol. 9, no. 1, 2025, pp. 88-99, doi:10.46460/ijiea.1647566.
Vancouver Kurt S, Esen H, Toka Ü. Investigation of the Benefits of the Floating Solar Power Plant to be Established on Keban Dam Lake using Penman, Linacre and Artificial Neural Networks Methods. IJIEA. 2025;9(1):88-99.

This work is licensed under CC BY-NC 4.0