Research Article
BibTex RIS Cite

Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders

Year 2025, Volume: 9 Issue: 1, 100 - 107, 30.06.2025
https://doi.org/10.46460/ijiea.1648175

Abstract

Todays, Middle Entropy Alloys (MEA) are a relatively new production method and have extraordinary advantages over classical methods. The biggest advantage is defined as the production of complex compounds that cannot be combined with known methods. MEAs prepared with transition metals such as Fe, Ni, Co have an important place due to their superior properties such as anti-oxidation, corrosion and wear behavior. Metals with refractory properties such as W, Mo, Nb are interesting due to their high hardness as well as high temperature applications. In this study, which aims to characterize two different MEA powders produced, MEA powders were produced using refractory metals such as W, Mo and Nb and transition metal powders such as Fe, Ni and Co. The difference of this publication is that all powders are not brought together at once during production, but W, Mo, Nb and Fe, Ni, Co powders are produced separately and combined later. Mechanical Alloying (MA) was preferred as the production method due to its advantages such as reducing grain size and ensuring chemical homogenization. XRD, SEM and EDS (mapping) analyses were performed for the characterization of the obtained medium entropy alloy composite. Thanks to the MA technique, the powder sizes were reduced and both MEA powders were successfully distributed homogeneously within each other.

Ethical Statement

There is no situation requiring an ethical certificate in the study.

Supporting Institution

There is no institution supporting the work.

Project Number

Herhangi bir proje kapsamında yapılmamıştır.

Thanks

There is no individual supporting the work.

References

  • Gorsse, S., Couzinié, J. P., & Miracle, D. B. (2018). From high-entropy alloys to complex concentrated alloys. Comptes Rendus Physique, 19(8), 721–736.
  • Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L., & Koch, C. C. (2014). A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95–99.
  • Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299–303.
  • Cabrera, M., Oropesa, Y., Sanhueza, J. P., Tuninetti, V., & Oñate, A. (2024). Multicomponent alloys design and mechanical response: From high entropy alloys to complex concentrated alloys. Materials Science and Engineering R Reports, 161.
  • Yeh, J. W. (2015). Physical metallurgy of high-entropy alloys. JOM, 67(10), 2254–2261.
  • Yeh, J. W. (2013). Alloy design strategies and future trends in high-entropy alloys. JOM, 65(12), 1759–1771.
  • Gupta, M. (n.d.). Multiple component alloys: The way forward in alloy design. Materials Science Research India, 16, 1.
  • Dye, J. L. (2015). The alkali metals: 200 years of surprises. Philosophical Transactions of the Royal Society A, 373(2037).
  • Emsley, J. (2011). Nature’s building blocks: An A–Z guide to the elements (New edition). London: Oxford University Press.
  • B. V., & A. X. M. (2024). Development of high entropy alloys (HEAs): Current trends. Heliyon, 10(7), e26464.
  • Wei, D., et al. (2022). Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys. Acta Materialia, 225, 117571.
  • Sekhon, B. S. (2013). Metalloid compounds as drugs. Research in Pharmaceutical Sciences, 8(3), 145–158.
  • Yang, D., et al. (2020). A novel FeCrNiAlTi-based high entropy alloy strengthened by refined grains. Journal of Alloys and Compounds, 823, 153729.
  • Udhayabanu, V., Singh, N., & Murty, B. S. (2010). Mechanical activation of aluminothermic reduction of NiO by high energy ball milling. Journal of Alloys and Compounds, 497(1–2), 142–146.
  • Gutfleisch, O., Willard, M. A., Brück, E., Chen, C. H., Sankar, S. G., & Liu, J. P. (2011). Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Advanced Materials, 23(7), 821–842.
  • Fu, Z., et al. (2019). Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite. Applied Materials Today, 15, 590–598.
  • Zuo, T., et al. (2017). Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Materialia, 130, 10–18.
  • Zhang, Y., Zuo, T., Cheng, Y., & Liaw, P. K. (2013). High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Scientific Reports, 3, 1–7.
  • Chu, C., et al. (2023). Unveiling heterogeneous microstructure and good combinations of high yield strength and low coercivity of in-situ formed NbC/FeNiCo medium-entropy composites. Powder Technology, 419, 118365.
  • Song, B., et al. (2020). In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano, 14(11), 15131–15143.
  • Wu, H., Huang, S., Qiu, H., Zhu, H., & Xie, Z. (2019). Effect of Si and C additions on the reaction mechanism and mechanical properties of FeCrNiCu high entropy alloy. Scientific Reports, 9(1), 1–10.
  • Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., & Liaw, P. K. (2010). Refractory high-entropy alloys. Intermetallics, 18(9), 1758–1765.
  • Zhang, B., Huang, Y., Huang, Z., & Wang, J. (2025). Porous WMoTaNb refractory high entropy alloy fabricated by elemental powder metallurgy. Materials Today Communications, 45, 112362.
  • Senkov, O. N., Wilks, G. B., Scott, J. M., & Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19(5), 698–706.
  • Yao, H. W., Qiao, J. W., Hawk, J. A., Zhou, H. F., Chen, M. W., & Gao, M. C. (2017). Mechanical properties of refractory high-entropy alloys: Experiments and modeling. Journal of Alloys and Compounds, 696, 1139–1150.
  • Dangwal, S., & Edalati, K. (2025). Developing a single-phase and nanograined refractory high-entropy alloy ZrHfNbTaW with ultrahigh hardness by phase transformation via high-pressure torsion. Journal of Alloys and Compounds, 1010, 178274.
  • Stepanov, N. D., Shaysultanov, D. G., Salishchev, G. A., & Tikhonovsky, M. A. (2015). Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 142, 153–155.
  • Senkov, O. N., & Woodward, C. F. (2011). Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering A, 529(1), 311–320.
  • Zhang, K. B., Fu, Z. Y., Zhang, J. Y., Wang, W. M., Lee, S. W., & Niihara, K. (2010). Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. Journal of Alloys and Compounds, 495(1), 33–38.
  • Albayrak, M. G., & Evin, E. (2023). A different approach: Effect of mechanical alloying on pack boronizing. Journal of Materials Engineering and Performance, 33, 9039–9046.
  • Chen, C. L., & Zeng, Y. (2016). Synthesis and characteristics of W–Ti alloy dispersed with Y₂Ti₂O₇ oxides. International Journal of Refractory Metals and Hard Materials, 56, 104–109.
  • Wang, C., Ji, W., & Fu, Z. (2014). Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Advanced Powder Technology, 25(4), 1334–1338.
  • Chen, C. L., & Suprianto. (2019). Effects of nano-dispersoids on synthesis and characterization of low Cr-containing CoNiFeMnCr high entropy alloy by mechanical alloying. Intermetallics, 113, 106570.
  • Suryanarayana, C., & Norton, M. G. (1998). X-ray diffraction: A practical approach. New York: Plenum Publishing Corporation.
  • Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D. N., Chrissafis, K., & Vourlias, G. (2023). Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: A comparative study. Journal of Materials Science, 58(4), 1621–1639.
  • Fang, Z. Z., Wang, H., & Kumar, V. (2017). Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective. International Journal of Refractory Metals and Hard Materials, 62, 110–117.
  • Yan, M. F., Cannon, R. M., Bowen, H. K., & Chowdhry, U. (1983). Effect of grain size distribution on sintered density. Materials Science and Engineering, 60(3), 275–281.
  • Sendi, R. (2022). Grain size and sintering temperatures effects on the mechanical properties of ZnO nanoparticle-based varistor ceramics. Journal of Umm Al-Qura University for Applied Sciences, 8(1–2), 50–56.
  • Ji, W., et al. (2015). Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics, 56, 24–27.
  • Wang, W., Lyu, T., Choi, H. S., Cheng, C., & Zou, Y. (2025). Wear mechanism transitions in FeCoNi and CrCoNi medium-entropy alloys from room temperature to 1000 °C. Journal of Materials Science and Technology, 231, 151–163.
  • Cao, F., et al. (2024). Carbon-microalloying enhances strength-ductility synergy of (FeCoNi)90Al10 medium-entropy alloy via tailoring precipitation. Materials Science and Engineering A, 916, 147329.
  • Wang, X., Suo, H., Zhang, Z., Huangfu, S., & Wang, Q. (2024). Exploring the effect of Cr and Mn on the intrinsic strength of the tensile properties of FeCoNi, FeCoNiMn, FeCoNiCr, and FeCoNiCrMn multi-principal element alloys using in-situ EBSD. Materials Science and Engineering A, 918, 147442.

W, Mo, Nb – Fe, Ni, Co Tozları Kullanılarak Üretilen Orta Entropi Alaşımlarından Kompozit Toz Üretimi ve Karakterizasyonu

Year 2025, Volume: 9 Issue: 1, 100 - 107, 30.06.2025
https://doi.org/10.46460/ijiea.1648175

Abstract

Orta Entropi Alaşımları (MEA) günümüzde oldukça yeni bir üretim metodu olup klasik üretimlere göre sıradışı avantajlara sahiptir. Bilinen yöntemlerle bir araya gelemeyen kompleks bileşiklerin üretilmesi en büyük avantajı olarak tanımlanmaktadır. Fe,Ni, Co gibi geçiş metalleriyle hazırlanan MEA ‘lar anti-oksidasyon, korozyon ve aşınma davranışı gibi üstün özellikleri sebebiyle önemli bir yere sahiptir. Refrakter özellikleri bulunan metaller örneğin W, Mo, Nb, yüksek sıcaklık uygulamalarının yanısıra sahip oldukları yüksek sertlikten dolayı ilgi çekicidir. Üretilen iki farklı MEA tozlarının karakterizasyonunu amaçlayan bu çalışmada W, Mo ve Nb gibi refrakter metaller ile Fe, Ni ve Co gibi geçiş metal tozları kullanılarak MEA tozları üretilmiştir. Üretim esnasında bütün tozların tek seferde bir araya getirilmeyip sırasıyla W, Mo, Nb ve Fe, Ni, Co tozlarının ayrı ayrı üretilip sonradan birleştirilmesi bu yayının farkını oluşturmaktadır. Tane boyutunun düşürülebilmesi ve kimyasal olarak homojenizasyonun sağlanabilmesi gibi üstünlüklerinden dolayı üretim yöntemi olarak Mekanik Alaşımlama (MA) tercih edilmiştir. Elde edilen orta entropi alaşım kompozitinin karakterizasyonu için XRD, SEM ve EDS (haritalama) analizleri yapılmıştır. MA tekniği sayesinde, toz boyutları azaltılmış ve her iki MEA tozu birbiri içerisinde homojen olarak başarıyla dağıtılabilmiştir.

Ethical Statement

Çalışmada etiklik belgesi gerektirecek bir durum yoktur.

Supporting Institution

Çalışmayı destekleyen herhangi bir kurum yoktur.

Project Number

Herhangi bir proje kapsamında yapılmamıştır.

Thanks

Çalışmayı destekleyen herhangi bir şahıs yoktur.

References

  • Gorsse, S., Couzinié, J. P., & Miracle, D. B. (2018). From high-entropy alloys to complex concentrated alloys. Comptes Rendus Physique, 19(8), 721–736.
  • Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L., & Koch, C. C. (2014). A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95–99.
  • Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299–303.
  • Cabrera, M., Oropesa, Y., Sanhueza, J. P., Tuninetti, V., & Oñate, A. (2024). Multicomponent alloys design and mechanical response: From high entropy alloys to complex concentrated alloys. Materials Science and Engineering R Reports, 161.
  • Yeh, J. W. (2015). Physical metallurgy of high-entropy alloys. JOM, 67(10), 2254–2261.
  • Yeh, J. W. (2013). Alloy design strategies and future trends in high-entropy alloys. JOM, 65(12), 1759–1771.
  • Gupta, M. (n.d.). Multiple component alloys: The way forward in alloy design. Materials Science Research India, 16, 1.
  • Dye, J. L. (2015). The alkali metals: 200 years of surprises. Philosophical Transactions of the Royal Society A, 373(2037).
  • Emsley, J. (2011). Nature’s building blocks: An A–Z guide to the elements (New edition). London: Oxford University Press.
  • B. V., & A. X. M. (2024). Development of high entropy alloys (HEAs): Current trends. Heliyon, 10(7), e26464.
  • Wei, D., et al. (2022). Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys. Acta Materialia, 225, 117571.
  • Sekhon, B. S. (2013). Metalloid compounds as drugs. Research in Pharmaceutical Sciences, 8(3), 145–158.
  • Yang, D., et al. (2020). A novel FeCrNiAlTi-based high entropy alloy strengthened by refined grains. Journal of Alloys and Compounds, 823, 153729.
  • Udhayabanu, V., Singh, N., & Murty, B. S. (2010). Mechanical activation of aluminothermic reduction of NiO by high energy ball milling. Journal of Alloys and Compounds, 497(1–2), 142–146.
  • Gutfleisch, O., Willard, M. A., Brück, E., Chen, C. H., Sankar, S. G., & Liu, J. P. (2011). Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Advanced Materials, 23(7), 821–842.
  • Fu, Z., et al. (2019). Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite. Applied Materials Today, 15, 590–598.
  • Zuo, T., et al. (2017). Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Materialia, 130, 10–18.
  • Zhang, Y., Zuo, T., Cheng, Y., & Liaw, P. K. (2013). High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Scientific Reports, 3, 1–7.
  • Chu, C., et al. (2023). Unveiling heterogeneous microstructure and good combinations of high yield strength and low coercivity of in-situ formed NbC/FeNiCo medium-entropy composites. Powder Technology, 419, 118365.
  • Song, B., et al. (2020). In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano, 14(11), 15131–15143.
  • Wu, H., Huang, S., Qiu, H., Zhu, H., & Xie, Z. (2019). Effect of Si and C additions on the reaction mechanism and mechanical properties of FeCrNiCu high entropy alloy. Scientific Reports, 9(1), 1–10.
  • Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., & Liaw, P. K. (2010). Refractory high-entropy alloys. Intermetallics, 18(9), 1758–1765.
  • Zhang, B., Huang, Y., Huang, Z., & Wang, J. (2025). Porous WMoTaNb refractory high entropy alloy fabricated by elemental powder metallurgy. Materials Today Communications, 45, 112362.
  • Senkov, O. N., Wilks, G. B., Scott, J. M., & Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19(5), 698–706.
  • Yao, H. W., Qiao, J. W., Hawk, J. A., Zhou, H. F., Chen, M. W., & Gao, M. C. (2017). Mechanical properties of refractory high-entropy alloys: Experiments and modeling. Journal of Alloys and Compounds, 696, 1139–1150.
  • Dangwal, S., & Edalati, K. (2025). Developing a single-phase and nanograined refractory high-entropy alloy ZrHfNbTaW with ultrahigh hardness by phase transformation via high-pressure torsion. Journal of Alloys and Compounds, 1010, 178274.
  • Stepanov, N. D., Shaysultanov, D. G., Salishchev, G. A., & Tikhonovsky, M. A. (2015). Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 142, 153–155.
  • Senkov, O. N., & Woodward, C. F. (2011). Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering A, 529(1), 311–320.
  • Zhang, K. B., Fu, Z. Y., Zhang, J. Y., Wang, W. M., Lee, S. W., & Niihara, K. (2010). Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. Journal of Alloys and Compounds, 495(1), 33–38.
  • Albayrak, M. G., & Evin, E. (2023). A different approach: Effect of mechanical alloying on pack boronizing. Journal of Materials Engineering and Performance, 33, 9039–9046.
  • Chen, C. L., & Zeng, Y. (2016). Synthesis and characteristics of W–Ti alloy dispersed with Y₂Ti₂O₇ oxides. International Journal of Refractory Metals and Hard Materials, 56, 104–109.
  • Wang, C., Ji, W., & Fu, Z. (2014). Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Advanced Powder Technology, 25(4), 1334–1338.
  • Chen, C. L., & Suprianto. (2019). Effects of nano-dispersoids on synthesis and characterization of low Cr-containing CoNiFeMnCr high entropy alloy by mechanical alloying. Intermetallics, 113, 106570.
  • Suryanarayana, C., & Norton, M. G. (1998). X-ray diffraction: A practical approach. New York: Plenum Publishing Corporation.
  • Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D. N., Chrissafis, K., & Vourlias, G. (2023). Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: A comparative study. Journal of Materials Science, 58(4), 1621–1639.
  • Fang, Z. Z., Wang, H., & Kumar, V. (2017). Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective. International Journal of Refractory Metals and Hard Materials, 62, 110–117.
  • Yan, M. F., Cannon, R. M., Bowen, H. K., & Chowdhry, U. (1983). Effect of grain size distribution on sintered density. Materials Science and Engineering, 60(3), 275–281.
  • Sendi, R. (2022). Grain size and sintering temperatures effects on the mechanical properties of ZnO nanoparticle-based varistor ceramics. Journal of Umm Al-Qura University for Applied Sciences, 8(1–2), 50–56.
  • Ji, W., et al. (2015). Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics, 56, 24–27.
  • Wang, W., Lyu, T., Choi, H. S., Cheng, C., & Zou, Y. (2025). Wear mechanism transitions in FeCoNi and CrCoNi medium-entropy alloys from room temperature to 1000 °C. Journal of Materials Science and Technology, 231, 151–163.
  • Cao, F., et al. (2024). Carbon-microalloying enhances strength-ductility synergy of (FeCoNi)90Al10 medium-entropy alloy via tailoring precipitation. Materials Science and Engineering A, 916, 147329.
  • Wang, X., Suo, H., Zhang, Z., Huangfu, S., & Wang, Q. (2024). Exploring the effect of Cr and Mn on the intrinsic strength of the tensile properties of FeCoNi, FeCoNiMn, FeCoNiCr, and FeCoNiCrMn multi-principal element alloys using in-situ EBSD. Materials Science and Engineering A, 918, 147442.
There are 42 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Articles
Authors

Muhammet Gökhan Albayrak 0000-0002-7107-3042

Project Number Herhangi bir proje kapsamında yapılmamıştır.
Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date February 27, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Albayrak, M. G. (2025). Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders. International Journal of Innovative Engineering Applications, 9(1), 100-107. https://doi.org/10.46460/ijiea.1648175
AMA Albayrak MG. Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders. IJIEA. June 2025;9(1):100-107. doi:10.46460/ijiea.1648175
Chicago Albayrak, Muhammet Gökhan. “Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders”. International Journal of Innovative Engineering Applications 9, no. 1 (June 2025): 100-107. https://doi.org/10.46460/ijiea.1648175.
EndNote Albayrak MG (June 1, 2025) Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders. International Journal of Innovative Engineering Applications 9 1 100–107.
IEEE M. G. Albayrak, “Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders”, IJIEA, vol. 9, no. 1, pp. 100–107, 2025, doi: 10.46460/ijiea.1648175.
ISNAD Albayrak, Muhammet Gökhan. “Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders”. International Journal of Innovative Engineering Applications 9/1 (June 2025), 100-107. https://doi.org/10.46460/ijiea.1648175.
JAMA Albayrak MG. Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders. IJIEA. 2025;9:100–107.
MLA Albayrak, Muhammet Gökhan. “Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders”. International Journal of Innovative Engineering Applications, vol. 9, no. 1, 2025, pp. 100-7, doi:10.46460/ijiea.1648175.
Vancouver Albayrak MG. Production and Characterization of Composite Powder from Medium Entropy Alloys Produced Using W, Mo, Nb – Fe, Ni, Co Powders. IJIEA. 2025;9(1):100-7.

This work is licensed under CC BY-NC 4.0