Farklı Malzeme Türleri Kullanılarak Üretilen Gaz Türbini Kanatlarının Soğutma Sistemi Analizi
Year 2025,
Volume: 9 Issue: 1, 108 - 116, 30.06.2025
İbrahim Can
,
Serdar Mercan
,
Dogan Engin Alnak
,
Muhammed Sipahi
Abstract
Gaz türbini motorlarındaki en büyük zorluklardan biri, türbin kanatlarının yapıldıkları malzemelerin erime noktalarından daha yüksek sıcaklıklarda çalışmasıdır. Bu sorunu çözmek amacıyla, araştırmacılar yüksek sıcaklıklara dayanabilen malzemeler geliştirmeye ve kanatlar için etkili soğutma sistemleri tasarlamaya odaklanmışlardır. Malzeme teknolojisi ile elde edilebilecek iyileştirmelerde bazı sınırlamalar olsa da, soğutmanın önemi açıktır ve gaz türbinlerinde yüksek verimlilik sağlamak için kritik bir faktör olarak kabul edilmektedir. Bu amaçla, farklı malzemeler kullanılarak iki soğutma modeli geliştirilmiş ve kanatlardaki ısı transferi, SolidWorks paket programı ve Ansys 18.2 kullanılarak sayısal olarak analiz edilmiştir. Çalışma, titanyum karbür (TiC) ve üçüncü nesil tek kristal süper alaşım CMSX-10 malzemelerini ele almıştır. Kanat tasarımları, analiz sonuçlarına dayalı olarak önerilmiştir. Analiz, iyileştirilmiş modelin, termal özellikler açısından CMSX-10 malzemesi ile kullanıldığında daha iyi performans sergilediğini göstermiştir.
References
- Ahmed, S. I., Balguri, P. K., & Habeeb, G. S. (2021). Numerical study and heat transfer analysis of nickel-chromium and titanium carbide gas turbine blades cooling. Materials Today: Proceedings.
- Shin, D. H., Kim, M., Kim, J. S., Lee, B. J., & Lee, J. (2020). Precise infrared thermometry with considering background radiation for gas turbine air cooling application. International Journal of Thermal Sciences, 158.
- Kim, S. I., Rahman, H., & Hassan, I. (2009). Effect of turbine inlet temperature on rotor blade tip leakage flow and heat transfer. International Journal of Numerical Methods for Heat & Fluid Flow, 22(1), 73–93.
- Wen, Z. X., Pei, H. Q., Yang, H., Wu, Y. W., & Yue, Z. F. (2018). A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes. International Journal of Fatigue, 111, 243–255.
- Han, J.-C. (2004). Turbine blade cooling studies at Texas A&M University: 1980–2004. International Journal of Rotating Machinery.
- Yamamoto, T., Furuhata, T., & Arai, N. (2000). Performances of the chemical gas turbine system and comparison with other gas turbine based cycle. International Journal of Applied Thermodynamics, 3(4), 155–162.
- Whittaker, M. (n.d.). Status of titanium blading for low-pressure steam turbines. Final Report.
- Whittaker, M. (n.d.). The effect of tension-torsion loading on low temperature dwell-sensitive fatigue in titanium alloys. In Titanium in the Gas Turbine Engine. Swansea University.
- Durlu, N. (1999). Titanium carbide-based composites for high temperature applications. Journal of the European Ceramic Society, 19(13–14), 2415–2419.
- Kawagishi, K., Yeh, A.-C., Yokokawa, T., Kobayashi, T., Koizumi, Y., & Harada, H. (2012). Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238. In Superalloys 2012.
- Sowa, R., Arabasz, S., & Parlinska-Wojtan, M. (2016). Classification and microstructural stability of high generation single crystal nickel-based super alloys. Zastita Materijala, 57(2), 274–281.
- Yuan-Jian, Y. (2015). Finite element analysis for turbine blades with contact problems. International Journal of Turbo and Jet Engines.
- Mohammad, H., Albeirutty, A., Alghamdi, S., & Najjar, Y. S. (2004). Heat transfer analysis for a multistage gas turbine using different blade-cooling schemes. Applied Thermal Engineering.
- Giovanni, C., Ambra, G., Lorenzo, B., & Roberto, F. (2007). Advances in effusive cooling techniques of gas turbines. Applied Thermal Engineering.
- Deepanraj, B., Lawrence, P., & Sankaranarayanan, G. (2011). Theoretical analysis of gas turbine blade by finite element method. Unpublished Manuscript.
- Handrakant, R., Shenoy, S. B., & Sharma, Y. N. (2012). Numerical analysis of gas turbine HP stage blade cooling with new cooling duct geometries. International Journal of Earth Sciences and Engineering, 5(4), 1057–1061.
- Wagner, J. H., Johnson, B. V., & Kopper, F. C. (1991). Heat transfer in rotating serpentine passages with smooth walls. Journal of Turbomachinery, 113, 321–330.
- Acharya, S., Dutta, S., Myrum, T. A., & Baker, R. S. (1993). Periodically developed flow and heat transfer in a ribbed duct. International Journal of Heat and Mass Transfer, 36(8), 2069–2082.
- Abuaf, N., & Kercher, D. M. (1994). Heat transfer and turbulence in a turbulated blade cooling circuit. Journal of Turbomachinery, 116, 169–177.
- Chyu, M. K., & Naturajan, V. (1995). Surface heat transfer from a three-pass blade cooling passage simulator. Journal of Heat Transfer, 117, 650–656.
- Kim, Y. W., & Metzger, D. E. (1995). Heat transfer and effectiveness on film cooled turbine blade tip models. Journal of Turbomachinery, 117, 12–21.
- Prakash, C., & Zerkle, R. (1995). Prediction of turbulent flow and heat transfer in a radially rotating square duct. Journal of Turbomachinery, 114(4), 835–846.
Cooling System Analysis of Gas Turbine Blades Manufactured Using Different Material Types
Year 2025,
Volume: 9 Issue: 1, 108 - 116, 30.06.2025
İbrahim Can
,
Serdar Mercan
,
Dogan Engin Alnak
,
Muhammed Sipahi
Abstract
One of the major challenges in gas turbine engines is that the blades operate at temperatures higher than the melting points of the materials they are made of. Researchers have focused on developing materials that can withstand high temperatures and designing effective cooling systems for the blades. Although there are limitations to the improvements that can be achieved through material technology, the importance of cooling is clear, and it is considered a critical factor for achieving high efficiency in turbines. To this end, two cooling models were developed using different materials, and the heat transfer in the blades was analyzed numerically using the SolidWorks package program and Ansys. The study considered titanium carbide (TiC) and third-generation single crystal super-alloy CMSX-10 materials. The blade designs were proposed based on the analysis results. The analysis showed that the enhanced model performed better when used with CMSX-10 material in terms of thermal properties.
References
- Ahmed, S. I., Balguri, P. K., & Habeeb, G. S. (2021). Numerical study and heat transfer analysis of nickel-chromium and titanium carbide gas turbine blades cooling. Materials Today: Proceedings.
- Shin, D. H., Kim, M., Kim, J. S., Lee, B. J., & Lee, J. (2020). Precise infrared thermometry with considering background radiation for gas turbine air cooling application. International Journal of Thermal Sciences, 158.
- Kim, S. I., Rahman, H., & Hassan, I. (2009). Effect of turbine inlet temperature on rotor blade tip leakage flow and heat transfer. International Journal of Numerical Methods for Heat & Fluid Flow, 22(1), 73–93.
- Wen, Z. X., Pei, H. Q., Yang, H., Wu, Y. W., & Yue, Z. F. (2018). A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes. International Journal of Fatigue, 111, 243–255.
- Han, J.-C. (2004). Turbine blade cooling studies at Texas A&M University: 1980–2004. International Journal of Rotating Machinery.
- Yamamoto, T., Furuhata, T., & Arai, N. (2000). Performances of the chemical gas turbine system and comparison with other gas turbine based cycle. International Journal of Applied Thermodynamics, 3(4), 155–162.
- Whittaker, M. (n.d.). Status of titanium blading for low-pressure steam turbines. Final Report.
- Whittaker, M. (n.d.). The effect of tension-torsion loading on low temperature dwell-sensitive fatigue in titanium alloys. In Titanium in the Gas Turbine Engine. Swansea University.
- Durlu, N. (1999). Titanium carbide-based composites for high temperature applications. Journal of the European Ceramic Society, 19(13–14), 2415–2419.
- Kawagishi, K., Yeh, A.-C., Yokokawa, T., Kobayashi, T., Koizumi, Y., & Harada, H. (2012). Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238. In Superalloys 2012.
- Sowa, R., Arabasz, S., & Parlinska-Wojtan, M. (2016). Classification and microstructural stability of high generation single crystal nickel-based super alloys. Zastita Materijala, 57(2), 274–281.
- Yuan-Jian, Y. (2015). Finite element analysis for turbine blades with contact problems. International Journal of Turbo and Jet Engines.
- Mohammad, H., Albeirutty, A., Alghamdi, S., & Najjar, Y. S. (2004). Heat transfer analysis for a multistage gas turbine using different blade-cooling schemes. Applied Thermal Engineering.
- Giovanni, C., Ambra, G., Lorenzo, B., & Roberto, F. (2007). Advances in effusive cooling techniques of gas turbines. Applied Thermal Engineering.
- Deepanraj, B., Lawrence, P., & Sankaranarayanan, G. (2011). Theoretical analysis of gas turbine blade by finite element method. Unpublished Manuscript.
- Handrakant, R., Shenoy, S. B., & Sharma, Y. N. (2012). Numerical analysis of gas turbine HP stage blade cooling with new cooling duct geometries. International Journal of Earth Sciences and Engineering, 5(4), 1057–1061.
- Wagner, J. H., Johnson, B. V., & Kopper, F. C. (1991). Heat transfer in rotating serpentine passages with smooth walls. Journal of Turbomachinery, 113, 321–330.
- Acharya, S., Dutta, S., Myrum, T. A., & Baker, R. S. (1993). Periodically developed flow and heat transfer in a ribbed duct. International Journal of Heat and Mass Transfer, 36(8), 2069–2082.
- Abuaf, N., & Kercher, D. M. (1994). Heat transfer and turbulence in a turbulated blade cooling circuit. Journal of Turbomachinery, 116, 169–177.
- Chyu, M. K., & Naturajan, V. (1995). Surface heat transfer from a three-pass blade cooling passage simulator. Journal of Heat Transfer, 117, 650–656.
- Kim, Y. W., & Metzger, D. E. (1995). Heat transfer and effectiveness on film cooled turbine blade tip models. Journal of Turbomachinery, 117, 12–21.
- Prakash, C., & Zerkle, R. (1995). Prediction of turbulent flow and heat transfer in a radially rotating square duct. Journal of Turbomachinery, 114(4), 835–846.