Research Article
BibTex RIS Cite

Dokuma ve Örme Karbon Fiber Takviyeli Polimer Kompozitlerin Mekanik Yapı Araştırmaları

Year 2025, Volume: 11 Issue: 1, 193 - 208, 30.06.2025
https://doi.org/10.29132/ijpas.1620589

Abstract

Bu çalışmada, polimer matrisler, karbon filamentlerin dokunması ve örülmesiyle elde edilen karbon kumaş ile takviye edilmiştir. Farklı endüstriler, dokunmuş karbon fiber kompozitlerde filament açılmasının meydana geldiğini bildirmiştir. Dokuma kumaş kullanılması gereken kompozit imalatında serim ve imalat süreçleri kumaşın dağılmasından dolayı zorlayıcı olmaktadır. Örgünün sa-hip olduğu düğüm zincirli yapısı ile kumaşa istenilen şekilde epoksi uygulanması ve kompozite dönüştürülme süreci daha kolaydır. Özellikle örgü sürecinde örgü zincirlerinin sık ve bir bütün şekilde üretilmesi mümkün olduğunda kompozite dönüşen ürünün daha yüksek dayanım sergilemesi mümkün olabilir. Bu çalışma ile dokuma ve örme yöntemlerinin karbon fiber takviyeli kompozitlerin mekanik özellikleri üzerindeki etkisi araştırılmıştır. Yoğunluk ve kalınlıkları farklı olan karbon fiber kompozit malzemeler için dokuma ve örme yapılarda mekanik özellikler incelenmiştir. Dokuma kumaş olarak 3 katlı 200 g/m2 düz dokuma kumaş, 200 g/m2 ve 245 g/m2 dimi karbon fiber dokuma kumaş kullanılarak tek katlı kompozit üretilmiştir. Dokuma ile karşılaştırılabilmesi için 1x1, 2x1 ve 3x1 interlok örgü yapılarına sahip kar-bon kumaş örülmüştür. Dokuma ve örme filamentlerden elde edilen karbon ku-maşlar, vakum infüzyonla üretilen karbon fiber takviyeli kompozitlere dö-nüştürülmüştür. Deneysel çalışmalar kapsamında karbon fiber takviyeli kompozitlerin çekme ve üç noktalı eğme testleri gerçekleştirilmiştir. Kompozit plakaların kırılma yüzeyleri FESEM ve EDS analizleri ile incelenmiştir. En yüksek çekme mukavemeti değerleri 245 g/m2 dimi örgü ve 3x1 interlok örgülü karbon kompozit numunelerinde elde edilmiştir. Kullanılan örme numunelerde, örme yapısında çözülme problemi gözlenmemiştir.

References

  • Ataş, A., & İnal, O. (2018). Experimental characterisation and prediction of elastic properties of woven fabric reinforced textile composite laminates. Journal of Science and Technology A- Applied Sciences And Engineering. 19(3), 660-670.
  • ASTM D790-17 Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical ınsulating materials.
  • ASTM D3039/D3039M-08 Standard test method for tensile properties of polymer matrix composite materials.
  • Carvalho L. H. De & Cavalcante J. M. F. & d'Almeida J. R. M. (2006). Comparison of the mechanical behavior of plain weave and plain weft knit jute fabric-polyester-reinforced composites, Polymer-Plastics Technology and Engineering, 45, 7, 791-797.
  • Chou, S. & Chen, H.C. (1992). Effect of woven structure on flexural and shear fracture behaviour of three-dimensional carbon-carbon composites. Journal of Materials Science, 27, 1741-1747.
  • Dominguez, C. A. E. & Hernández, H. O. & Mollinedo, H. & Huerta, O. S. & Moreno, H. H. (2023). Development and physical characterization of a composite laminate aramid/epoxy manufactured by the vacuum bag method, 47, 1, 108-115.
  • Durgun, İ. & Vatansever, O. & Ertan, R. & Yavuz, N. (2014). Experimental comparison of composite part manufacturing methods used in the automotive industry, Engineering and Machine, 55(649), 58-63.
  • Gülcan, E. (2019). Examination of the Physical Properties of Carbon Woven Fabric Reinforced Composite Materials, Uludağ University Institute of Science, Textile Engineering Master Thesis, Department, Bursa (2019).
  • Kamiya, R. et al. (2000). Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. Composites science and technology.60(1), 33-47.
  • Kiasat, M.S. & Sangtabi, M.R. (2015). Effects of fiber bundle size and weave density on stiffness degadation and final failure of fabric laminates, Composites Science and Technology, 111, 23-31.
  • Kitagawa, Y. & Arai, M. & Yoshimura, A. & Goto, K. (2022). Prediction of transverse crack multiplication of CFRP cross-ply laminates under tension-tension fatigue load, Advanced Composite Materials, 1-18.
  • Korkmaz, N. (2014). A Study on production of composite materials containing carbon fiber reinforced woven fabric and determination of mechanical properties, Master Thesis, Institute of Science.
  • Nicoletto, G. & Riva, E. (2004). Failure mechanisms intwill-weave laminates: FEM predictions vs. experiments, Composites Part A: Applied Science and Manufacturing, 35, 787-795.
  • Shimokawa, T. & Kakuta, Y. & Kogo, Y. (2007). Carbon plain-weave fabric low-temperature vacuum cure epoxy composite: static and fatigue strength at room and high temperatures and practicality evaluation, Journal of Composite Materials,41,18.
  • Tugan, A. (2021). Examination of the performance properties of hybrid woven fabrics, Institute of Science and Technology.
  • Turhan, E. (2011). Examination of mechanical properties of composite structures obtained from carbon fiber in 1x1 weave structure, Master Thesis, Institute of Science and Technology.
  • Tursun, H. (2019). Development of material models for use in finite element analysis of fiber reinforced polymer composite Materials, Master Thesis, Institute of Science.
  • Virgil'ev, Yu S. & Kalyagina, I. P. (2004) Carbon–carbon composite materials. Inorganic Materials, 40 (1), 33-49.
  • Wang, Z. & Xie, H. & Luo, Q. & Li, Q. & Sun, G. (2021). Optimization for formability of plain woven carbon fiber fabrics, International Journal of Mechanical Sciences, 197.
  • Yanen, C. & Solmaz, M.Y. (2016) The production of layered hybrid composites as individual armor material and investigation of their ballistic performance, ECJSE.
  • Zhang, J. & Lin, G. & Vaidya, U. & Wang, H. (2023). Past, present and future prospective of global carbon fibre composite developments and applications, Composites Part B : Engineering, 250.
  • Zhou, G. & Sun, Q. & Meng, Z. & Li, D. & Peng, Y.& Zeng, D. & Su, X. (2021). Experimental investigation on the effects of fabric architectures on mechanical and damage behaviors of carbon/epoxy woven composites, Composite Structures, 257.
  • Zhu, C. & Zhu, P. & Liu, Z. (2019). Uncertainty analysis of mechanical properties of plain woven carbon fiber reinforced composite via stochastic constitutive modeling, Composite Structures, 207, 684-700.
  • Soydan, A. S., & Var, C. (2024). Assessment of a unique reinforcement construction on mechanical behaviour of composite structures. The Journal of The Textile Institute, 115(3), 341-349.
  • Yang, T., Hu, L., Xiong, X., Wang, Y., Wang, X., Petrů, M., ... & Militký, J. (2021). A comparison of fabric structures for carbon fiber reinforced composite: Laminated and orthogonal woven structures. Polymer Composites, 42(10), 5300-5309.
  • Sun, Z., Zheng, P., Chen, C., Dong, Z., Chen, F., & Ma, P. (2025). Mechanical properties of carbon fiber composites with various wear characteristics during knitting process. Composites Part B: Engineering, 291, 112010.

Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites

Year 2025, Volume: 11 Issue: 1, 193 - 208, 30.06.2025
https://doi.org/10.29132/ijpas.1620589

Abstract

In this study, polymer matrices were reinforced with carbon fabric obtained by weaving and knitting carbon filaments. Different industries reported that filament unwinding occurred in woven carbon fiber composites. In composite manufacturing where woven fabric is required, the laying and manufacturing processes are challenging due to the dispersion of the fabric. With the knotted chain structure of the knit, it is easier to apply epoxy to the fabric as desired and to convert it into a composite. Especially when it is possible to produce the knit-ted chains tightly and as a whole during the knitting process, it is possible for the product converted into a composite to exhibit higher strength. In this study, the effects of weaving and knitting methods on the mechanical properties of carbon fiber reinforced composites were investigated. Mechanical properties were examined in woven and knitted structures for carbon fiber composite materials with different densities and thicknesses. Single-layer composite was produced using 3-layer 200 g/m2 plain woven fabric, 200 g/m2 and 245 g/m2 twill carbon fiber woven fabric as woven fabric. Carbon fabric with 1x1, 2x1, and 3x1 inter-lock knit structures were knitted so that it could be compared with weaving. The carbon fabrics obtained from woven and knitted filaments were turned into car-bon fiber-reinforced composites produced by vacuum infusion. Tensile and three-point bending tests of carbon fiber-reinforced composites were carried out within the scope of experimental studies. The fracture surfaces of the composite plates obtained were investigated via FESEM and EDS analyses. The highest ten-sile strength values were achieved in 245 g/ m2 twill weave and 3x1 interlock knitted carbon composite samples. In the knitted samples used, no dissolution problem was observed in the knitted structure.

Ethical Statement

There is no ethical statement

References

  • Ataş, A., & İnal, O. (2018). Experimental characterisation and prediction of elastic properties of woven fabric reinforced textile composite laminates. Journal of Science and Technology A- Applied Sciences And Engineering. 19(3), 660-670.
  • ASTM D790-17 Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical ınsulating materials.
  • ASTM D3039/D3039M-08 Standard test method for tensile properties of polymer matrix composite materials.
  • Carvalho L. H. De & Cavalcante J. M. F. & d'Almeida J. R. M. (2006). Comparison of the mechanical behavior of plain weave and plain weft knit jute fabric-polyester-reinforced composites, Polymer-Plastics Technology and Engineering, 45, 7, 791-797.
  • Chou, S. & Chen, H.C. (1992). Effect of woven structure on flexural and shear fracture behaviour of three-dimensional carbon-carbon composites. Journal of Materials Science, 27, 1741-1747.
  • Dominguez, C. A. E. & Hernández, H. O. & Mollinedo, H. & Huerta, O. S. & Moreno, H. H. (2023). Development and physical characterization of a composite laminate aramid/epoxy manufactured by the vacuum bag method, 47, 1, 108-115.
  • Durgun, İ. & Vatansever, O. & Ertan, R. & Yavuz, N. (2014). Experimental comparison of composite part manufacturing methods used in the automotive industry, Engineering and Machine, 55(649), 58-63.
  • Gülcan, E. (2019). Examination of the Physical Properties of Carbon Woven Fabric Reinforced Composite Materials, Uludağ University Institute of Science, Textile Engineering Master Thesis, Department, Bursa (2019).
  • Kamiya, R. et al. (2000). Some recent advances in the fabrication and design of three-dimensional textile preforms: a review. Composites science and technology.60(1), 33-47.
  • Kiasat, M.S. & Sangtabi, M.R. (2015). Effects of fiber bundle size and weave density on stiffness degadation and final failure of fabric laminates, Composites Science and Technology, 111, 23-31.
  • Kitagawa, Y. & Arai, M. & Yoshimura, A. & Goto, K. (2022). Prediction of transverse crack multiplication of CFRP cross-ply laminates under tension-tension fatigue load, Advanced Composite Materials, 1-18.
  • Korkmaz, N. (2014). A Study on production of composite materials containing carbon fiber reinforced woven fabric and determination of mechanical properties, Master Thesis, Institute of Science.
  • Nicoletto, G. & Riva, E. (2004). Failure mechanisms intwill-weave laminates: FEM predictions vs. experiments, Composites Part A: Applied Science and Manufacturing, 35, 787-795.
  • Shimokawa, T. & Kakuta, Y. & Kogo, Y. (2007). Carbon plain-weave fabric low-temperature vacuum cure epoxy composite: static and fatigue strength at room and high temperatures and practicality evaluation, Journal of Composite Materials,41,18.
  • Tugan, A. (2021). Examination of the performance properties of hybrid woven fabrics, Institute of Science and Technology.
  • Turhan, E. (2011). Examination of mechanical properties of composite structures obtained from carbon fiber in 1x1 weave structure, Master Thesis, Institute of Science and Technology.
  • Tursun, H. (2019). Development of material models for use in finite element analysis of fiber reinforced polymer composite Materials, Master Thesis, Institute of Science.
  • Virgil'ev, Yu S. & Kalyagina, I. P. (2004) Carbon–carbon composite materials. Inorganic Materials, 40 (1), 33-49.
  • Wang, Z. & Xie, H. & Luo, Q. & Li, Q. & Sun, G. (2021). Optimization for formability of plain woven carbon fiber fabrics, International Journal of Mechanical Sciences, 197.
  • Yanen, C. & Solmaz, M.Y. (2016) The production of layered hybrid composites as individual armor material and investigation of their ballistic performance, ECJSE.
  • Zhang, J. & Lin, G. & Vaidya, U. & Wang, H. (2023). Past, present and future prospective of global carbon fibre composite developments and applications, Composites Part B : Engineering, 250.
  • Zhou, G. & Sun, Q. & Meng, Z. & Li, D. & Peng, Y.& Zeng, D. & Su, X. (2021). Experimental investigation on the effects of fabric architectures on mechanical and damage behaviors of carbon/epoxy woven composites, Composite Structures, 257.
  • Zhu, C. & Zhu, P. & Liu, Z. (2019). Uncertainty analysis of mechanical properties of plain woven carbon fiber reinforced composite via stochastic constitutive modeling, Composite Structures, 207, 684-700.
  • Soydan, A. S., & Var, C. (2024). Assessment of a unique reinforcement construction on mechanical behaviour of composite structures. The Journal of The Textile Institute, 115(3), 341-349.
  • Yang, T., Hu, L., Xiong, X., Wang, Y., Wang, X., Petrů, M., ... & Militký, J. (2021). A comparison of fabric structures for carbon fiber reinforced composite: Laminated and orthogonal woven structures. Polymer Composites, 42(10), 5300-5309.
  • Sun, Z., Zheng, P., Chen, C., Dong, Z., Chen, F., & Ma, P. (2025). Mechanical properties of carbon fiber composites with various wear characteristics during knitting process. Composites Part B: Engineering, 291, 112010.
There are 26 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Articles
Authors

Sidem Kaner 0000-0002-1684-4975

Ceyda Okta 0000-0001-6425-5537

Early Pub Date June 27, 2025
Publication Date June 30, 2025
Submission Date January 18, 2025
Acceptance Date June 11, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Kaner, S., & Okta, C. (2025). Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites. International Journal of Pure and Applied Sciences, 11(1), 193-208. https://doi.org/10.29132/ijpas.1620589
AMA Kaner S, Okta C. Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites. International Journal of Pure and Applied Sciences. June 2025;11(1):193-208. doi:10.29132/ijpas.1620589
Chicago Kaner, Sidem, and Ceyda Okta. “Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites”. International Journal of Pure and Applied Sciences 11, no. 1 (June 2025): 193-208. https://doi.org/10.29132/ijpas.1620589.
EndNote Kaner S, Okta C (June 1, 2025) Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites. International Journal of Pure and Applied Sciences 11 1 193–208.
IEEE S. Kaner and C. Okta, “Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites”, International Journal of Pure and Applied Sciences, vol. 11, no. 1, pp. 193–208, 2025, doi: 10.29132/ijpas.1620589.
ISNAD Kaner, Sidem - Okta, Ceyda. “Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites”. International Journal of Pure and Applied Sciences 11/1 (June 2025), 193-208. https://doi.org/10.29132/ijpas.1620589.
JAMA Kaner S, Okta C. Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites. International Journal of Pure and Applied Sciences. 2025;11:193–208.
MLA Kaner, Sidem and Ceyda Okta. “Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites”. International Journal of Pure and Applied Sciences, vol. 11, no. 1, 2025, pp. 193-08, doi:10.29132/ijpas.1620589.
Vancouver Kaner S, Okta C. Mechanical Structure Investigations of Woven and Knitted Carbon Fiber- Reinforced Polymer Composites. International Journal of Pure and Applied Sciences. 2025;11(1):193-208.