Research Article
BibTex RIS Cite

Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls

Year 2025, Volume: 11 Issue: 1, 252 - 268, 30.06.2025
https://doi.org/10.29132/ijpas.1642560

Abstract

Ship propeller jet-induced scour while berthing and unberthing poses a significant threat to berth structure stability. With the increase in size and capacity of vessels, the propeller-generated flow interaction with seabed erosion is gaining significance for port facility management. The present investigation experimentally investigates single propeller jet-induced scour behavior around quay walls of various wall configurations. Flume experiments in the laboratory were conducted with the use of sand of median grain diameter d₅₀ = 1.2 mm, 10 cm diameter propellers, and Froude numbers of 4.71 and 6.23. The role of rotational speed of the propeller, gap (G) vertically, and the propeller-wall distance were studied under conditions of unconfined (no-wall) and confined (parallel and vertical wall) cases. The results show that for unconfined cases, deeper gaps decrease scour depth and greater rotational speed increases it. In confined cases, deeper separation between the wall and the propeller decreases scour depth, and wall orientation significantly influences the scour profile. These kinds of results enhance understanding of the mechanisms of sediment transport near quay walls and allow for the development of predictive models for estimating scour.

Supporting Institution

İstanbul Technical University

Project Number

MGA-2022-44199

Thanks

The study was supported by the Scientific Research Projects Coordination Unit of Istanbul Technical University (ITU) (Project No: MGA-2022-44199).

References

  • Qurrain, R. (1994). Influence of the Sea Bed Geometry and Berth Geometry on the Hydrodynamics of the Wash from a Ship's Propeller. Northern, Ireland: The Queen's University of Belfast.
  • Longe J., Hebert P., and Byl R. (1987). Erosion problems at existing quay constructions due to bow thrusters and main propellers of ships when berthing or leaving. Bulletin of the Permanent International Association of Navigation Congresses (PIANC).
  • Chin, C.O., Chiew, Y.M., Lim, S. Y. and Lim, F. H. (1996). Jet Scour around Vertical Pile. Journal of Waterway, Port, Coastal, Ocean Engineering, 122 (2), 59-67.
  • Hong, J. H., Chiew, Y. M., and Cheng, N. S. (2013). Scour caused by a propeller jet. Journal of Hydraulic Engineering, 139(9), 1003-1012.
  • Wei, M., and Chiew, Y. (2018). Characteristics of Propeller Jet Flow within Developing Scour Holes around an Open Quay. Journal of Hydraulic Engineering, 144(7), 04018040.
  • Tan, R. (2019). Propeller Jet Induced Erosion around Pile Supported Berth Structures. PhD Thesis, Yıldız Technical University, Istanbul, Türkiye.
  • Tan R.İ., Kesgin E., Aksel M., and Kuzgun R. (2023). Numerical Investigation of Propeller Jet Flow for the Understanding of Scouring Mechanism. 11th International Conference on Scour and Erosion, Copenhagen, Denmark, 17-21 September 2023.
  • Kuzgun, R. (2024). Experimental Investigation of Seabed Scouring under Ship Propeller Jet Flow (in Turkish). Master’s Thesis, Fatih Sultan Mehmet Vakıf University, Istanbul, Türkiye.
  • Hamill, G. A., Johnston, H. T., and Stewart, D. P. (1999). Propeller Wash Scour Near Quay Walls. J. Waterway, Port, Coastal, Ocean Eng., 125, 170-175.
  • Abdi, A. A. (2018). Modeling and Analysis of Bridge Piles under Scour Effect (in Turkish). Master's Thesis. Akdeniz University.
  • Ryan D., Hamill G.A., and Johnston H.T. (2013). Determining propeller induced erosion alongside quay walls in harbours using artificial neural networks. Ocean. Eng., 59,142–151.
  • Tan, İ. R., and Yüksel, Y. (2018). Seabed scour induced by a propeller jet. Ocean Engineering, 160, 132-142.
  • Yüksel, Y., Tan, R.İ., and Celikoglu, Y. (2018). Propeller Jet Scour Around a Pile Structure. Journal of Applied Ocean Research, 79,160-172.
  • Suljevic, A, and Kesgin, E. (2024). Experimental Study of Unconfined Twin Propeller Jet Scour. Journal of Studies in Advanced Technologies, 2(1), 33-41 (in Turkish).
  • Suljevic, A, and Kesgin, E. (2025). Twin propeller scour in noncohesive seabed with different quay wall configurations. Ocean Engineering, Vol.322, 120554.
  • Cui, Y., Lam, W. H., Zhang, T., Sun, C., and Hamill, G. (2019). Scour Induced by Single and Twin Propeller Jets. Water, 11(5), 1097.
  • Blaauw, H., and Kaa, E. (1978). Erosion of bottom and sloping banks caused by the crew race of maneuvering ships. in 7th International Harbours Congress. Antwerp, Belgium.
  • Chiew, Y. M., and Lim, S.Y. (1996). Local scour by a deeply submerged horizontal circular jet. J. Hydraul. Eng, 122, 529–532.
  • Hamill G.A., McGarvey, J.A. and Hughes D.A.B. (2004). Determination of the Efflux Velocity from Ship’s Propeller. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 157 (2), 83-91.
  • Lam, W., Hamill, G.A., Robinson, D.J. and Raghunathan, S. (2011). A Review of the Equations Used to Predict the Velocity Distribution Within a Ship’s Propeller Jet. Applied Ocean Research, 38, 1-10.
  • Hamill, G.A. (1987). Characteristics of the Screw Wash of Maneuvering Ship and the Resulting Bed Scour, Ph.D. Thesis, Queen’s University of Belfast, Northern Ireland, UK.
  • Wei M., Chiew Y., and Cheng N. (2020). Recent advances in understanding propeller jet flow and its impact on scour. Physics of Fluids, 32(10), 101303.
  • Fuehrer, M., and Römisch, K., (1977). Propeller Jet Erosion and Stability Criteria for Bottom Protection of Various Constructions, In Proceedings of PIANC, Bulletin No.58
  • Yüksel Y., Tan R.I., and Celikoglu Y. (2019). Determining propeller scour near a quay wall. Ocean Engineering, 188, 106331.

Dikey ve Paralel Yanaşma Yapıları Önünde Tekil Pervane Kaynaklı Oyulma Dinamiklerinin Deneysel Olarak Araştırılması

Year 2025, Volume: 11 Issue: 1, 252 - 268, 30.06.2025
https://doi.org/10.29132/ijpas.1642560

Abstract

Yanaşma ve ayrılma sırasında gemi pervanelerinin oluşturduğu jet akımları, yanaşma yapılarının stabilitesini ciddi şekilde tehdit edebilir. Giderek artan gemi boyutları ve kapasiteleriyle birlikte, pervane kaynaklı akımlar ile deniz tabanı erozyonu arasındaki etkileşimin anlaşılması, liman altyapısının korunması açısından kritik hale gelmiştir. Bu çalışma, çeşitli duvar konfigürasyonları altında tekil pervane jetlerinin oluşturduğu oyulma desenlerini deneysel olarak incelemektedir. Deneyler, ortalama tane çapı d₅₀ = 1,2 mm olan kum kullanılarak, 10 cm çapında pervaneler ve 4,71 ile 6,23 arasında değişen Froude sayılarıyla gerçekleştirilmiştir. Duvar bulunmayan (yapısız) ve duvar bulunan (dikey ve paralel) koşullar altında; pervane dönüş hızı, dikey boşluk (G) ve pervane-duvar mesafesinin oyulma üzerindeki etkileri analiz edilmiştir. Sonuçlar, yapısız durumda pervane ile yatak arasındaki mesafe arttıkça oyulma derinliğinin azaldığını; dönüş hızı arttıkça ise oyulmanın derinleştiğini göstermektedir. Yapılı koşullarda ise pervane-duvar mesafesi arttıkça oyulma derinliği azalmış, duvar yöneliminin de oyulma profili üzerinde önemli etkiler oluşturduğu belirlenmiştir. Elde edilen bulgular, rıhtım duvarları yakınında oluşan sediman taşınım mekanizmalarının anlaşılmasına katkı sağlayarak oyulma tahmin modellerinin geliştirilmesine olanak sunmaktadır.

Project Number

MGA-2022-44199

References

  • Qurrain, R. (1994). Influence of the Sea Bed Geometry and Berth Geometry on the Hydrodynamics of the Wash from a Ship's Propeller. Northern, Ireland: The Queen's University of Belfast.
  • Longe J., Hebert P., and Byl R. (1987). Erosion problems at existing quay constructions due to bow thrusters and main propellers of ships when berthing or leaving. Bulletin of the Permanent International Association of Navigation Congresses (PIANC).
  • Chin, C.O., Chiew, Y.M., Lim, S. Y. and Lim, F. H. (1996). Jet Scour around Vertical Pile. Journal of Waterway, Port, Coastal, Ocean Engineering, 122 (2), 59-67.
  • Hong, J. H., Chiew, Y. M., and Cheng, N. S. (2013). Scour caused by a propeller jet. Journal of Hydraulic Engineering, 139(9), 1003-1012.
  • Wei, M., and Chiew, Y. (2018). Characteristics of Propeller Jet Flow within Developing Scour Holes around an Open Quay. Journal of Hydraulic Engineering, 144(7), 04018040.
  • Tan, R. (2019). Propeller Jet Induced Erosion around Pile Supported Berth Structures. PhD Thesis, Yıldız Technical University, Istanbul, Türkiye.
  • Tan R.İ., Kesgin E., Aksel M., and Kuzgun R. (2023). Numerical Investigation of Propeller Jet Flow for the Understanding of Scouring Mechanism. 11th International Conference on Scour and Erosion, Copenhagen, Denmark, 17-21 September 2023.
  • Kuzgun, R. (2024). Experimental Investigation of Seabed Scouring under Ship Propeller Jet Flow (in Turkish). Master’s Thesis, Fatih Sultan Mehmet Vakıf University, Istanbul, Türkiye.
  • Hamill, G. A., Johnston, H. T., and Stewart, D. P. (1999). Propeller Wash Scour Near Quay Walls. J. Waterway, Port, Coastal, Ocean Eng., 125, 170-175.
  • Abdi, A. A. (2018). Modeling and Analysis of Bridge Piles under Scour Effect (in Turkish). Master's Thesis. Akdeniz University.
  • Ryan D., Hamill G.A., and Johnston H.T. (2013). Determining propeller induced erosion alongside quay walls in harbours using artificial neural networks. Ocean. Eng., 59,142–151.
  • Tan, İ. R., and Yüksel, Y. (2018). Seabed scour induced by a propeller jet. Ocean Engineering, 160, 132-142.
  • Yüksel, Y., Tan, R.İ., and Celikoglu, Y. (2018). Propeller Jet Scour Around a Pile Structure. Journal of Applied Ocean Research, 79,160-172.
  • Suljevic, A, and Kesgin, E. (2024). Experimental Study of Unconfined Twin Propeller Jet Scour. Journal of Studies in Advanced Technologies, 2(1), 33-41 (in Turkish).
  • Suljevic, A, and Kesgin, E. (2025). Twin propeller scour in noncohesive seabed with different quay wall configurations. Ocean Engineering, Vol.322, 120554.
  • Cui, Y., Lam, W. H., Zhang, T., Sun, C., and Hamill, G. (2019). Scour Induced by Single and Twin Propeller Jets. Water, 11(5), 1097.
  • Blaauw, H., and Kaa, E. (1978). Erosion of bottom and sloping banks caused by the crew race of maneuvering ships. in 7th International Harbours Congress. Antwerp, Belgium.
  • Chiew, Y. M., and Lim, S.Y. (1996). Local scour by a deeply submerged horizontal circular jet. J. Hydraul. Eng, 122, 529–532.
  • Hamill G.A., McGarvey, J.A. and Hughes D.A.B. (2004). Determination of the Efflux Velocity from Ship’s Propeller. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 157 (2), 83-91.
  • Lam, W., Hamill, G.A., Robinson, D.J. and Raghunathan, S. (2011). A Review of the Equations Used to Predict the Velocity Distribution Within a Ship’s Propeller Jet. Applied Ocean Research, 38, 1-10.
  • Hamill, G.A. (1987). Characteristics of the Screw Wash of Maneuvering Ship and the Resulting Bed Scour, Ph.D. Thesis, Queen’s University of Belfast, Northern Ireland, UK.
  • Wei M., Chiew Y., and Cheng N. (2020). Recent advances in understanding propeller jet flow and its impact on scour. Physics of Fluids, 32(10), 101303.
  • Fuehrer, M., and Römisch, K., (1977). Propeller Jet Erosion and Stability Criteria for Bottom Protection of Various Constructions, In Proceedings of PIANC, Bulletin No.58
  • Yüksel Y., Tan R.I., and Celikoglu Y. (2019). Determining propeller scour near a quay wall. Ocean Engineering, 188, 106331.
There are 24 citations in total.

Details

Primary Language English
Subjects Coastal Sciences and Engineering
Journal Section Articles
Authors

Erdal Kesgin 0000-0002-9441-5359

Rumeysa Kuzgun 0009-0000-7187-933X

Remziye İlayda Tan Kesgin 0000-0001-9135-1698

Kadir Gezici 0000-0001-6349-8262

Project Number MGA-2022-44199
Early Pub Date June 27, 2025
Publication Date June 30, 2025
Submission Date February 24, 2025
Acceptance Date June 19, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Kesgin, E., Kuzgun, R., Tan Kesgin, R. İ., Gezici, K. (2025). Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls. International Journal of Pure and Applied Sciences, 11(1), 252-268. https://doi.org/10.29132/ijpas.1642560
AMA Kesgin E, Kuzgun R, Tan Kesgin Rİ, Gezici K. Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls. International Journal of Pure and Applied Sciences. June 2025;11(1):252-268. doi:10.29132/ijpas.1642560
Chicago Kesgin, Erdal, Rumeysa Kuzgun, Remziye İlayda Tan Kesgin, and Kadir Gezici. “Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls”. International Journal of Pure and Applied Sciences 11, no. 1 (June 2025): 252-68. https://doi.org/10.29132/ijpas.1642560.
EndNote Kesgin E, Kuzgun R, Tan Kesgin Rİ, Gezici K (June 1, 2025) Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls. International Journal of Pure and Applied Sciences 11 1 252–268.
IEEE E. Kesgin, R. Kuzgun, R. İ. Tan Kesgin, and K. Gezici, “Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls”, International Journal of Pure and Applied Sciences, vol. 11, no. 1, pp. 252–268, 2025, doi: 10.29132/ijpas.1642560.
ISNAD Kesgin, Erdal et al. “Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls”. International Journal of Pure and Applied Sciences 11/1 (June 2025), 252-268. https://doi.org/10.29132/ijpas.1642560.
JAMA Kesgin E, Kuzgun R, Tan Kesgin Rİ, Gezici K. Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls. International Journal of Pure and Applied Sciences. 2025;11:252–268.
MLA Kesgin, Erdal et al. “Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls”. International Journal of Pure and Applied Sciences, vol. 11, no. 1, 2025, pp. 252-68, doi:10.29132/ijpas.1642560.
Vancouver Kesgin E, Kuzgun R, Tan Kesgin Rİ, Gezici K. Experimental Analysis of Single Propeller Scour Dynamics Near Vertical and Parallel Quay Walls. International Journal of Pure and Applied Sciences. 2025;11(1):252-68.