Sustainable Production of Titanium Foams Using Recycled Space Holder Materials
Year 2025,
Volume: 11 Issue: 1, 136 - 148, 30.06.2025
Betül Demir
,
Aysun Ayday
Abstract
In this study, titanium foams were produced using ceramic polishing waste (CPW) as a space holder through the Electric Current Assisted Sintering (ECAS) method. Industrially sourced CPW was obtained from Ceramic Factory and added to tita-nium powders at weight ratios of 2%, 5%, 8%, and 10% via conventional powder metallurgy techniques. The prepared mixtures were homogenized in a ball mill, pressed, and sintered at approximately 1300 °C using the ECAS process. Micro-structural analyses revealed that increasing CPW content led to more homogeneous pore morphology, a higher open porosity ratio, and a more controlled foam structure. In particular, the oxidative decomposition of SiC within the CPW was found to promote pore formation through the release of CO and CO₂ gases. A po-rosity of 34.4% was achieved with 10% CPW addition, demonstrating effective results for the production of low-density structures. Consequently, CPW was concluded to be a sustainable space holder alternative in terms of both functional foam production and waste management.
References
- P.T. Nivala, S.P. James, "Metal open-cell foams with periodic topology fabricated by spark plasma sintering," Materialia, vol. 8, 2019, doi:10.1016/j.mtla.2019.100428.
- Y. Zhang, R. Liu, C. Liu, Y. Zhang, L. Yan, J. Jiang, E. Liu, F. Xu, "Metal foams for the interfering energy conversion: Electromagnetic wave absorption, shielding, and sound attenuation," Journal of Materials Science & Technology, vol. 215, pp. 258–282, 2025, doi:10.1016/j.jmst.2024.06.054.
- F.S. Damanik, G. Lange, "Influence of MWCNT coated nickel on the foaming behavior of MWCNT coated nickel reinforced AlMg4Si8 foam by powder metallurgy process,” Metals vol. 10, pp. 1–9, 2020, doi:10.3390/met10070955.
- Ş. Eldemİr, Ö. Üyesi, O. Erdem, "Metali̇k köpükler ve uygulama alanlari," Malzeme Bilimleri Dergisi vol. 2, pp. 91–101, 2023.
- T. Wang, L. Liu, Z. Liu, K. Wang, R. Yao, X. Yao, R. Hang, “Characterization, mechanical property, degradation behavior, and osteogenic activity of Zn–Mn alloy foam prepared by electrodeposition,” Acta Metallurgica Sinica, May 2025, doi:10.1016/j.mtla.2019.100428(2025).
- S. Mardani, V. Aghabalaei, M. Baghdadi, A. Torabian, B.A. Goharrizi, "Application of Cu@Cu foam and RuO2@Ti for removal of nitrogen compounds and organic matters from non-standard treated municipal wastewater by continuous electrochemical process: Optimization and mechanism," Process Safety and Environmental Protection, vol. 191, pp. 523–539, 2024, doi:10.1016/j.psep.2024.09.002.
- J. Xiao, Y. Yang, G.B. Qiu, Y.L. Liao, H. Cui, X.W. Lü, "Volume change of macropores of titanium foams during sintering," Transactions of Nonferrous Metals Society of China, vol. 25, pp. 3834–3839, 2015, doi:10.1016/S1003-6326(15)64029-8.
- M. Hajizadeh, M. Yazdani, S. Vesali, H. Khodarahmi, T. Mirzababaie Mostofi, “An experimental investigation into the quasi‑static compression behavior of open‑cell aluminum foams focusing on controlling the space holder particle size,” Journal of Manufacturing Processes, vol. 70, pp. 193–204, 2021, doi:10.1016/j.jmapro.2021.08.043.
- Q. Li, W. Yang, C. Liu, D. Wang, J. Liang, “Correlations between the growth mechanism and properties of micro‑arc oxidation coatings on titanium alloy: Effects of electrolytes,” Surface Coatings Technology, vol. 326, pp. 162–170, 2017, doi:10.1016/j.surfcoat.2017.03.021.
- P. Ji, B. Chen, B. Li, Y. Tang, G. Zhang, X. Zhang, M. Ma, R. Liu, “Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti‑Zr alloys,” Journal of Materials Science & Technology, vol. 69, pp. 7–14, 2021, doi:10.1016/j.jmst.2020.03.092.
- E. Yılmaz, A. Gökçe, F. Findik, and H. O. Gulsoy, “Metallurgical properties and biomimetic HA deposition performance of Ti-Nb PIM alloys,” Journal of Alloys and Compounds, vol. 746, pp. 301–313, 2018, doi:10.1016/j.jallcom.2018.02.274.
- S. K. Yazici, F. Muhaffel, and M. Baydogan, “Effect of incorporating carbon nanotubes into electrolyte on surface morphology of micro arc oxidized Cp-Ti,” Applied Surface Science, vol. 318, pp. 10–14, 2014, doi:10.1016/j.apsusc.2013.11.137.
- E. M. Saeed, N. M. Dawood, and S. F. Hasan, “Improvement corrosion resistance of Ni-Ti alloy by TiO2 coating and hydroxyapatite/TiO2 composite coating using micro arc oxidation process,” Materials Today: Proceedings, vol. 42, pp. 2789–2796, 2021, doi:10.1016/j.matpr.2020.12.723.
- S. Guan, M. Qi, Y. Li, and W. Wang, “Morphology evolution of the porous coatings on Ti–xAl alloys by Al adding into Ti during micro-arc oxidation in Na2B4O7 electrolyte,” Surface and Coatings Technology, vol. 395, 2020, doi:10.1016/j.surfcoat.2020.125948.
- E. Yang, R. Yang, W. Wei, Q. Mo, F. Liang, D. Li, and W. Li, “Corrosion resistance and antibacterial properties of hydrophobic modified Ce-doped micro-arc oxidation coating,” Journal of Materials Research and Technology, vol. 29, pp. 3303–3316, 2024, doi:10.1016/j.jmrt.2024.02.052.
- F. Cavilha Neto, V. Salinas-Barrera, C. Aguilar, W. Dal’Maz Silva, C. Binder, and A. N. Klein, “Highly porous CP-Ti foams manufactured with powder compaction, the space holder method and plasma-assisted sintering for biomedical applications,” Materials Letters, vol. 361, 2024, doi:10.1016/j.matlet.2024.136091.
- I. M. Makena and M. B. Shongwe, “Effects of porosity on the corrosion behaviour of PM-fabricated titanium foams for biomedical applications,” International Journal of Electrochemical Science, vol. 19, 2024, doi:10.1016/j.ijoes.2024.100495.
- I. García, M. Bayod, A. Conde, M. A. Arenas, J. Damborenea, A. Romero, and G. Rodríguez, “Concentrated Solar Energy sintering crossmark,” Materials Letters,vol. 185, pp. 420–423, 2016
- H. C. Hsu, S. K. Hsu, S. C. Wua, P. H. Wang, and W. F. Ho, “Design and characterization of highly porous titanium foams with bioactive surface sintering in air,” Journal of Alloys and Compounds, vol. 575, pp. 326–332, 2013, doi:10.1016/j.jallcom.2013.05.186.
- X. Ma, C. He, Y. Yan, J. Chen, H. Feng, J. Hu, H. Zhu, and Y. Xia, “Energy-efficient electrochemical degradation of ciprofloxacin by a Ti-foam/PbO2-GN composite electrode: Electrode characteristics, parameter optimization, and reaction mechanism,” Chemosphere, vol. 315, 2023, doi:10.1016/j.chemosphere.2023.137739.
- A. Abhash, P. Singh, V. A. N. Ch, S. Sathaiah, R. Kumar, G. K. Gupta, and D. P. Mondal, “Study of newly developed Ti–Al–Co alloys foams for bioimplant application,” Materials Science and Engineering: A, vol. 774, 2020, doi:10.1016/j.msea.2020.138910.
- A. Hassani, A. Habibolahzadeh, and H. Bafti, “Production of graded aluminum foams via powder space holder technique,” Materials & Design, vol. 40, pp. 510–515, 2012, doi:10.1016/j.matdes.2012.04.024.
- H. Bafti and A. Habibolahzadeh, “Production of aluminum foam by spherical carbamide space holder technique-processing parameters,” Materials & Design, vol. 31, pp. 4122–4129, 2010, doi:10.1016/j.matdes.2010.04.038.
- P. Siegkas, N. Petrinic, and V. L. Tagarielli, “Measurements and micro-mechanical modelling of the response of sintered titanium foams,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 57, pp. 365–375, 2016, doi:10.1016/j.jmbbm.2016.02.024.
- D. P. Mondal, J. D. Majumder, N. Jha, A. Badkul, S. Das, A. Patel, and G. Gupta, “Titanium-cenosphere syntactic foam made through powder metallurgy route,” Materials & Design, vol. 34, pp. 82–89, 2012, doi:10.1016/j.matdes.2011.07.055.
- L. Pérez, S. Lascano, C. Aguilar, D. Domancic, and I. Alfonso, “Simplified fractal FEA model for the estimation of the Young’s modulus of Ti foams obtained by powder metallurgy,” Materials & Design, vol. 83, pp. 276–283, 2015, doi:10.1016/j.matdes.2015.06.038.
- N. Jha, D. P. Mondal, J. D. Majumdar, A. Badkul, A. K. Jha, and A. K. Khare, “Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route,” Materials & Design, vol. 47, pp. 810–819, 2013, doi:10.1016/j.matdes.2013.01.005.
- A. Ayday and M. Durman, “Effect of different surface-heat-treatment methods on the surface properties of AISI 4140 steel,” Materials and Technology, vol. 48, 2014.
- G. Li, Y. Wang, L. Qiao, R. Zhao, S. Zhang, R. Zhang, C. Chen, X. Li, and Y. Zhao, “Preparation and formation mechanism of copper incorporated micro-arc oxidation coatings developed on Ti-6Al-4V alloys,” Surface and Coatings Technology, vol. 375, pp. 74–85, 2019, doi:10.1016/j.surfcoat.2019.06.096.
- Y. Zhang, G. R. Ma, X. C. Zhang, S. Li, and S. T. Tu, “Thermal oxidation of Ti-6Al–4V alloy and pure titanium under external bending strain: Experiment and modelling,” Corrosion Science, vol. 122, pp. 61–73, 2017, doi:10.1016/j.corsci.2017.01.009.
- C. T. Guerrero, I. A. Figueroa, M. F. Azamar, T. E. Soto, L. E. Carranza, C. Reyes, and I. Alfonso, “A study on syntactic aluminum foams manufactured infiltrating sintered preforms of iron hollow spheres,” Materials Chemistry and Physics, vol. 323, 2024, doi:10.1016/j.matchemphys.2024.129656.
- N. I. Hafiz, M. A. Islam, and S. Saha, “Characterization of synthesized nickel foam using ammonium hydrogen carbonate as space holder,” Results in Engineering, vol. 24, 2024, doi:10.1016/j.rineng.2024.103634.
- S. Sathaiah, R. Dubey, A. Pandey, N. R. Gorhe, T. C. Joshi, V. Chilla, D. Muchhala, and D. P. Mondal, “Effect of spherical and cubical space holders on the microstructural characteristics and its consequences on mechanical and thermal properties of open-cell aluminum foam,” Materials Chemistry and Physics, vol. 273, 2021, doi:10.1016/j.matchemphys.2021.125115.
- J. Rivard, V. Brailovski, S. Dubinskiy, and S. Prokoshkin, “Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications,” Materials Science and Engineering: C, vol. 45, pp. 421–433, 2014, doi:10.1016/j.msec.2014.09.033.
- M. S. Bernardo, T. Jardiel, A. C. Caballero, M. Bram, J. Gonzalez-Julian, and M. Peiteado, “Electric current activated sintering (ECAS) of undoped and titanium-doped BiFeO₃ bulk ceramics with homogeneous microstructure,” Journal of the European Ceramic Society, vol. 39, pp. 2042–2049, 2019, doi:10.1016/j.jeurceramsoc.2019.01.045.
- Y. Garip and O. Ozdemir, “A study of the cycle oxidation behavior of the Cr/Mn/Mo alloyed Ti–48Al–based intermetallics prepared by ECAS,” Journal of Alloys and Compounds, vol. 818, 2020, doi:10.1016/j.jallcom.2019.152818.
- A. Erdogan, T. Yener, and S. Zeytin, “Fast production of high entropy alloys (CoCrFeNiAlxTiy) by electric current activated sintering system,” Vacuum, vol. 155, pp. 64–72, 2018, doi:10.1016/j.vacuum.2018.05.027.
- D. Kırsever, H. Ö. Toplan, and A. Ş. Demirkıran, “Effect of porcelain polishing waste additive on properties and corrosion resistance of ceramic foams produced from zeolite,” Journal of the Australian Ceramic Society, vol. 59, pp. 671–683, 2023, doi:10.1007/s41779-023-00865-z.
Geri Dönüştürülmüş Yer Tutucu Kullanımıyla Sürdürülebilir Titanyum Köpük Üretimi Süreci
Year 2025,
Volume: 11 Issue: 1, 136 - 148, 30.06.2025
Betül Demir
,
Aysun Ayday
Abstract
Bu çalışmada, seramik parlatma atığı (SPA) yer tutucu olarak kullanılarak elektrik akım destekli sinterleme (ECAS) yöntemiyle titanyum köpükler üretilmiştir. Endüstriyel kaynaklı SPA, Seramik Fabrikası’ndan temin edilmiş ve toz metalurjisi yöntemiyle ağırlıkça %2, %5, %8 ve %10 oranlarında Ti tozlarına ilave edilmiştir. Hazırlanan karışımlar, bilyalı değirmende homo-jenize edildikten sonra preslenerek ECAS yöntemiyle yaklaşık 1300 °C’de sinterlenmiştir. Mikro yapısal analizler, artan SPA içeriği ile birlikte gözenek morfolojisinin daha homojen hale geldiğini, açık gözeneklilik oranının arttı-ğını ve köpük yapının kontrollü şekilde şekillendirilebildiğini ortaya koy-muştur. Özellikle, SPA içeriğinde bulunan SiC’in oksidatif bozunmasıyla açığa çıkan gazların, gözenek oluşumunu desteklediği belirlenmiştir. %10 SPA katkısı ile elde edilen %34,4 porozite, hedeflenen düşük yoğunluklu yapıların üretiminde etkili sonuçlar sunmuştur. Bu kapsamda, SPA’nın hem fonksiyonel köpük üretiminde hem de atık yönetimi açısından sürdürülebilir bir yer tutucu alternatif olduğu sonucuna varılmıştır.
Thanks
Bu çalışma, Sakarya Üniversitesi Metalurji ve Malzeme Mühendisliği Bölümü laboratuvar altyapısı kullanılarak gerçekleştirilmiştir. Atık toz temini Kütahya Seranit Fabrikası tarafından gerçekleştirilmiştir. Ayrıca, araştırmanın yürütülmesinde sağlanan destek nedeniyle Sakarya Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne (BAP) ve proje numarası 2024-26-62-119 ile verilen dolayı teşekkür ederiz.
References
- P.T. Nivala, S.P. James, "Metal open-cell foams with periodic topology fabricated by spark plasma sintering," Materialia, vol. 8, 2019, doi:10.1016/j.mtla.2019.100428.
- Y. Zhang, R. Liu, C. Liu, Y. Zhang, L. Yan, J. Jiang, E. Liu, F. Xu, "Metal foams for the interfering energy conversion: Electromagnetic wave absorption, shielding, and sound attenuation," Journal of Materials Science & Technology, vol. 215, pp. 258–282, 2025, doi:10.1016/j.jmst.2024.06.054.
- F.S. Damanik, G. Lange, "Influence of MWCNT coated nickel on the foaming behavior of MWCNT coated nickel reinforced AlMg4Si8 foam by powder metallurgy process,” Metals vol. 10, pp. 1–9, 2020, doi:10.3390/met10070955.
- Ş. Eldemİr, Ö. Üyesi, O. Erdem, "Metali̇k köpükler ve uygulama alanlari," Malzeme Bilimleri Dergisi vol. 2, pp. 91–101, 2023.
- T. Wang, L. Liu, Z. Liu, K. Wang, R. Yao, X. Yao, R. Hang, “Characterization, mechanical property, degradation behavior, and osteogenic activity of Zn–Mn alloy foam prepared by electrodeposition,” Acta Metallurgica Sinica, May 2025, doi:10.1016/j.mtla.2019.100428(2025).
- S. Mardani, V. Aghabalaei, M. Baghdadi, A. Torabian, B.A. Goharrizi, "Application of Cu@Cu foam and RuO2@Ti for removal of nitrogen compounds and organic matters from non-standard treated municipal wastewater by continuous electrochemical process: Optimization and mechanism," Process Safety and Environmental Protection, vol. 191, pp. 523–539, 2024, doi:10.1016/j.psep.2024.09.002.
- J. Xiao, Y. Yang, G.B. Qiu, Y.L. Liao, H. Cui, X.W. Lü, "Volume change of macropores of titanium foams during sintering," Transactions of Nonferrous Metals Society of China, vol. 25, pp. 3834–3839, 2015, doi:10.1016/S1003-6326(15)64029-8.
- M. Hajizadeh, M. Yazdani, S. Vesali, H. Khodarahmi, T. Mirzababaie Mostofi, “An experimental investigation into the quasi‑static compression behavior of open‑cell aluminum foams focusing on controlling the space holder particle size,” Journal of Manufacturing Processes, vol. 70, pp. 193–204, 2021, doi:10.1016/j.jmapro.2021.08.043.
- Q. Li, W. Yang, C. Liu, D. Wang, J. Liang, “Correlations between the growth mechanism and properties of micro‑arc oxidation coatings on titanium alloy: Effects of electrolytes,” Surface Coatings Technology, vol. 326, pp. 162–170, 2017, doi:10.1016/j.surfcoat.2017.03.021.
- P. Ji, B. Chen, B. Li, Y. Tang, G. Zhang, X. Zhang, M. Ma, R. Liu, “Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti‑Zr alloys,” Journal of Materials Science & Technology, vol. 69, pp. 7–14, 2021, doi:10.1016/j.jmst.2020.03.092.
- E. Yılmaz, A. Gökçe, F. Findik, and H. O. Gulsoy, “Metallurgical properties and biomimetic HA deposition performance of Ti-Nb PIM alloys,” Journal of Alloys and Compounds, vol. 746, pp. 301–313, 2018, doi:10.1016/j.jallcom.2018.02.274.
- S. K. Yazici, F. Muhaffel, and M. Baydogan, “Effect of incorporating carbon nanotubes into electrolyte on surface morphology of micro arc oxidized Cp-Ti,” Applied Surface Science, vol. 318, pp. 10–14, 2014, doi:10.1016/j.apsusc.2013.11.137.
- E. M. Saeed, N. M. Dawood, and S. F. Hasan, “Improvement corrosion resistance of Ni-Ti alloy by TiO2 coating and hydroxyapatite/TiO2 composite coating using micro arc oxidation process,” Materials Today: Proceedings, vol. 42, pp. 2789–2796, 2021, doi:10.1016/j.matpr.2020.12.723.
- S. Guan, M. Qi, Y. Li, and W. Wang, “Morphology evolution of the porous coatings on Ti–xAl alloys by Al adding into Ti during micro-arc oxidation in Na2B4O7 electrolyte,” Surface and Coatings Technology, vol. 395, 2020, doi:10.1016/j.surfcoat.2020.125948.
- E. Yang, R. Yang, W. Wei, Q. Mo, F. Liang, D. Li, and W. Li, “Corrosion resistance and antibacterial properties of hydrophobic modified Ce-doped micro-arc oxidation coating,” Journal of Materials Research and Technology, vol. 29, pp. 3303–3316, 2024, doi:10.1016/j.jmrt.2024.02.052.
- F. Cavilha Neto, V. Salinas-Barrera, C. Aguilar, W. Dal’Maz Silva, C. Binder, and A. N. Klein, “Highly porous CP-Ti foams manufactured with powder compaction, the space holder method and plasma-assisted sintering for biomedical applications,” Materials Letters, vol. 361, 2024, doi:10.1016/j.matlet.2024.136091.
- I. M. Makena and M. B. Shongwe, “Effects of porosity on the corrosion behaviour of PM-fabricated titanium foams for biomedical applications,” International Journal of Electrochemical Science, vol. 19, 2024, doi:10.1016/j.ijoes.2024.100495.
- I. García, M. Bayod, A. Conde, M. A. Arenas, J. Damborenea, A. Romero, and G. Rodríguez, “Concentrated Solar Energy sintering crossmark,” Materials Letters,vol. 185, pp. 420–423, 2016
- H. C. Hsu, S. K. Hsu, S. C. Wua, P. H. Wang, and W. F. Ho, “Design and characterization of highly porous titanium foams with bioactive surface sintering in air,” Journal of Alloys and Compounds, vol. 575, pp. 326–332, 2013, doi:10.1016/j.jallcom.2013.05.186.
- X. Ma, C. He, Y. Yan, J. Chen, H. Feng, J. Hu, H. Zhu, and Y. Xia, “Energy-efficient electrochemical degradation of ciprofloxacin by a Ti-foam/PbO2-GN composite electrode: Electrode characteristics, parameter optimization, and reaction mechanism,” Chemosphere, vol. 315, 2023, doi:10.1016/j.chemosphere.2023.137739.
- A. Abhash, P. Singh, V. A. N. Ch, S. Sathaiah, R. Kumar, G. K. Gupta, and D. P. Mondal, “Study of newly developed Ti–Al–Co alloys foams for bioimplant application,” Materials Science and Engineering: A, vol. 774, 2020, doi:10.1016/j.msea.2020.138910.
- A. Hassani, A. Habibolahzadeh, and H. Bafti, “Production of graded aluminum foams via powder space holder technique,” Materials & Design, vol. 40, pp. 510–515, 2012, doi:10.1016/j.matdes.2012.04.024.
- H. Bafti and A. Habibolahzadeh, “Production of aluminum foam by spherical carbamide space holder technique-processing parameters,” Materials & Design, vol. 31, pp. 4122–4129, 2010, doi:10.1016/j.matdes.2010.04.038.
- P. Siegkas, N. Petrinic, and V. L. Tagarielli, “Measurements and micro-mechanical modelling of the response of sintered titanium foams,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 57, pp. 365–375, 2016, doi:10.1016/j.jmbbm.2016.02.024.
- D. P. Mondal, J. D. Majumder, N. Jha, A. Badkul, S. Das, A. Patel, and G. Gupta, “Titanium-cenosphere syntactic foam made through powder metallurgy route,” Materials & Design, vol. 34, pp. 82–89, 2012, doi:10.1016/j.matdes.2011.07.055.
- L. Pérez, S. Lascano, C. Aguilar, D. Domancic, and I. Alfonso, “Simplified fractal FEA model for the estimation of the Young’s modulus of Ti foams obtained by powder metallurgy,” Materials & Design, vol. 83, pp. 276–283, 2015, doi:10.1016/j.matdes.2015.06.038.
- N. Jha, D. P. Mondal, J. D. Majumdar, A. Badkul, A. K. Jha, and A. K. Khare, “Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route,” Materials & Design, vol. 47, pp. 810–819, 2013, doi:10.1016/j.matdes.2013.01.005.
- A. Ayday and M. Durman, “Effect of different surface-heat-treatment methods on the surface properties of AISI 4140 steel,” Materials and Technology, vol. 48, 2014.
- G. Li, Y. Wang, L. Qiao, R. Zhao, S. Zhang, R. Zhang, C. Chen, X. Li, and Y. Zhao, “Preparation and formation mechanism of copper incorporated micro-arc oxidation coatings developed on Ti-6Al-4V alloys,” Surface and Coatings Technology, vol. 375, pp. 74–85, 2019, doi:10.1016/j.surfcoat.2019.06.096.
- Y. Zhang, G. R. Ma, X. C. Zhang, S. Li, and S. T. Tu, “Thermal oxidation of Ti-6Al–4V alloy and pure titanium under external bending strain: Experiment and modelling,” Corrosion Science, vol. 122, pp. 61–73, 2017, doi:10.1016/j.corsci.2017.01.009.
- C. T. Guerrero, I. A. Figueroa, M. F. Azamar, T. E. Soto, L. E. Carranza, C. Reyes, and I. Alfonso, “A study on syntactic aluminum foams manufactured infiltrating sintered preforms of iron hollow spheres,” Materials Chemistry and Physics, vol. 323, 2024, doi:10.1016/j.matchemphys.2024.129656.
- N. I. Hafiz, M. A. Islam, and S. Saha, “Characterization of synthesized nickel foam using ammonium hydrogen carbonate as space holder,” Results in Engineering, vol. 24, 2024, doi:10.1016/j.rineng.2024.103634.
- S. Sathaiah, R. Dubey, A. Pandey, N. R. Gorhe, T. C. Joshi, V. Chilla, D. Muchhala, and D. P. Mondal, “Effect of spherical and cubical space holders on the microstructural characteristics and its consequences on mechanical and thermal properties of open-cell aluminum foam,” Materials Chemistry and Physics, vol. 273, 2021, doi:10.1016/j.matchemphys.2021.125115.
- J. Rivard, V. Brailovski, S. Dubinskiy, and S. Prokoshkin, “Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications,” Materials Science and Engineering: C, vol. 45, pp. 421–433, 2014, doi:10.1016/j.msec.2014.09.033.
- M. S. Bernardo, T. Jardiel, A. C. Caballero, M. Bram, J. Gonzalez-Julian, and M. Peiteado, “Electric current activated sintering (ECAS) of undoped and titanium-doped BiFeO₃ bulk ceramics with homogeneous microstructure,” Journal of the European Ceramic Society, vol. 39, pp. 2042–2049, 2019, doi:10.1016/j.jeurceramsoc.2019.01.045.
- Y. Garip and O. Ozdemir, “A study of the cycle oxidation behavior of the Cr/Mn/Mo alloyed Ti–48Al–based intermetallics prepared by ECAS,” Journal of Alloys and Compounds, vol. 818, 2020, doi:10.1016/j.jallcom.2019.152818.
- A. Erdogan, T. Yener, and S. Zeytin, “Fast production of high entropy alloys (CoCrFeNiAlxTiy) by electric current activated sintering system,” Vacuum, vol. 155, pp. 64–72, 2018, doi:10.1016/j.vacuum.2018.05.027.
- D. Kırsever, H. Ö. Toplan, and A. Ş. Demirkıran, “Effect of porcelain polishing waste additive on properties and corrosion resistance of ceramic foams produced from zeolite,” Journal of the Australian Ceramic Society, vol. 59, pp. 671–683, 2023, doi:10.1007/s41779-023-00865-z.