Review Article
BibTex RIS Cite

Siber Güvenlikte Çok Modlu Makine Öğrenmesi

Year 2025, Volume: 1 Issue: 1, 47 - 55, 31.05.2025

Abstract

Çok Modlu Makine Öğrenmesi (MML), metin, resim, ses vb. gibi farklı biçimlerdeki bilgileri entegre ederek daha zengin ve anlamlı temsiller elde etmeyi amaçlayan, gelişmiş bir makine öğrenmesi yaklaşımıdır. MML modelleri, günlük dosyaları, sistem etkinliği verileri, ağ trafiği verileri ve daha fazlası dahil olmak üzere çeşitli kaynaklardan gelen verileri entegre ederek siber tehditlerin tespiti ve azaltılmasının doğruluğunu ve sağlamlığını artırabilir. Bu motivasyonu göz önünde bulundurarak, bu makale alanda yayınlanmış araştırmaların kapsamlı bir listesini inceleyerek, siber güvenlikte MML'nin mevcut durumuna genel bir bakış sunmaktadır. Çalışmanın kapsamı, MML'nin üç yeni siber güvenlik kategorisine (tehdit tespiti, sosyal mühendislik saldırıları ve veri gizliliği ve şifreleme) katkılarının analizini içerir. Ardından, MML modellerinin geleneksel yaklaşımların etkisiz olduğu çeşitli sorunları çözmek için siber güvenlik alanında nasıl uygulanabileceği tartışıldı. Ayrıca, bu çalışmada 2010 ile 2024 yılları arasında siber güvenlik alanında makine öğrenimi (ML), derin öğrenme (DL) ve MML yaklaşımlarının artan eğilimi sunulmaktadır. Ayrıca bu incelemede MML’nin siber güvenlik açısından avantajları ve zorlukları da açıkça ortaya konmaktadır.

References

  • R. Ivančík and R. Kazanský, “Cyber security as a contemporary security challenge,“ Security Horizons, vol. 61, pp. 61-70, 2024, doi:10.20544/ICP.9.1.24.P05
  • U. I. Okoli et al., “Machine learning in cybersecurity: A review of threat detection and defense mechanisms,” World Journal of Advanced Research and Reviews, vol. 21, no. 1, pp. 2286–2295, 2024, doi: https://doi.org/10.30574/wjarr.2024.21.1.0315
  • A. Handa, A. Sharma, and S. K. Shukla, “Machine learning in cybersecurity: A review,” WIREs Data Mining and Knowledge Discovery, vol. 9, no. 4, Feb. 2019, doi: https://doi.org/10.1002/widm.1306
  • J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey,” IEEE/CAA Journal of Automatica Sinica, pp. 1–15, 2021, doi: https://doi.org/10.1109/jas.2021.1004261
  • J. I. Christy Eunaicy and S. Suguna, “Web attack detection using deep learning models,” Materials Today: Proceedings, Mar. 2022, doi: https://doi.org/10.1016/j.matpr.2022.03.348
  • R. L. Alaoui and E. H. Nfaoui, “Deep Learning for Vulnerability and Attack Detection on Web Applications: A Systematic Literature Review,” Future Internet, vol. 14, no. 4, p. 118, Apr. 2022, doi: https://doi.org/10.3390/fi14040118
  • M. Stamp, M. Alazab, and A. Shalaginov, Eds., Malware Analysis Using Artificial Intelligence and Deep Learning. Cham: Springer International Publishing, 2021. doi: https://doi.org/10.1007/978-3-030-62582-5
  • M. S. Akhtar and T. Feng, “Malware Analysis and Detection Using Machine Learning Algorithms,” Symmetry, vol. 14, no. 11, p. 2304, Nov. 2022, doi: https://doi.org/10.3390/sym14112304
  • K. Shaukat, S. Luo, and V. Varadharajan, “A novel deep learning-based approach for malware detection,” Engineering Applications of Artificial Intelligence, vol. 122, p. 106030, Jun. 2023, doi: https://doi.org/10.1016/j.engappai.2023.106030
  • P. Ni and Q. Wang, “Internet and Telecommunication Fraud Prevention Analysis based on Deep Learning,” Applied Artificial Intelligence, vol. 36, no. 1, Nov. 2022, doi: https://doi.org/10.1080/08839514.2022.2137630
  • O. Bello et al., “Machine learning approaches for enhancing fraud prevention in financial transactions,” . International Journal of Management Technology, vol. 10, no. 1, pp. 85-108, 2023, doi: https://doi.org/10.37745/ijmt.2013/vol10n185109
  • R. R. N. Al Ogaili et al., “AntDroidNet Cybersecurity Model: A Hybrid Integration of Ant Colony Optimization and Deep Neural Networks for Android Malware Detection,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 1, pp. 104–120, Feb. 2025, doi: https://doi.org/10.58496/mjcs/2025/008
  • A. E. Cil, K. Yildiz, and A. Buldu, “Detection of DDoS attacks with feed forward based deep neural network model,” Expert Systems with Applications, vol. 169, p. 114520, May 2021, doi: https://doi.org/10.1016/j.eswa.2020.114520
  • L. Ashiku and C. Dagli, “Network Intrusion Detection System using Deep Learning,” Procedia Computer Science, vol. 185, pp. 239–247, 2021, doi: https://doi.org/10.1016/j.procs.2021.05.025
  • A. Hawana, E. S. Hassan, Walid El‐Shafai, and S. A. El‐Dolil, “Enhancing Malware Detection With Deep Learning Convolutional Neural Networks: Investigating the Impact of Image Size Variations,” Security and Privacy, vol. 8, no. 2, Feb. 2025, doi: https://doi.org/10.1002/spy2.70000
  • Md. S. Wasif, Md. P. Miah, Md. S. Hossain, M. J. F. Alenazi, and M. Atiquzzaman, “CNN-ViT synergy: An efficient Android malware detection approach through deep learning,” Computers and Electrical Engineering, vol. 123, p. 110039, Apr. 2025, doi: https://doi.org/10.1016/j.compeleceng.2024.110039
  • J. Krupski, W. Graniszewski, and M. Iwanowski, “Data Transformation Schemes for CNN-Based Network Traffic Analysis: A Survey,” Electronics, vol. 10, no. 16, p. 2042, Jan. 2021, doi: https://doi.org/10.3390/electronics10162042
  • S. Jabeen, X. Li, A. M. Shoib, O. Bourahla, S. Li, and A. Jabbar, “A Review on Methods and Applications in Multimodal Deep Learning,” ACM Transactions on Multimedia Computing, Communications, and Applications, Oct. 2022, doi: https://doi.org/10.1145/3545572.
  • K. Potter, D. Stilinski, and S. Adablanu, “Multimodal deep learning for integrated cybersecurity analytics,” EasyChair, 2024.
  • I. H. Sarker, “Machine Learning for Intelligent Data Analysis and Automation in Cybersecurity: Current and Future Prospects,” Annals of Data Science, vol. 10, no. 1, pp. 1473–1498, Sep. 2022, doi: https://doi.org/10.1007/s40745-022-00444-2
  • A. Barua, Mobyen Uddin Ahmed, and S. Begum, “A Systematic Literature Review on Multimodal Machine Learning: Applications, Challenges, Gaps and Future Directions,” IEEE Access, vol. 11, pp. 14804–14831, Jan. 2023, doi: https://doi.org/10.1109/access.2023.3243854
  • Y. Ren, N. Xu, M. Ling, and X. Geng, “Label distribution for multimodal machine learning,” Frontiers of Computer Science, vol. 16, no. 1, Sep. 2021, doi: https://doi.org/10.1007/s11704-021-0611-6
  • Paul Pu Liang, A. Zadeh, and L.-P. Morency, “Foundations & Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions,” ACM computing surveys, Apr. 2024, doi: https://doi.org/10.1145/3656580
  • S. Li and H. Tang, “Multimodal Alignment and Fusion: A Survey,” arXiv, 2024.
  • K. Singh, A. Kumari, and N. Sharma "Predicting Stress, Anxiety, and Depression from Social Media Comments: A Holistic Multi-Modal Deep Learning and NLP Framework," in 2024 First International Conference on Software, Systems and Information Technology (SSITCON), 18-19 October 2024, Tumkur, India [Online]. Available: IEEE Xplore, http://www.ieee.org/document/10796526. [Accessed: 07 Apr. 2025]
  • R. Geislinger et al., " Multi-modal learning application–support language learners with NLP techniques and eye-tracking," in Proceedings of the 1st Workshop on Linguistic Insights from and for Multimodal Language Processing, 22 September 2023, Ingolstadt, Germany [Online]. Available: IEEE Xplore, https://aclanthology.org/2023.limo-1.2/. [Accessed: 07 Apr. 2025]
  • T. Zheng, A. Li, Z. Chen, H. Wang, and J. Luo, “AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust Autonomous Driving,” Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, pp. 1–15, Jul. 2023, doi: https://doi.org/10.1145/3570361.3592517
  • Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. Lopez, “Multimodal End-to-End Autonomous Driving,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–11, 2020, doi: https://doi.org/10.1109/tits.2020.3013234
  • S. Y. Alaba, A. C. Gurbuz, and J. E. Ball, “Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection,” World Electric Vehicle Journal, vol. 15, no. 1, pp. 20–20, Jan. 2024, doi: https://doi.org/10.3390/wevj15010020
  • J. Thrasher et al., “Multimodal federated learning in healthcare: a review,” arXiv, 2023.
  • L. R. Soenksen et al., “Integrated multimodal artificial intelligence framework for healthcare applications,” npj Digital Medicine, vol. 5, no. 1, Sep. 2022, doi: https://doi.org/10.1038/s41746-022-00689-4
  • Ravi Teja Potla and Ravi Teja Potla, “AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach,” Journal of Computer and Communications, vol. 13, no. 2, pp. 155–171, Feb. 2025, doi: https://doi.org/10.4236/jcc.2025.132010
  • H. Moraliyage, V. Sumanasena, D. De Silva, R. Nawaratne, L. Sun, and D. Alahakoon, “Multimodal Classification of Onion Services for Proactive Cyber Threat Intelligence Using Explainable Deep Learning,” IEEE Access, vol. 10, pp. 56044–56056, 2022, doi: https://doi.org/10.1109/access.2022.3176965
  • H. Elubeyd, D. Yiltas-Kaplan, and Ş. Bahtiyar, “A Multi-Modal Deep Transfer Learning Framework for Attack Detection in Software-Defined Networks,” IEEE Access, vol. 11, pp. 114128–114145, 2023, doi: https://doi.org/10.1109/access.2023.3324878
  • Y. Wang and X. Yang, “Design and implementation of a distributed security threat detection system integrating federated learning and multimodal LLM,” arXiv, 2025.
  • S. Shi, D. Han, and M. Cui, “A multimodal hybrid parallel network intrusion detection model,” Connection science, vol. 35, no. 1, Aug. 2023, doi: https://doi.org/10.1080/09540091.2023.2227780.
  • F. Ullah, A. Turab, S. Ullah, Diletta Cacciagrano, and Y. Zhao, “Enhanced Network Intrusion Detection System for Internet of Things Security Using Multimodal Big Data Representation with Transfer Learning and Game Theory,” Sensors, vol. 24, no. 13, pp. 4152–4152, Jun. 2024, doi: https://doi.org/10.3390/s24134152
  • P. Thanh Nguyen, V. Dang Bich Huynh, K. Dang Vo, P. Thanh Phan, M. Elhoseny, and D.-N. Le, “Deep Learning based Optimal Multimodal Fusion Framework for Intrusion Detection Systems for Healthcare Data,” Computers, Materials & Continua, vol. 66, no. 3, pp. 2555–2571, 2021, doi: https://doi.org/10.32604/cmc.2021.012941
  • S. Wali, Y. A. Farrukh, I. Khan, and N. D. Bastian, “Meta: Towards a Unified, Multimodal Dataset for Network Intrusion Detection Systems,” IEEE data descriptions., vol. 1, pp. 50–57, Jan. 2024, doi: https://doi.org/10.1109/ieeedata.2024.3482286
  • A. S. Oliveira and Renato José Sassi, “Chimera: An Android Malware Detection Method Based on Multimodal Deep Learning and Hybrid Analysis,” INDIGO (University of Illinois at Chicago), Dec. 2020, doi: https://doi.org/10.36227/techrxiv.13359767.v1
  • T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A Multimodal Deep Learning Method for Android Malware Detection Using Various Features,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 3, pp. 773–788, Mar. 2019, doi: https://doi.org/10.1109/TIFS.2018.2866319
  • J. McGiff, W. G. Hatcher, J. Nguyen, W. Yu, E. Blasch, and C. Lu, “Towards Multimodal Learning for Android Malware Detection,” 2019 International Conference on Computing, Networking and Communications (ICNC), Feb. 2019, doi: https://doi.org/10.1109/iccnc.2019.8685502
  • Z. H. Qaisar and R. Li, “Multimodal information fusion for android malware detection using lazy learning,” Multimedia Tools and Applications, Mar. 2021, doi: https://doi.org/10.1007/s11042-021-10749-8
  • S. Li, Y. Li, X. Wu, S. A. Otaibi, and Z. Tian, “Imbalanced Malware Family Classification Using Multimodal Fusion and Weight Self-Learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 7, pp. 7642–7652, Jul. 2023, doi: https://doi.org/10.1109/tits.2022.3208891
  • R. Kalniņš, J. Puriņš, and G. Alksnis, “Security Evaluation of Wireless Network Access Points,” Applied Computer Systems, vol. 21, no. 1, pp. 38–45, May 2017, doi: https://doi.org/10.1515/acss-2017-0005
  • N. Tsinganos, P. Fouliras, I. Mavridis, and D. Gritzalis, “CSE-ARS: Deep learning-based late fusion of multimodal information for chat-based social engineering attack recognition,” IEEE Access, pp. 1–1, Jan. 2024, doi: https://doi.org/10.1109/access.2024.3359030
  • N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection based Associative Classification data mining,” Expert Systems with Applications, vol. 41, no. 13, pp. 5948–5959, Oct. 2014, doi: https://doi.org/10.1016/j.eswa.2014.03.019
  • J. Lee, P. Lim, B. Hooi, and D. M. Divakaran, “Multimodal Large Language Models for Phishing Webpage Detection and Identification,” arXiv, 2024.
  • M. Alsaedi, F. A. Ghaleb, F. Saeed, J. Ahmad, and M. Alasli, “Multi-modal Features Representation-based Convolutional Neural Network Model for Malicious Website Detection,” IEEE Access, vol. 12, pp. 7271–7284, Jan. 2024, doi: https://doi.org/10.1109/access.2023.3348071
  • L. Zhang, P. Zhang, L. Liu, and J. Tan, “Multiphish: Multi-Modal Features Fusion Networks for Phishing Detection,” ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3520–3524, Jun. 2021, doi: https://doi.org/10.1109/icassp39728.2021.9415016
  • Y. Sun, G. Liu, X. Han, W. Zuo, and W. Liu, “FusionNet: An Effective Network Phishing Website Detection Framework Based on Multi-Modal Fusion,” 2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pp. 474–481, Dec. 2023, doi: https://doi.org/10.1109/hpcc-dss-smartcity-dependsys60770.2023.00071
  • A. E. Belfedhal, “Multi-Modal Deep Learning for Effective Malicious Webpage Detection,” Revue d’Intelligence Artificielle, vol. 37, no. 4, pp. 1005–1013, Aug. 2023, doi: https://doi.org/10.18280/ria.370422
  • M. Vo Quang et al., “Shark-Eyes: A multimodal fusion framework for multi-view-based phishing website detection,” Proceedings of the 12th International Symposium on Information and Communication Technology, pp. 793–800, Dec. 2023, doi: https://doi.org/10.1145/3628797.3629003
  • Y. Chai, Y. Zhou, W. Li, and Y. Jiang, “An Explainable Multi-Modal Hierarchical Attention Model for Developing Phishing Threat Intelligence,” IEEE Transactions on Dependable and Secure Computing, pp. 1–1, 2021, doi: https://doi.org/10.1109/tdsc.2021.3119323
  • M. Binjubeir, A. A. Ahmed, M. A. B. Ismail, A. S. Sadiq, and M. Khurram Khan, “Comprehensive Survey on Big Data Privacy Protection,” IEEE Access, vol. 8, pp. 20067–20079, 2020, doi: https://doi.org/10.1109/access.2019.2962368
  • K. Gai, M. Qiu, and H. Zhao, “Privacy-Preserving Data Encryption Strategy for Big Data in Mobile Cloud Computing,” IEEE Transactions on Big Data, pp. 1–1, 2017, doi: https://doi.org/10.1109/tbdata.2017.2705807
  • P. Liu, L. Jiang, H. Lin, J. Hu, S. Garg, and Mubarak Alrashoud, “Federated Multimodal Learning for Privacy-Preserving Driver Break Recommendations in Consumer Electronics,” IEEE Transactions on Consumer Electronics, vol. 70, no. 1, pp. 4564–4573, Dec. 2023, doi: https://doi.org/10.1109/tce.2023.3339630
  • C. Feng, D. Feng, G. Huang, Z. Liu, Z. Wang, and X.-G. Xia, “Robust Privacy-Preserving Recommendation Systems Driven by Multimodal Federated Learning,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, Jan. 2024, doi: https://doi.org/10.1109/tnnls.2024.3411402

Multimodal Machine Learning in Cybersecurity

Year 2025, Volume: 1 Issue: 1, 47 - 55, 31.05.2025

Abstract

Multimodal Machine Learning (MML) is an improved machine learning approach that aims to obtain richer and more meaningful representations by integrating information from different modalities, such as text, image, audio, and so on. MML models can enhance the accuracy and robustness of the detection and mitigation of cyber threats by integrating data from several sources, including log files, system activity data, network traffic data, and more. Considering this motivation, this paper gives an overview of the present state of MML in cybersecurity by examining a thorough list of published research in the field. The study's scope includes the analysis of MML's contributions to three emerging cyber security categories: threat detection, social engineering attacks, and data privacy, and encryption. Afterward, how MML models can be applied in the cybersecurity field to solve various issues where conventional approaches are ineffective was discussed. Furthermore, the increasing trend of machine learning (ML), deep learning (DL), and MML approaches within the cybersecurity field between the years 2010 and 2024 are presented in this study. Besides, this review also clearly states the advantages and challenges of MML with regard to cybersecurity.

References

  • R. Ivančík and R. Kazanský, “Cyber security as a contemporary security challenge,“ Security Horizons, vol. 61, pp. 61-70, 2024, doi:10.20544/ICP.9.1.24.P05
  • U. I. Okoli et al., “Machine learning in cybersecurity: A review of threat detection and defense mechanisms,” World Journal of Advanced Research and Reviews, vol. 21, no. 1, pp. 2286–2295, 2024, doi: https://doi.org/10.30574/wjarr.2024.21.1.0315
  • A. Handa, A. Sharma, and S. K. Shukla, “Machine learning in cybersecurity: A review,” WIREs Data Mining and Knowledge Discovery, vol. 9, no. 4, Feb. 2019, doi: https://doi.org/10.1002/widm.1306
  • J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey,” IEEE/CAA Journal of Automatica Sinica, pp. 1–15, 2021, doi: https://doi.org/10.1109/jas.2021.1004261
  • J. I. Christy Eunaicy and S. Suguna, “Web attack detection using deep learning models,” Materials Today: Proceedings, Mar. 2022, doi: https://doi.org/10.1016/j.matpr.2022.03.348
  • R. L. Alaoui and E. H. Nfaoui, “Deep Learning for Vulnerability and Attack Detection on Web Applications: A Systematic Literature Review,” Future Internet, vol. 14, no. 4, p. 118, Apr. 2022, doi: https://doi.org/10.3390/fi14040118
  • M. Stamp, M. Alazab, and A. Shalaginov, Eds., Malware Analysis Using Artificial Intelligence and Deep Learning. Cham: Springer International Publishing, 2021. doi: https://doi.org/10.1007/978-3-030-62582-5
  • M. S. Akhtar and T. Feng, “Malware Analysis and Detection Using Machine Learning Algorithms,” Symmetry, vol. 14, no. 11, p. 2304, Nov. 2022, doi: https://doi.org/10.3390/sym14112304
  • K. Shaukat, S. Luo, and V. Varadharajan, “A novel deep learning-based approach for malware detection,” Engineering Applications of Artificial Intelligence, vol. 122, p. 106030, Jun. 2023, doi: https://doi.org/10.1016/j.engappai.2023.106030
  • P. Ni and Q. Wang, “Internet and Telecommunication Fraud Prevention Analysis based on Deep Learning,” Applied Artificial Intelligence, vol. 36, no. 1, Nov. 2022, doi: https://doi.org/10.1080/08839514.2022.2137630
  • O. Bello et al., “Machine learning approaches for enhancing fraud prevention in financial transactions,” . International Journal of Management Technology, vol. 10, no. 1, pp. 85-108, 2023, doi: https://doi.org/10.37745/ijmt.2013/vol10n185109
  • R. R. N. Al Ogaili et al., “AntDroidNet Cybersecurity Model: A Hybrid Integration of Ant Colony Optimization and Deep Neural Networks for Android Malware Detection,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 1, pp. 104–120, Feb. 2025, doi: https://doi.org/10.58496/mjcs/2025/008
  • A. E. Cil, K. Yildiz, and A. Buldu, “Detection of DDoS attacks with feed forward based deep neural network model,” Expert Systems with Applications, vol. 169, p. 114520, May 2021, doi: https://doi.org/10.1016/j.eswa.2020.114520
  • L. Ashiku and C. Dagli, “Network Intrusion Detection System using Deep Learning,” Procedia Computer Science, vol. 185, pp. 239–247, 2021, doi: https://doi.org/10.1016/j.procs.2021.05.025
  • A. Hawana, E. S. Hassan, Walid El‐Shafai, and S. A. El‐Dolil, “Enhancing Malware Detection With Deep Learning Convolutional Neural Networks: Investigating the Impact of Image Size Variations,” Security and Privacy, vol. 8, no. 2, Feb. 2025, doi: https://doi.org/10.1002/spy2.70000
  • Md. S. Wasif, Md. P. Miah, Md. S. Hossain, M. J. F. Alenazi, and M. Atiquzzaman, “CNN-ViT synergy: An efficient Android malware detection approach through deep learning,” Computers and Electrical Engineering, vol. 123, p. 110039, Apr. 2025, doi: https://doi.org/10.1016/j.compeleceng.2024.110039
  • J. Krupski, W. Graniszewski, and M. Iwanowski, “Data Transformation Schemes for CNN-Based Network Traffic Analysis: A Survey,” Electronics, vol. 10, no. 16, p. 2042, Jan. 2021, doi: https://doi.org/10.3390/electronics10162042
  • S. Jabeen, X. Li, A. M. Shoib, O. Bourahla, S. Li, and A. Jabbar, “A Review on Methods and Applications in Multimodal Deep Learning,” ACM Transactions on Multimedia Computing, Communications, and Applications, Oct. 2022, doi: https://doi.org/10.1145/3545572.
  • K. Potter, D. Stilinski, and S. Adablanu, “Multimodal deep learning for integrated cybersecurity analytics,” EasyChair, 2024.
  • I. H. Sarker, “Machine Learning for Intelligent Data Analysis and Automation in Cybersecurity: Current and Future Prospects,” Annals of Data Science, vol. 10, no. 1, pp. 1473–1498, Sep. 2022, doi: https://doi.org/10.1007/s40745-022-00444-2
  • A. Barua, Mobyen Uddin Ahmed, and S. Begum, “A Systematic Literature Review on Multimodal Machine Learning: Applications, Challenges, Gaps and Future Directions,” IEEE Access, vol. 11, pp. 14804–14831, Jan. 2023, doi: https://doi.org/10.1109/access.2023.3243854
  • Y. Ren, N. Xu, M. Ling, and X. Geng, “Label distribution for multimodal machine learning,” Frontiers of Computer Science, vol. 16, no. 1, Sep. 2021, doi: https://doi.org/10.1007/s11704-021-0611-6
  • Paul Pu Liang, A. Zadeh, and L.-P. Morency, “Foundations & Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions,” ACM computing surveys, Apr. 2024, doi: https://doi.org/10.1145/3656580
  • S. Li and H. Tang, “Multimodal Alignment and Fusion: A Survey,” arXiv, 2024.
  • K. Singh, A. Kumari, and N. Sharma "Predicting Stress, Anxiety, and Depression from Social Media Comments: A Holistic Multi-Modal Deep Learning and NLP Framework," in 2024 First International Conference on Software, Systems and Information Technology (SSITCON), 18-19 October 2024, Tumkur, India [Online]. Available: IEEE Xplore, http://www.ieee.org/document/10796526. [Accessed: 07 Apr. 2025]
  • R. Geislinger et al., " Multi-modal learning application–support language learners with NLP techniques and eye-tracking," in Proceedings of the 1st Workshop on Linguistic Insights from and for Multimodal Language Processing, 22 September 2023, Ingolstadt, Germany [Online]. Available: IEEE Xplore, https://aclanthology.org/2023.limo-1.2/. [Accessed: 07 Apr. 2025]
  • T. Zheng, A. Li, Z. Chen, H. Wang, and J. Luo, “AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust Autonomous Driving,” Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, pp. 1–15, Jul. 2023, doi: https://doi.org/10.1145/3570361.3592517
  • Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. Lopez, “Multimodal End-to-End Autonomous Driving,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–11, 2020, doi: https://doi.org/10.1109/tits.2020.3013234
  • S. Y. Alaba, A. C. Gurbuz, and J. E. Ball, “Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection,” World Electric Vehicle Journal, vol. 15, no. 1, pp. 20–20, Jan. 2024, doi: https://doi.org/10.3390/wevj15010020
  • J. Thrasher et al., “Multimodal federated learning in healthcare: a review,” arXiv, 2023.
  • L. R. Soenksen et al., “Integrated multimodal artificial intelligence framework for healthcare applications,” npj Digital Medicine, vol. 5, no. 1, Sep. 2022, doi: https://doi.org/10.1038/s41746-022-00689-4
  • Ravi Teja Potla and Ravi Teja Potla, “AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach,” Journal of Computer and Communications, vol. 13, no. 2, pp. 155–171, Feb. 2025, doi: https://doi.org/10.4236/jcc.2025.132010
  • H. Moraliyage, V. Sumanasena, D. De Silva, R. Nawaratne, L. Sun, and D. Alahakoon, “Multimodal Classification of Onion Services for Proactive Cyber Threat Intelligence Using Explainable Deep Learning,” IEEE Access, vol. 10, pp. 56044–56056, 2022, doi: https://doi.org/10.1109/access.2022.3176965
  • H. Elubeyd, D. Yiltas-Kaplan, and Ş. Bahtiyar, “A Multi-Modal Deep Transfer Learning Framework for Attack Detection in Software-Defined Networks,” IEEE Access, vol. 11, pp. 114128–114145, 2023, doi: https://doi.org/10.1109/access.2023.3324878
  • Y. Wang and X. Yang, “Design and implementation of a distributed security threat detection system integrating federated learning and multimodal LLM,” arXiv, 2025.
  • S. Shi, D. Han, and M. Cui, “A multimodal hybrid parallel network intrusion detection model,” Connection science, vol. 35, no. 1, Aug. 2023, doi: https://doi.org/10.1080/09540091.2023.2227780.
  • F. Ullah, A. Turab, S. Ullah, Diletta Cacciagrano, and Y. Zhao, “Enhanced Network Intrusion Detection System for Internet of Things Security Using Multimodal Big Data Representation with Transfer Learning and Game Theory,” Sensors, vol. 24, no. 13, pp. 4152–4152, Jun. 2024, doi: https://doi.org/10.3390/s24134152
  • P. Thanh Nguyen, V. Dang Bich Huynh, K. Dang Vo, P. Thanh Phan, M. Elhoseny, and D.-N. Le, “Deep Learning based Optimal Multimodal Fusion Framework for Intrusion Detection Systems for Healthcare Data,” Computers, Materials & Continua, vol. 66, no. 3, pp. 2555–2571, 2021, doi: https://doi.org/10.32604/cmc.2021.012941
  • S. Wali, Y. A. Farrukh, I. Khan, and N. D. Bastian, “Meta: Towards a Unified, Multimodal Dataset for Network Intrusion Detection Systems,” IEEE data descriptions., vol. 1, pp. 50–57, Jan. 2024, doi: https://doi.org/10.1109/ieeedata.2024.3482286
  • A. S. Oliveira and Renato José Sassi, “Chimera: An Android Malware Detection Method Based on Multimodal Deep Learning and Hybrid Analysis,” INDIGO (University of Illinois at Chicago), Dec. 2020, doi: https://doi.org/10.36227/techrxiv.13359767.v1
  • T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A Multimodal Deep Learning Method for Android Malware Detection Using Various Features,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 3, pp. 773–788, Mar. 2019, doi: https://doi.org/10.1109/TIFS.2018.2866319
  • J. McGiff, W. G. Hatcher, J. Nguyen, W. Yu, E. Blasch, and C. Lu, “Towards Multimodal Learning for Android Malware Detection,” 2019 International Conference on Computing, Networking and Communications (ICNC), Feb. 2019, doi: https://doi.org/10.1109/iccnc.2019.8685502
  • Z. H. Qaisar and R. Li, “Multimodal information fusion for android malware detection using lazy learning,” Multimedia Tools and Applications, Mar. 2021, doi: https://doi.org/10.1007/s11042-021-10749-8
  • S. Li, Y. Li, X. Wu, S. A. Otaibi, and Z. Tian, “Imbalanced Malware Family Classification Using Multimodal Fusion and Weight Self-Learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 7, pp. 7642–7652, Jul. 2023, doi: https://doi.org/10.1109/tits.2022.3208891
  • R. Kalniņš, J. Puriņš, and G. Alksnis, “Security Evaluation of Wireless Network Access Points,” Applied Computer Systems, vol. 21, no. 1, pp. 38–45, May 2017, doi: https://doi.org/10.1515/acss-2017-0005
  • N. Tsinganos, P. Fouliras, I. Mavridis, and D. Gritzalis, “CSE-ARS: Deep learning-based late fusion of multimodal information for chat-based social engineering attack recognition,” IEEE Access, pp. 1–1, Jan. 2024, doi: https://doi.org/10.1109/access.2024.3359030
  • N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection based Associative Classification data mining,” Expert Systems with Applications, vol. 41, no. 13, pp. 5948–5959, Oct. 2014, doi: https://doi.org/10.1016/j.eswa.2014.03.019
  • J. Lee, P. Lim, B. Hooi, and D. M. Divakaran, “Multimodal Large Language Models for Phishing Webpage Detection and Identification,” arXiv, 2024.
  • M. Alsaedi, F. A. Ghaleb, F. Saeed, J. Ahmad, and M. Alasli, “Multi-modal Features Representation-based Convolutional Neural Network Model for Malicious Website Detection,” IEEE Access, vol. 12, pp. 7271–7284, Jan. 2024, doi: https://doi.org/10.1109/access.2023.3348071
  • L. Zhang, P. Zhang, L. Liu, and J. Tan, “Multiphish: Multi-Modal Features Fusion Networks for Phishing Detection,” ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3520–3524, Jun. 2021, doi: https://doi.org/10.1109/icassp39728.2021.9415016
  • Y. Sun, G. Liu, X. Han, W. Zuo, and W. Liu, “FusionNet: An Effective Network Phishing Website Detection Framework Based on Multi-Modal Fusion,” 2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pp. 474–481, Dec. 2023, doi: https://doi.org/10.1109/hpcc-dss-smartcity-dependsys60770.2023.00071
  • A. E. Belfedhal, “Multi-Modal Deep Learning for Effective Malicious Webpage Detection,” Revue d’Intelligence Artificielle, vol. 37, no. 4, pp. 1005–1013, Aug. 2023, doi: https://doi.org/10.18280/ria.370422
  • M. Vo Quang et al., “Shark-Eyes: A multimodal fusion framework for multi-view-based phishing website detection,” Proceedings of the 12th International Symposium on Information and Communication Technology, pp. 793–800, Dec. 2023, doi: https://doi.org/10.1145/3628797.3629003
  • Y. Chai, Y. Zhou, W. Li, and Y. Jiang, “An Explainable Multi-Modal Hierarchical Attention Model for Developing Phishing Threat Intelligence,” IEEE Transactions on Dependable and Secure Computing, pp. 1–1, 2021, doi: https://doi.org/10.1109/tdsc.2021.3119323
  • M. Binjubeir, A. A. Ahmed, M. A. B. Ismail, A. S. Sadiq, and M. Khurram Khan, “Comprehensive Survey on Big Data Privacy Protection,” IEEE Access, vol. 8, pp. 20067–20079, 2020, doi: https://doi.org/10.1109/access.2019.2962368
  • K. Gai, M. Qiu, and H. Zhao, “Privacy-Preserving Data Encryption Strategy for Big Data in Mobile Cloud Computing,” IEEE Transactions on Big Data, pp. 1–1, 2017, doi: https://doi.org/10.1109/tbdata.2017.2705807
  • P. Liu, L. Jiang, H. Lin, J. Hu, S. Garg, and Mubarak Alrashoud, “Federated Multimodal Learning for Privacy-Preserving Driver Break Recommendations in Consumer Electronics,” IEEE Transactions on Consumer Electronics, vol. 70, no. 1, pp. 4564–4573, Dec. 2023, doi: https://doi.org/10.1109/tce.2023.3339630
  • C. Feng, D. Feng, G. Huang, Z. Liu, Z. Wang, and X.-G. Xia, “Robust Privacy-Preserving Recommendation Systems Driven by Multimodal Federated Learning,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, Jan. 2024, doi: https://doi.org/10.1109/tnnls.2024.3411402
There are 58 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Reviews
Authors

Pelin Yıldırım Taşer 0000-0002-5767-2700

Mustafa Murat Taşer

Early Pub Date May 30, 2025
Publication Date May 31, 2025
Submission Date April 17, 2025
Acceptance Date May 8, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

IEEE P. Yıldırım Taşer and M. M. Taşer, “Multimodal Machine Learning in Cybersecurity”, INNAI, vol. 1, no. 1, pp. 47–55, 2025.