Research Article
BibTex RIS Cite

Kanal Tipi Mikroalg Havuzlarının Hidrolik Karakterinin Sayısal Olarak İncelenmesi

Year 2024, Volume: 25 Issue: 2, 75 - 86, 31.12.2024

Abstract

Mikroalg biyokütlesi üretimi ve algal atıksu arıtımı için kullanılan en yaygın reaktör sistemi olan kanal tipi havuzların biyokütle üretim verimleri bir dizi faktör sebebiyle kapalı sistemlere oranla daha düşüktür. Fotosentetik hücrelerin güneş ışığına maruz kalmaları ve büyüme için gerekli diğer besi elementleriyle temas etmelerini sağlayan karışım, alg havuzlarının verimini kısıtlayan faktörler arasında öne çıkmaktadır. Kanal tipi havuzlarda oluşan ölü bölgeler havuzdaki yük kayıplarını artırdığı gibi havuzun biyokütle üretimi için faydalı hacminin düşmesine, pH ve sıcaklık gradyanlarıyla birlikte havuz içinde anoksik ortamlar oluşmasına sebep olmaktadır. Bu çalışma kapsamında kanal tipi alg havuzlarına yarım daire şeklinde akış düzenleyiciler eklenmesi ve alg kültürünün etrafında sirküle ettiği orta perdenin kalınlığının artırılmasının hidrolik güç tüketimine ve ölü bölge oluşumuna etkisi, farklı uzunluk/genişlik oranları için sayısal olarak incelenmiştir. Kanaldaki akışın çözülmesi için Reynolds ortalamalı Navier-Stokes denklem takımı hesaplamalı akışkan dinamiği yazılımı kullanarak çözülmüş, sayısal model sonuçlarının literatürle uyumlu olduğu görülmüştür. Buna göre havuzların temel tasarım parametrelerinden biri olan uzunluk/genişlik oranının 5’ten 20’ye çıkarılması yük kayıplarını ve ölü bölgeleri yaklaşık olarak %50 oranında azaltmış, havuzların dirsek kısmına eklenen akış düzenleyiclerin yük kayıplarını %84’e kadar indirdiği gözlemlenmiştir. Ayrıca bu yolla havuz içerisindeki ölü bölgeler %2’ye kadar düşürülebilmektedir. Orta perdeyi genişleterek akışı kanal çeperlerine yönlendirme yoluyla hidrolik güç tüketimi ve ölü bölge oluşumu %90 civarında azaltılabilirken, bu durumun aynı zamanda havuz hacminin düşmesini beraberinde getirdiğine dikkat çekilmiştir. Son olarak optimum tasarım kriterlerini belirlemek için reaktör geometrisinin havuzların gerçek ölçekteki biyolojik performansına etkisinin bilinmesi gerektiği belirtilirken, hesaplamalı akışkan dinamiği modellemesinin kanal tipi alg havuzlarının hidrolik davranışını anlamakta etkili bir yöntem olduğu anlaşılmıştır.

References

  • Akca, M. S., Ceylan-Perver, G., Duranay, A., Kinaci, O. K., & Inanc, B. (2023). Application of Vortex Induced Vibration Systems to Improve Vertical Mixing and Create Light/Dark Cycles for Enhanced Algal Biomass Productivity in Raceway Ponds. Journal of Marine Science and Engineering, 11(2), 245.
  • Akca, M. S., Kinaci, O. K., & Inanc, B. (2024). Improving light availability and creating high-frequency light–dark cycles in raceway ponds through vortex-induced vibrations for microalgae cultivation: a fluid dynamic study. Bioprocess and Biosystems Engineering, 47(11), 1863-1874.
  • Ali, H., Cheema, T. A., Yoon, H. S., Do, Y., & Park, C. W. (2015). Numerical prediction of algae cell mixing feature in raceway ponds using particle tracing methods. Biotechnology and bioengineering, 112(2), 297-307.
  • Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of biotechnology, 70(1-3), 313-321.
  • Borowitzka, M. A., & Moheimani, N. R. (Eds.). (2013). Algae for biofuels and energy (Vol. 5, pp. 133-152). Dordrecht: Springer.
  • Chen, H., & Patel, V. C. (1988). Near-wall turbulence models for complex flows including separation. AIAA journal, 26(6), 641-648.
  • Chen, Z., Zhang, X., Jiang, Z., Chen, X., He, H., & Zhang, X. (2016). Light/dark cycle of microalgae cells in raceway ponds: Effects of paddlewheel rotational speeds and baffles installation. Bioresource technology, 219, 387-391.
  • Cheng, J., Yang, Z., Ye, Q., Zhou, J., & Cen, K. (2015). Enhanced flashing light effect with up-down chute baffles to improve microalgal growth in a raceway pond. Bioresource technology, 190, 29-35.
  • Cheng, J., Guo, W., Cai, C., Ye, Q., & Zhou, J. (2018). Alternatively permutated conic baffles generate vortex flow field to improve microalgal productivity in a raceway pond. Bioresource technology, 249, 212-218.
  • Craggs, R., Sutherland, D., & Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24, 329-337.
  • Durbin, P. A., Medic, G., Seo, J. M., Eaton, J. K., & Song, S. (2001). Rough wall modification of two-layer k− ε.
  • Ghasemi, Y., Rasoul-Amini, S., Naseri, A. T., Montazeri-Najafabady, N., Mobasher, M. A., & Dabbagh, F. (2012). Microalgae biofuel potentials. Applied Biochemistry and Microbiology, 48, 126-144.
  • Hadiyanto, H., Elmore, S., Van Gerven, T., & Stankiewicz, A. (2013). Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chemical Engineering Journal, 217, 231-239.
  • Heinz, S. (2020). A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications. Progress in Aerospace Sciences, 114, 100597.
  • Kusmayadi, A., Suyono, E. A., Nagarajan, D., Chang, J. S., & Yen, H. W. (2020a). Application of computational fluid dynamics (CFD) on the raceway design for the cultivation of microalgae: a review. Journal of Industrial Microbiology and Biotechnology, 47(4-5), 373-382.
  • Kusmayadi, A., Philippidis, G. P., & Yen, H. W. (2020b). Application of computational fluid dynamics to raceways combining paddlewheel and CO2 spargers to enhance microalgae growth. Journal of bioscience and bioengineering, 129(1), 93-98.
  • Liffman, K., Paterson, D. A., Liovic, P., & Bandopadhayay, P. (2013). Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chemical Engineering Research and Design, 91(2), 221-226.
  • Lima, A., Marinho, B., & Morais, T. (2021). Hydrodynamic analysis of flow in raceway ponds for algae cultivation under versatile conditions. Aquaculture International, 29, 19-35.
  • Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., & Benemann, J. R. (2010). A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, 1.
  • Ma, H., & Chen, H. C. (2024). Enhancing the two-layer k-epsilon turbulence model through rough wall modification. Physics of Fluids, 36(10).
  • Mangelson K.A., G.Z. Watters, The treatment efficiency of waste stabilization ponds, Journal of the Sanitary Engineering Division, American Society Civil Engineering 98 (1972) 407–425.
  • Mendoza, J. L., Granados, M. R., De Godos, I., Acién, F. G., Molina, E., Banks, C., & Heaven, S. (2013). Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass and Bioenergy, 54, 267-275.
  • Norsker, N. H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production—a close look at the economics. Biotechnology advances, 29(1), 24-27.
  • Ortiz, A., Díez-Montero, R., García, J., Khalil, N., & Uggetti, E. (2022). Advanced biokinetic and hydrodynamic modelling to support and optimize the design of full-scale high rate algal ponds. Computational and structural biotechnology journal, 20, 386-398.
  • Patel, V. C., & Yoon, J. Y. (1995). Application of turbulence models to separated flow over rough surfaces.
  • Prussi, M., Buffi, M., Casini, D., Chiaramonti, D., Martelli, F., Carnevale, M., ... & Rodolfi, L. (2014). Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass and bioenergy, 67, 390-400.
  • Ranganathan, P., Amal, J. C., Savithri, S., & Haridas, A. (2017). Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds. Bioresource technology, 242, 197-205.
  • Sawant, S. S., Gosavi, S. N., Khadamkar, H. P., Mathpati, C. S., Pandit, R., & Lali, A. M. (2019). Energy efficient design of high depth raceway pond using computational fluid dynamics. Renewable Energy, 133, 528-537.
  • Sompech, K., Chisti, Y., & Srinophakun, T. (2012). Design of raceway ponds for producing microalgae. Biofuels, 3(4), 387-397.
  • Sutherland, D. L., Park, J., Heubeck, S., Ralph, P. J., & Craggs, R. J. (2020). Size matters–Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. Algal Research, 45, 101734.
  • Xu, B., Li, P., Waller, P., & Huesemann, M. (2015). Evaluation of flow mixing in an ARID-HV algal raceway using statistics of temporal and spatial distribution of fluid particles. Algal Research, 9, 27-39.
  • Zhang, Q., Xue, S., Yan, C., Wu, X., Wen, S., & Cong, W. (2015). Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. Bioresource technology, 198, 150-156.
Year 2024, Volume: 25 Issue: 2, 75 - 86, 31.12.2024

Abstract

References

  • Akca, M. S., Ceylan-Perver, G., Duranay, A., Kinaci, O. K., & Inanc, B. (2023). Application of Vortex Induced Vibration Systems to Improve Vertical Mixing and Create Light/Dark Cycles for Enhanced Algal Biomass Productivity in Raceway Ponds. Journal of Marine Science and Engineering, 11(2), 245.
  • Akca, M. S., Kinaci, O. K., & Inanc, B. (2024). Improving light availability and creating high-frequency light–dark cycles in raceway ponds through vortex-induced vibrations for microalgae cultivation: a fluid dynamic study. Bioprocess and Biosystems Engineering, 47(11), 1863-1874.
  • Ali, H., Cheema, T. A., Yoon, H. S., Do, Y., & Park, C. W. (2015). Numerical prediction of algae cell mixing feature in raceway ponds using particle tracing methods. Biotechnology and bioengineering, 112(2), 297-307.
  • Borowitzka, M. A. (1999). Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of biotechnology, 70(1-3), 313-321.
  • Borowitzka, M. A., & Moheimani, N. R. (Eds.). (2013). Algae for biofuels and energy (Vol. 5, pp. 133-152). Dordrecht: Springer.
  • Chen, H., & Patel, V. C. (1988). Near-wall turbulence models for complex flows including separation. AIAA journal, 26(6), 641-648.
  • Chen, Z., Zhang, X., Jiang, Z., Chen, X., He, H., & Zhang, X. (2016). Light/dark cycle of microalgae cells in raceway ponds: Effects of paddlewheel rotational speeds and baffles installation. Bioresource technology, 219, 387-391.
  • Cheng, J., Yang, Z., Ye, Q., Zhou, J., & Cen, K. (2015). Enhanced flashing light effect with up-down chute baffles to improve microalgal growth in a raceway pond. Bioresource technology, 190, 29-35.
  • Cheng, J., Guo, W., Cai, C., Ye, Q., & Zhou, J. (2018). Alternatively permutated conic baffles generate vortex flow field to improve microalgal productivity in a raceway pond. Bioresource technology, 249, 212-218.
  • Craggs, R., Sutherland, D., & Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24, 329-337.
  • Durbin, P. A., Medic, G., Seo, J. M., Eaton, J. K., & Song, S. (2001). Rough wall modification of two-layer k− ε.
  • Ghasemi, Y., Rasoul-Amini, S., Naseri, A. T., Montazeri-Najafabady, N., Mobasher, M. A., & Dabbagh, F. (2012). Microalgae biofuel potentials. Applied Biochemistry and Microbiology, 48, 126-144.
  • Hadiyanto, H., Elmore, S., Van Gerven, T., & Stankiewicz, A. (2013). Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chemical Engineering Journal, 217, 231-239.
  • Heinz, S. (2020). A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications. Progress in Aerospace Sciences, 114, 100597.
  • Kusmayadi, A., Suyono, E. A., Nagarajan, D., Chang, J. S., & Yen, H. W. (2020a). Application of computational fluid dynamics (CFD) on the raceway design for the cultivation of microalgae: a review. Journal of Industrial Microbiology and Biotechnology, 47(4-5), 373-382.
  • Kusmayadi, A., Philippidis, G. P., & Yen, H. W. (2020b). Application of computational fluid dynamics to raceways combining paddlewheel and CO2 spargers to enhance microalgae growth. Journal of bioscience and bioengineering, 129(1), 93-98.
  • Liffman, K., Paterson, D. A., Liovic, P., & Bandopadhayay, P. (2013). Comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. Chemical Engineering Research and Design, 91(2), 221-226.
  • Lima, A., Marinho, B., & Morais, T. (2021). Hydrodynamic analysis of flow in raceway ponds for algae cultivation under versatile conditions. Aquaculture International, 29, 19-35.
  • Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., & Benemann, J. R. (2010). A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, 1.
  • Ma, H., & Chen, H. C. (2024). Enhancing the two-layer k-epsilon turbulence model through rough wall modification. Physics of Fluids, 36(10).
  • Mangelson K.A., G.Z. Watters, The treatment efficiency of waste stabilization ponds, Journal of the Sanitary Engineering Division, American Society Civil Engineering 98 (1972) 407–425.
  • Mendoza, J. L., Granados, M. R., De Godos, I., Acién, F. G., Molina, E., Banks, C., & Heaven, S. (2013). Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass and Bioenergy, 54, 267-275.
  • Norsker, N. H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production—a close look at the economics. Biotechnology advances, 29(1), 24-27.
  • Ortiz, A., Díez-Montero, R., García, J., Khalil, N., & Uggetti, E. (2022). Advanced biokinetic and hydrodynamic modelling to support and optimize the design of full-scale high rate algal ponds. Computational and structural biotechnology journal, 20, 386-398.
  • Patel, V. C., & Yoon, J. Y. (1995). Application of turbulence models to separated flow over rough surfaces.
  • Prussi, M., Buffi, M., Casini, D., Chiaramonti, D., Martelli, F., Carnevale, M., ... & Rodolfi, L. (2014). Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass and bioenergy, 67, 390-400.
  • Ranganathan, P., Amal, J. C., Savithri, S., & Haridas, A. (2017). Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds. Bioresource technology, 242, 197-205.
  • Sawant, S. S., Gosavi, S. N., Khadamkar, H. P., Mathpati, C. S., Pandit, R., & Lali, A. M. (2019). Energy efficient design of high depth raceway pond using computational fluid dynamics. Renewable Energy, 133, 528-537.
  • Sompech, K., Chisti, Y., & Srinophakun, T. (2012). Design of raceway ponds for producing microalgae. Biofuels, 3(4), 387-397.
  • Sutherland, D. L., Park, J., Heubeck, S., Ralph, P. J., & Craggs, R. J. (2020). Size matters–Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. Algal Research, 45, 101734.
  • Xu, B., Li, P., Waller, P., & Huesemann, M. (2015). Evaluation of flow mixing in an ARID-HV algal raceway using statistics of temporal and spatial distribution of fluid particles. Algal Research, 9, 27-39.
  • Zhang, Q., Xue, S., Yan, C., Wu, X., Wen, S., & Cong, W. (2015). Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. Bioresource technology, 198, 150-156.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Treatment Facility Design, Environmentally Sustainable Engineering, Environmental Engineering (Other), Ocean Engineering
Journal Section Araştırma Makaleleri
Authors

Mehmet Sadık Akça 0000-0002-2119-5279

Publication Date December 31, 2024
Submission Date September 21, 2024
Acceptance Date December 4, 2024
Published in Issue Year 2024 Volume: 25 Issue: 2

Cite

APA Akça, M. S. (2024). Kanal Tipi Mikroalg Havuzlarının Hidrolik Karakterinin Sayısal Olarak İncelenmesi. Çevre İklim Ve Sürdürülebilirlik, 25(2), 75-86.