Seramiklerin 3D baskı ve eklemeli imalat uygulamaları
Year 2025,
Volume: 2 Issue: 2, 1 - 11, 30.07.2025
Mehmet Bozdag
,
Esra Pilavcı
,
Dilruba Baykara
,
Melih Musa Ayran
,
Süreyya Elif Çelik
,
Songül Ulağ
Abstract
Seramiklerin doğru 3D basımı, işlenmesi ve anlaşılması, eklemeli üretim (AM)/3D baskılı seramikler için dayanıklı bir mikro yapının üretimi ve/veya taklidi için gerekliydi. Seramik malzemelerin akışkanlığı AM/3D baskının bir diğer dezavantajıdır. Çoğu seramik malzeme, AM için zayıf akışkanlık sergileyen olağan üretim süreci nedeniyle ince toz formunda elde edilir. AM, tüm yapının katman katman üretimine dayalıyken, seramikler söz konusu olduğunda, elektrostatik bozulmalar ve/veya toz toplanması, alt mikrometre tozlarının dar bir çizgiye yayılmasını ve bir katman oluşturmasını engeller. Seramiklerin AM/3D baskısı zor olsa da, seramik bazlı malzemeler ve yapılar üretmenin tıp, kimya, havacılık vb. alanlarda önemli uygulamaları vardır.
References
- [1] S. Jang and S. Park, “Development of ceramic additive manufacturing : process and materials technology,” Biomed. Eng. Lett., no. 0123456789, 2020, doi: 10.1007/s13534-020-00175-4.
- [2] Moritz, T., & Maleksaeedi, S. (2018). Additive manufacturing of ceramic components. Additive Manufacturing, 105–161. doi:10.1016/b978-0-12-812155-9.00004-9
- [3] P. Navarrete-segado et al., “A review of additive manufacturing of ceramics by powder bed selective laser processing ( sintering / melting ): Calcium phosphate , silicon carbide , zirconia , alumina , and their composites,” vol. 5, no. January, 2021, doi: 10.1016/j.oceram.2021.100073.
- [4] Y. Lakhdar, C. Tuck, J. Binner, A. Terry, and R. Goodridge, “To appear in : Received Date : Revised Date : Accepted Date :,” Prog. Mater. Sci., p. 100736, 2020, doi: 10.1016/j.pmatsci.2020.100736.
- [5] Lakhdar, Y., Tuck, C., Binner, J., Terry, A., & Goodridge, R. (2020). Additive Manufacturing of Advanced Ceramic Materials. Progress in Materials Science, 100736. doi:10.1016/j.pmatsci.2020.100736
[6] Shi, Ys., Zhang, Jl., Wen, Sf. et al. Additive manufacturing and foundry innovation. China Foundry 18, 286–295 (2021). https://doi.org/10.1007/s41230-021-1008-8
- [7] Castro e Costa, E., Duarte, J. P., & Bártolo, P. (2017). A review of additive manufacturing for ceramic production. Rapid Prototyping Journal, 23(5), 954–963. doi:10.1108/rpj-09-2015-0128
- [8] Niu, F., Wu, D., Ma, G., Wang, J., Guo, M., & Zhang, B. (2015). Nanosized microstructure of Al2O3–ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping. Scripta Materialia, 95, 39–41. doi:10.1016/j.scriptamat.2014.09.026
- [9] Cawley, James D. "Solid freeform fabrication of ceramics." Current Opinion in Solid State and Materials Science 4, no. 5 (1999): 483-489.
- [10] Lewis, Jennifer A., James E. Smay, John Stuecker, and Joseph Cesarano. "Direct ink writing of three‐dimensional ceramic structures." Journal of the American Ceramic Society 89, no. 12 (2006): 3599-3609.
- [11] Hilmas, Greg E., John L. Lombardi, and Robert A. Hoffman. "Advances in the fabrication of functionally graded materials using extrusion freeform fabrication." In Functionally Graded Materials 1996, pp. 319-324. Elsevier Science BV, 1997.
- [12] Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., ... & He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39(4), 661-687.
- [13] Gibson, Ian, David Rosen, Brent Stucker, Mahyar Khorasani, David Rosen, Brent Stucker, and Mahyar Khorasani. Additive manufacturing technologies. Vol. 17. Cham, Switzerland: Springer, 2021.
- [14] Bengisu, Murat, and M. Bengisu. Engineering ceramics. Vol. 620. Berlin: Springer, 2001.
- [15] Javaid, Mohd, Abid Haleem, Ravi Pratap Singh, Rajiv Suman, and Shanay Rab. "Role of additive manufacturing applications towards environmental sustainability." Advanced Industrial and Engineering Polymer Research 4, no. 4 (2021): 312-322.
- [16] Verma, Anoop, and Rahul Rai. "Sustainability-induced dual-level optimization of additive manufacturing process." The International Journal of Advanced Manufacturing Technology 88 (2017): 1945-1959.
- [17] Zhang, Feng, Zongan Li, Mengjia Xu, Shiyan Wang, Na Li, and Jiquan Yang. "A review of 3D printed porous ceramics." Journal of the European Ceramic Society (2022).
- [18] Feilden, Ezra, Claudio Ferraro, Qinghua Zhang, Esther García-Tuñón, Eleonora D’Elia, Finn Giuliani, Luc Vandeperre, and Eduardo Saiz. "3D printing bioinspired ceramic composites." Scientific reports 7, no. 1 (2017): 13759.
- [19] Tartsch, Jens, and Markus B. Blatz. "Ceramic Dental Implants: An Overview of Materials, Characteristics, and Application Concepts." Compendium of Continuing Education in Dentistry (Jamesburg, NJ: 1995) 43, no. 8 (2022): 482-488.
- [20] Dadkhah, M., Tulliani, J. M., Saboori, A., & Iuliano, L. (2023). Additive Manufacturing of Ceramics: Advances, Challenges, and Outlook. Journal of the European Ceramic Society.
- [21] Piconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials, 20(1), 1–25. https://doi.org/10.1016/s0142-9612(98)00010-6
- [22] Parikh, P. (1995). Alumina Ceramics: engineering applications and domestic market Potential. Transactions of the Indian Ceramic Society, 54(5), 179–184. https://doi.org/10.1080/0371750x.1995.10804716
- [23] Mahanty, A., & Shikha, D. (2022). Changes in the morphology, mechanical strength and biocompatibility of polymer and metal/polymer fabricated hydroxyapatite for orthopaedic implants: a review. Journal of Polymer Engineering, 42(4), 298–322. https://doi.org/10.1515/polyeng-2021-0171
- [24] Dong, X., Wu, J., Yu, H., Zhou, Q., Wang, W., Zhang, X., Zhang, L., Li, L., & He, R. (2022). Additive manufacturing of silicon nitride ceramics: A review of advances and perspectives. International Journal of Applied Ceramic Technology, 19(6), 2929–2949. https://doi.org/10.1111/ijac.14162
- [25] Du, X., Lee, S. S., Blugan, G., & Ferguson, S. J. (2022). Silicon Nitride as a Biomedical material: An Overview. International Journal of Molecular Sciences, 23(12), 6551. https://doi.org/10.3390/ijms23126551
- [26] Shi, D., Jiang, G., & Bauer, J. E. (2002). The effect of structural characteristics on thein vitro bioactivity of hydroxyapatite. Journal of Biomedical Materials Research, 63(1), 71–78. https://doi.org/10.1002/jbm.10087
- [27] Çalışkan, F., Tatli, Z., & Sonkaya, A. (2015). Fabrication of bioactive high porous hydroxyapatite ceramics. Academic platform-Journal of Engineering and Science, 3(2), 8–13. https://doi.org/10.5505/apjes.2015.14622
- [28] Saxena, V., Shukla, I., & Pandey, L. M. (2019). Hydroxyapatite: an inorganic ceramic for biomedical applications. In Elsevier eBooks (pp. 205–249). https://doi.org/10.1016/b978-0-12-816909-4.00008-7
- [29] Zhang, W. (2022). A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide. Advances in Colloid and Interface Science, 301, 102604. https://doi.org/10.1016/j.cis.2022.102604
- [30] Ly, M., Hays, S., Spinelli, S., & Zhu, D. (2022). 3D printing of ceramic biomaterials. Engineered Regeneration, 3(1), 41–52. https://doi.org/10.1016/j.engreg.2022.01.006
- [31] Tian, X., Jin, J., Yuan, S., Chua, C. K., Tor, S. B., & Zhou, K. (2017). Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical review. Advanced Energy Materials, 7(17), 1700127. https://doi.org/10.1002/aenm.201700127
- [32] Awad, A., Fina, F., Goyanes, A., Gaisford, S., & Basit, A. W. (2020). 3D printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics, 586, 119594. https://doi.org/10.1016/j.ijpharm.2020.119594
- [33] Kumar, M. B., Sathiya, P., & Varatharajulu, M. (2021). Selective laser sintering. Advances in Additive Manufacturing Processes; China Bentham Books: Beijing, China, 28.
- [34] Du, W., Ren, X., Ma, C., & Pei, Z. (2017). Binder Jetting Additive Manufacturing of Ceramics: A Literature Review. Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis.doi:10.1115/imece2017-70344
- [35] Sehhat, M. H., & Mahdianikhotbesara, A. (2021). Powder spreading in laser-powder bed fusion process. Granular Matter, 23(4). https://doi.org/10.1007/s10035-021-01162-x
- [36] Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., & Fino, P. (2019). Application of Directed Energy Deposition-Based Additive manufacturing in repair. Applied Sciences, 9(16), 3316. https://doi.org/10.3390/app9163316
- [37] Halloran, J. W. (2016). Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annual Review of Materials Research, 46(1), 19–40. https://doi.org/10.1146/annurev-matsci-070115-031841
- [38] Bove, A., Calignano, F., Galati, M., & Iuliano, L. (2022). Photopolymerization of ceramic resins by Stereolithography Process: a review. Applied Sciences, 12(7), 3591. https://doi.org/10.3390/app12073591
- [39] Nguyen, A. K., & Narayan, R. J. (2017). Two-photon polymerization for biological applications. Materials Today, 20(6), 314–322. https://doi.org/10.1016/j.mattod.2017.06.004
- [40] Sänger, J. C., Pauw, B. R., Sturm, H., & Günster, J. (2020). First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing. Open Ceramics, 4, 100040. https://doi.org/10.1016/j.oceram.2020.100040
- [41] Shah, M. A., Lee, D., Lee, B., & Hur, S. (2021). Classifications and Applications of Inkjet Printing Technology: a review. IEEE Access, 9, 140079–140102. https://doi.org/10.1109/access.2021.3119219
- [42] Pinargote, N. W. S., Smirnov, A., Peretyagin, N., Seleznev, A., & Peretyagin, P. (2020). Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A review. Nanomaterials, 10(7), 1300. https://doi.org/10.3390/nano10071300
- [43] Shahzad, A., & Lazoglu, I. (2021). Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges. Composites Part B-engineering, 225, 109249. https://doi.org/10.1016/j.compositesb.2021.109249
- [44] Meram, A., & Sözen, B. (2020). Investigation on the manufacturing variants influential on the strength of 3D printed products. Research on Engineering Structures & Materials. https://doi.org/10.17515/resm2019.171me3112
- [45] Penumakala, P. K., Santo, J., & Thomas, A. (2020). A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B-engineering, 201, 108336. https://doi.org/10.1016/j.compositesb.2020.108336
- [46] Awasthi, P., & Banerjee, S. S. (2021). Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities. Additive Manufacturing, 46, 102177. https://doi.org/10.1016/j.addma.2021.102177
- [47] Chung, H., & Das, S. (2008). Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Materials Science and Engineering: A, 487(1-2), 251-257. https://doi.org/10.1016/j.msea.2007.10.082
- [48] Shahzad, K., Deckers, J., Zhang, Z., Kruth, J. P., & Vleugels, J. (2014). Additive manufacturing of zirconia parts by indirect selective laser sintering. Journal of the European Ceramic Society, 34(1), 81-89. https://doi.org/10.1016/j.jeurceramsoc.2013.07.023
- [49] Gao, C., Yang, B., Hu, H., Liu, J., Shuai, C., & Peng, S. (2013). Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Materials Science and Engineering: C, 33(7), 3802-3810. https://doi.org/10.1016/j.msec.2013.05.01
- [50] XiaoHui, S., Wei, L., PingHui, S., QingYong, S., QingSong, W., YuSheng, S., ... & WenGuang, L. (2015). Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. The International Journal of Advanced Manufacturing Technology, 81, 15-25.
- [51] Xia, Y., Zhou, P., Cheng, X., Xie, Y., Liang, C., Li, C., & Xu, S. (2013). Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. International journal of nanomedicine, 4197-4213. https://doi.org/10.2147/IJN.S50685
- [52] Moore, J. D. (1973). Acrylonitrile-butadiene-styrene (ABS)-a review. Composites, 4(3), 118-130. https://doi.org/10.3390/polym10060666
- [53] Xu, N., Ye, X., Wei, D., Zhong, J., Chen, Y., Xu, G., & He, D. (2014). 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS applied materials & interfaces, 6(17), 14952-14963. https://doi.org/10.1021/am502716t
- [54] Sa, M. W., Nguyen, B. N. B., Moriarty, R. A., Kamalitdinov, T., Fisher, J. P., & Kim, J. Y. (2018). Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications. Biotechnology and bioengineering, 115(4), 989-999. https://doi.org/10.1002/bit.26514
- [55] Gorjan, L., Tonello, R., Sebastian, T., Colombo, P., & Clemens, F. (2019). Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. Journal of the European Ceramic Society, 39(7), 2463-2471. https://doi.org/10.1016/j.jeurceramsoc.2019.02.032
- [56] Wu, D., Shi, J., Niu, F., Ma, G., Zhou, C., & Zhang, B. (2022). Direct additive manufacturing of melt growth Al2O3-ZrO2 functionally graded ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 42(6), 2957-2973. https://doi.org/10.1016/j.jeurceramsoc.2022.01.034
- [57] Bernard, S. A., Balla, V. K., Bose, S., & Bandyopadhyay, A. (2010). Direct laser processing of bulk lead zirconate titanate ceramics. Materials Science and Engineering: B, 172(1), 85-88. https://doi.org/10.1016/j.mseb.2010.04.022
- [58] Liu, H., Su, H., Shen, Z., Zhao, D., Liu, Y., Guo, Y., ... & Fu, H. (2021). One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 41(6), 3547-3558. https://doi.org/10.1016/j.jeurceramsoc.2021.01.047
- [59] Lee, J. W., Ahn, G., Kim, D. S., & Cho, D. W. (2009). Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectronic Engineering, 86(4-6), 1465-1467. https://doi.org/10.1016/j.mee.2008.12.038
- [60] Licciulli, A., Corcione, C. E., Greco, A., Amicarelli, V., & Maffezzoli, A. (2005). Laser stereolithography of ZrO2 toughened Al2O3. Journal of the European Ceramic Society, 25(9), 1581-1589. https://doi.org/10.1016/j.jeurceramsoc.2003.12.003
- [61] Griffith, M. L., & Halloran, J. W. (1996). Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society, 79(10), 2601-2608. https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
- [62] Li, X., Yuan, Y., Liu, L., Leung, Y. S., Chen, Y., Guo, Y., ... & Chen, Y. (2020). 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Design and Manufacturing, 3, 15-29.
- [63] Larson, C. M., Choi, J. J., Gallardo, P. A., Henderson, S. W., Niemack, M. D., Rajagopalan, G., & Shepherd, R. F. (2016). Direct ink writing of silicon carbide for microwave optics. Advanced Engineering Materials, 18(1), 39-45. https://doi.org/10.1002/adem.201500298
- [64] Zocca, A., Franchin, G., Elsayed, H., Gioffredi, E., Bernardo, E., & Colombo, P. (2016). Direct ink writing of a preceramic polymer and fillers to produce hardystonite (Ca2ZnSi2O7) bioceramic scaffolds. Journal of the American Ceramic Society, 99(6), 1960-1967. https://doi.org/10.1111/jace.14213
- [65] Cappi, B., Özkol, E., Ebert, J., & Telle, R. (2008). Direct inkjet printing of Si3N4: characterization of ink, green bodies and microstructure. Journal of the European Ceramic Society, 28(13), 2625-2628. https://doi.org/10.1016/j.jeurceramsoc.2008.03.004
- [66] Liang, C., Huang, J., Wang, J., Gong, H., Guo, W., Cao, R., & Zhao, P. (2023). Three-dimensional inkjet printing and low temperature sintering of silica-based ceramics. Journal of the European Ceramic Society, 43(5), 2289-2294. https://doi.org/10.1016/j.jeurceramsoc.2023.01.003
- [67] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.
- [68] Zocca, A., Colombo, P., Gomes, C., & Günster, J. (2015). Additive Manufacturing of Ceramics: Issues, potentialities, and opportunities. Journal of the American Ceramic Society, 98(7), 1983–2001. https://doi.org/10.1111/jace.13700
- [69] Rueschhoff, L. M., Baldwin, L. A., Hardin, J. O., & Kaufman, J. (2023). Future directions in ceramic additive manufacturing: Fiber reinforcements and artificial intelligence. Journal of the American Ceramic Society. https://doi.org/10.1111/jace.19408
- [70] Mansfield, B, Torres, S, Yu, T, & Wu, D. "A Review on Additive Manufacturing of Ceramics." Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing. Erie, Pennsylvania, USA. June 10–14, 2019. V001T01A001. ASME. https://doi.org/10.1115/MSEC2019-2886
- [71] Deckers, J., Vleugels, J., Kruth, J.P. (2014). Additive Manufacturing of Ceramics: A Review. J. Ceram. Sci. Tech., 05[04], 245-260. DOI: 10.4416/JCST2014-00032
- [72] Hwa, L. C., Rajoo, S., Noor, A. M., Ahmad, N., & Uday, M. B. (2017). Recent advances in 3D printing of porous ceramics: A review. Current Opinion in Solid State and Materials Science, 21(6), 323–347. doi:10.1016/j.cossms.2017.08.002
- [73] He, R., Zhou, N., Zhang, K. et al. Progress and challenges towards additive manufacturing of SiC ceramic. J Adv Ceram 10, 637–674 (2021). https://doi.org/10.1007/s40145-021-0484-z
The applications of ceramics in 3D printing and additive manufacturing
Year 2025,
Volume: 2 Issue: 2, 1 - 11, 30.07.2025
Mehmet Bozdag
,
Esra Pilavcı
,
Dilruba Baykara
,
Melih Musa Ayran
,
Süreyya Elif Çelik
,
Songül Ulağ
Abstract
An accurate 3D imitating, rendering, and comprehension of ceramics were necessary for the fabrication and/or imitation of a durable microstructure for additive manufacturing (AM)/3D printed ceramics. The flowability of ceramic materials is another drawback of AM/3D printing. Most ceramic materials are obtained in the form of fine powders due to the usual production process, which exhibits poor flowability for AM. While AM is based on layer-by-layer fabrication of the entire structure, in the case of ceramics, electro-static disturbances and/or powder collection prevent sub-micrometer powders from spreading a narrow line and forming a layer. Although AM/3D printing of ceramics is difficult, producing ceramic-based materials and structures has significant applications in the fields of medicine, chemistry, aerospace, etc.
References
- [1] S. Jang and S. Park, “Development of ceramic additive manufacturing : process and materials technology,” Biomed. Eng. Lett., no. 0123456789, 2020, doi: 10.1007/s13534-020-00175-4.
- [2] Moritz, T., & Maleksaeedi, S. (2018). Additive manufacturing of ceramic components. Additive Manufacturing, 105–161. doi:10.1016/b978-0-12-812155-9.00004-9
- [3] P. Navarrete-segado et al., “A review of additive manufacturing of ceramics by powder bed selective laser processing ( sintering / melting ): Calcium phosphate , silicon carbide , zirconia , alumina , and their composites,” vol. 5, no. January, 2021, doi: 10.1016/j.oceram.2021.100073.
- [4] Y. Lakhdar, C. Tuck, J. Binner, A. Terry, and R. Goodridge, “To appear in : Received Date : Revised Date : Accepted Date :,” Prog. Mater. Sci., p. 100736, 2020, doi: 10.1016/j.pmatsci.2020.100736.
- [5] Lakhdar, Y., Tuck, C., Binner, J., Terry, A., & Goodridge, R. (2020). Additive Manufacturing of Advanced Ceramic Materials. Progress in Materials Science, 100736. doi:10.1016/j.pmatsci.2020.100736
[6] Shi, Ys., Zhang, Jl., Wen, Sf. et al. Additive manufacturing and foundry innovation. China Foundry 18, 286–295 (2021). https://doi.org/10.1007/s41230-021-1008-8
- [7] Castro e Costa, E., Duarte, J. P., & Bártolo, P. (2017). A review of additive manufacturing for ceramic production. Rapid Prototyping Journal, 23(5), 954–963. doi:10.1108/rpj-09-2015-0128
- [8] Niu, F., Wu, D., Ma, G., Wang, J., Guo, M., & Zhang, B. (2015). Nanosized microstructure of Al2O3–ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping. Scripta Materialia, 95, 39–41. doi:10.1016/j.scriptamat.2014.09.026
- [9] Cawley, James D. "Solid freeform fabrication of ceramics." Current Opinion in Solid State and Materials Science 4, no. 5 (1999): 483-489.
- [10] Lewis, Jennifer A., James E. Smay, John Stuecker, and Joseph Cesarano. "Direct ink writing of three‐dimensional ceramic structures." Journal of the American Ceramic Society 89, no. 12 (2006): 3599-3609.
- [11] Hilmas, Greg E., John L. Lombardi, and Robert A. Hoffman. "Advances in the fabrication of functionally graded materials using extrusion freeform fabrication." In Functionally Graded Materials 1996, pp. 319-324. Elsevier Science BV, 1997.
- [12] Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., ... & He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39(4), 661-687.
- [13] Gibson, Ian, David Rosen, Brent Stucker, Mahyar Khorasani, David Rosen, Brent Stucker, and Mahyar Khorasani. Additive manufacturing technologies. Vol. 17. Cham, Switzerland: Springer, 2021.
- [14] Bengisu, Murat, and M. Bengisu. Engineering ceramics. Vol. 620. Berlin: Springer, 2001.
- [15] Javaid, Mohd, Abid Haleem, Ravi Pratap Singh, Rajiv Suman, and Shanay Rab. "Role of additive manufacturing applications towards environmental sustainability." Advanced Industrial and Engineering Polymer Research 4, no. 4 (2021): 312-322.
- [16] Verma, Anoop, and Rahul Rai. "Sustainability-induced dual-level optimization of additive manufacturing process." The International Journal of Advanced Manufacturing Technology 88 (2017): 1945-1959.
- [17] Zhang, Feng, Zongan Li, Mengjia Xu, Shiyan Wang, Na Li, and Jiquan Yang. "A review of 3D printed porous ceramics." Journal of the European Ceramic Society (2022).
- [18] Feilden, Ezra, Claudio Ferraro, Qinghua Zhang, Esther García-Tuñón, Eleonora D’Elia, Finn Giuliani, Luc Vandeperre, and Eduardo Saiz. "3D printing bioinspired ceramic composites." Scientific reports 7, no. 1 (2017): 13759.
- [19] Tartsch, Jens, and Markus B. Blatz. "Ceramic Dental Implants: An Overview of Materials, Characteristics, and Application Concepts." Compendium of Continuing Education in Dentistry (Jamesburg, NJ: 1995) 43, no. 8 (2022): 482-488.
- [20] Dadkhah, M., Tulliani, J. M., Saboori, A., & Iuliano, L. (2023). Additive Manufacturing of Ceramics: Advances, Challenges, and Outlook. Journal of the European Ceramic Society.
- [21] Piconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials, 20(1), 1–25. https://doi.org/10.1016/s0142-9612(98)00010-6
- [22] Parikh, P. (1995). Alumina Ceramics: engineering applications and domestic market Potential. Transactions of the Indian Ceramic Society, 54(5), 179–184. https://doi.org/10.1080/0371750x.1995.10804716
- [23] Mahanty, A., & Shikha, D. (2022). Changes in the morphology, mechanical strength and biocompatibility of polymer and metal/polymer fabricated hydroxyapatite for orthopaedic implants: a review. Journal of Polymer Engineering, 42(4), 298–322. https://doi.org/10.1515/polyeng-2021-0171
- [24] Dong, X., Wu, J., Yu, H., Zhou, Q., Wang, W., Zhang, X., Zhang, L., Li, L., & He, R. (2022). Additive manufacturing of silicon nitride ceramics: A review of advances and perspectives. International Journal of Applied Ceramic Technology, 19(6), 2929–2949. https://doi.org/10.1111/ijac.14162
- [25] Du, X., Lee, S. S., Blugan, G., & Ferguson, S. J. (2022). Silicon Nitride as a Biomedical material: An Overview. International Journal of Molecular Sciences, 23(12), 6551. https://doi.org/10.3390/ijms23126551
- [26] Shi, D., Jiang, G., & Bauer, J. E. (2002). The effect of structural characteristics on thein vitro bioactivity of hydroxyapatite. Journal of Biomedical Materials Research, 63(1), 71–78. https://doi.org/10.1002/jbm.10087
- [27] Çalışkan, F., Tatli, Z., & Sonkaya, A. (2015). Fabrication of bioactive high porous hydroxyapatite ceramics. Academic platform-Journal of Engineering and Science, 3(2), 8–13. https://doi.org/10.5505/apjes.2015.14622
- [28] Saxena, V., Shukla, I., & Pandey, L. M. (2019). Hydroxyapatite: an inorganic ceramic for biomedical applications. In Elsevier eBooks (pp. 205–249). https://doi.org/10.1016/b978-0-12-816909-4.00008-7
- [29] Zhang, W. (2022). A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide. Advances in Colloid and Interface Science, 301, 102604. https://doi.org/10.1016/j.cis.2022.102604
- [30] Ly, M., Hays, S., Spinelli, S., & Zhu, D. (2022). 3D printing of ceramic biomaterials. Engineered Regeneration, 3(1), 41–52. https://doi.org/10.1016/j.engreg.2022.01.006
- [31] Tian, X., Jin, J., Yuan, S., Chua, C. K., Tor, S. B., & Zhou, K. (2017). Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical review. Advanced Energy Materials, 7(17), 1700127. https://doi.org/10.1002/aenm.201700127
- [32] Awad, A., Fina, F., Goyanes, A., Gaisford, S., & Basit, A. W. (2020). 3D printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics, 586, 119594. https://doi.org/10.1016/j.ijpharm.2020.119594
- [33] Kumar, M. B., Sathiya, P., & Varatharajulu, M. (2021). Selective laser sintering. Advances in Additive Manufacturing Processes; China Bentham Books: Beijing, China, 28.
- [34] Du, W., Ren, X., Ma, C., & Pei, Z. (2017). Binder Jetting Additive Manufacturing of Ceramics: A Literature Review. Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis.doi:10.1115/imece2017-70344
- [35] Sehhat, M. H., & Mahdianikhotbesara, A. (2021). Powder spreading in laser-powder bed fusion process. Granular Matter, 23(4). https://doi.org/10.1007/s10035-021-01162-x
- [36] Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., & Fino, P. (2019). Application of Directed Energy Deposition-Based Additive manufacturing in repair. Applied Sciences, 9(16), 3316. https://doi.org/10.3390/app9163316
- [37] Halloran, J. W. (2016). Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annual Review of Materials Research, 46(1), 19–40. https://doi.org/10.1146/annurev-matsci-070115-031841
- [38] Bove, A., Calignano, F., Galati, M., & Iuliano, L. (2022). Photopolymerization of ceramic resins by Stereolithography Process: a review. Applied Sciences, 12(7), 3591. https://doi.org/10.3390/app12073591
- [39] Nguyen, A. K., & Narayan, R. J. (2017). Two-photon polymerization for biological applications. Materials Today, 20(6), 314–322. https://doi.org/10.1016/j.mattod.2017.06.004
- [40] Sänger, J. C., Pauw, B. R., Sturm, H., & Günster, J. (2020). First time additively manufactured advanced ceramics by using two-photon polymerization for powder processing. Open Ceramics, 4, 100040. https://doi.org/10.1016/j.oceram.2020.100040
- [41] Shah, M. A., Lee, D., Lee, B., & Hur, S. (2021). Classifications and Applications of Inkjet Printing Technology: a review. IEEE Access, 9, 140079–140102. https://doi.org/10.1109/access.2021.3119219
- [42] Pinargote, N. W. S., Smirnov, A., Peretyagin, N., Seleznev, A., & Peretyagin, P. (2020). Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A review. Nanomaterials, 10(7), 1300. https://doi.org/10.3390/nano10071300
- [43] Shahzad, A., & Lazoglu, I. (2021). Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges. Composites Part B-engineering, 225, 109249. https://doi.org/10.1016/j.compositesb.2021.109249
- [44] Meram, A., & Sözen, B. (2020). Investigation on the manufacturing variants influential on the strength of 3D printed products. Research on Engineering Structures & Materials. https://doi.org/10.17515/resm2019.171me3112
- [45] Penumakala, P. K., Santo, J., & Thomas, A. (2020). A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B-engineering, 201, 108336. https://doi.org/10.1016/j.compositesb.2020.108336
- [46] Awasthi, P., & Banerjee, S. S. (2021). Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities. Additive Manufacturing, 46, 102177. https://doi.org/10.1016/j.addma.2021.102177
- [47] Chung, H., & Das, S. (2008). Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Materials Science and Engineering: A, 487(1-2), 251-257. https://doi.org/10.1016/j.msea.2007.10.082
- [48] Shahzad, K., Deckers, J., Zhang, Z., Kruth, J. P., & Vleugels, J. (2014). Additive manufacturing of zirconia parts by indirect selective laser sintering. Journal of the European Ceramic Society, 34(1), 81-89. https://doi.org/10.1016/j.jeurceramsoc.2013.07.023
- [49] Gao, C., Yang, B., Hu, H., Liu, J., Shuai, C., & Peng, S. (2013). Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Materials Science and Engineering: C, 33(7), 3802-3810. https://doi.org/10.1016/j.msec.2013.05.01
- [50] XiaoHui, S., Wei, L., PingHui, S., QingYong, S., QingSong, W., YuSheng, S., ... & WenGuang, L. (2015). Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. The International Journal of Advanced Manufacturing Technology, 81, 15-25.
- [51] Xia, Y., Zhou, P., Cheng, X., Xie, Y., Liang, C., Li, C., & Xu, S. (2013). Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. International journal of nanomedicine, 4197-4213. https://doi.org/10.2147/IJN.S50685
- [52] Moore, J. D. (1973). Acrylonitrile-butadiene-styrene (ABS)-a review. Composites, 4(3), 118-130. https://doi.org/10.3390/polym10060666
- [53] Xu, N., Ye, X., Wei, D., Zhong, J., Chen, Y., Xu, G., & He, D. (2014). 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS applied materials & interfaces, 6(17), 14952-14963. https://doi.org/10.1021/am502716t
- [54] Sa, M. W., Nguyen, B. N. B., Moriarty, R. A., Kamalitdinov, T., Fisher, J. P., & Kim, J. Y. (2018). Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications. Biotechnology and bioengineering, 115(4), 989-999. https://doi.org/10.1002/bit.26514
- [55] Gorjan, L., Tonello, R., Sebastian, T., Colombo, P., & Clemens, F. (2019). Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. Journal of the European Ceramic Society, 39(7), 2463-2471. https://doi.org/10.1016/j.jeurceramsoc.2019.02.032
- [56] Wu, D., Shi, J., Niu, F., Ma, G., Zhou, C., & Zhang, B. (2022). Direct additive manufacturing of melt growth Al2O3-ZrO2 functionally graded ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 42(6), 2957-2973. https://doi.org/10.1016/j.jeurceramsoc.2022.01.034
- [57] Bernard, S. A., Balla, V. K., Bose, S., & Bandyopadhyay, A. (2010). Direct laser processing of bulk lead zirconate titanate ceramics. Materials Science and Engineering: B, 172(1), 85-88. https://doi.org/10.1016/j.mseb.2010.04.022
- [58] Liu, H., Su, H., Shen, Z., Zhao, D., Liu, Y., Guo, Y., ... & Fu, H. (2021). One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition. Journal of the European Ceramic Society, 41(6), 3547-3558. https://doi.org/10.1016/j.jeurceramsoc.2021.01.047
- [59] Lee, J. W., Ahn, G., Kim, D. S., & Cho, D. W. (2009). Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectronic Engineering, 86(4-6), 1465-1467. https://doi.org/10.1016/j.mee.2008.12.038
- [60] Licciulli, A., Corcione, C. E., Greco, A., Amicarelli, V., & Maffezzoli, A. (2005). Laser stereolithography of ZrO2 toughened Al2O3. Journal of the European Ceramic Society, 25(9), 1581-1589. https://doi.org/10.1016/j.jeurceramsoc.2003.12.003
- [61] Griffith, M. L., & Halloran, J. W. (1996). Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society, 79(10), 2601-2608. https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
- [62] Li, X., Yuan, Y., Liu, L., Leung, Y. S., Chen, Y., Guo, Y., ... & Chen, Y. (2020). 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Design and Manufacturing, 3, 15-29.
- [63] Larson, C. M., Choi, J. J., Gallardo, P. A., Henderson, S. W., Niemack, M. D., Rajagopalan, G., & Shepherd, R. F. (2016). Direct ink writing of silicon carbide for microwave optics. Advanced Engineering Materials, 18(1), 39-45. https://doi.org/10.1002/adem.201500298
- [64] Zocca, A., Franchin, G., Elsayed, H., Gioffredi, E., Bernardo, E., & Colombo, P. (2016). Direct ink writing of a preceramic polymer and fillers to produce hardystonite (Ca2ZnSi2O7) bioceramic scaffolds. Journal of the American Ceramic Society, 99(6), 1960-1967. https://doi.org/10.1111/jace.14213
- [65] Cappi, B., Özkol, E., Ebert, J., & Telle, R. (2008). Direct inkjet printing of Si3N4: characterization of ink, green bodies and microstructure. Journal of the European Ceramic Society, 28(13), 2625-2628. https://doi.org/10.1016/j.jeurceramsoc.2008.03.004
- [66] Liang, C., Huang, J., Wang, J., Gong, H., Guo, W., Cao, R., & Zhao, P. (2023). Three-dimensional inkjet printing and low temperature sintering of silica-based ceramics. Journal of the European Ceramic Society, 43(5), 2289-2294. https://doi.org/10.1016/j.jeurceramsoc.2023.01.003
- [67] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.
- [68] Zocca, A., Colombo, P., Gomes, C., & Günster, J. (2015). Additive Manufacturing of Ceramics: Issues, potentialities, and opportunities. Journal of the American Ceramic Society, 98(7), 1983–2001. https://doi.org/10.1111/jace.13700
- [69] Rueschhoff, L. M., Baldwin, L. A., Hardin, J. O., & Kaufman, J. (2023). Future directions in ceramic additive manufacturing: Fiber reinforcements and artificial intelligence. Journal of the American Ceramic Society. https://doi.org/10.1111/jace.19408
- [70] Mansfield, B, Torres, S, Yu, T, & Wu, D. "A Review on Additive Manufacturing of Ceramics." Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing. Erie, Pennsylvania, USA. June 10–14, 2019. V001T01A001. ASME. https://doi.org/10.1115/MSEC2019-2886
- [71] Deckers, J., Vleugels, J., Kruth, J.P. (2014). Additive Manufacturing of Ceramics: A Review. J. Ceram. Sci. Tech., 05[04], 245-260. DOI: 10.4416/JCST2014-00032
- [72] Hwa, L. C., Rajoo, S., Noor, A. M., Ahmad, N., & Uday, M. B. (2017). Recent advances in 3D printing of porous ceramics: A review. Current Opinion in Solid State and Materials Science, 21(6), 323–347. doi:10.1016/j.cossms.2017.08.002
- [73] He, R., Zhou, N., Zhang, K. et al. Progress and challenges towards additive manufacturing of SiC ceramic. J Adv Ceram 10, 637–674 (2021). https://doi.org/10.1007/s40145-021-0484-z