Research Article
BibTex RIS Cite

Determination of Cold Tolerance in Local Alfalfa (M. sativa L.) Cultivars Grown in Türkiye under In Vitro Conditions through MsPYL3-3 and MsPYL5-1 Genes

Year 2025, Volume: 8 Issue: 1, 65 - 75, 30.06.2025
https://doi.org/10.46876/ja.1709167

Abstract

Alfalfa is an important legume cultivated worldwide. Cold stress adversely affects alfalfa’s growth and development. Recently, the use of phytohormone salicylic acid (SA) and nanoparticles are attracting attention as effective approaches for gaining tolerance in both plant development and stress defense mechanisms. This study investigated how the SA and magnesium oxide nanoparticles (MgO NPs) influence the expression of MsPYL3-3 and MsPYL5-1 genes in two alfalfa varieties, Denizli and Van, under cold stresses of 10°C and 4°C. Initially, plants were grown under controlled conditions (25°C, 16-hours light/8-hours dark photoperiod, 60% humidity) for one month before being exposed to cold treatments. The treatments included foliar applications of 1 mM and 2 mM SA, as well as 5 ppm and 20 ppm MgO nanoparticles. Gene expression was measured using RT-qPCR analysis. Results showed that lowering temperatures induced upregulation of MsPYL3-3 and MsPYL5-1 in both varieties. Moreover, treatment with SA and MgO nanoparticles further increased the expression levels of these genes. Notably, the gene expression responses varied between the Denizli and Van varieties, indicating genotype-specific differences.

Ethical Statement

AUTHOR CONTRIBUTIONS The authors contributed equally to this study. CONFLICT OF INTEREST The authors declare that there is no conflict of interest.

Supporting Institution

Kafkas Üniversitesi

Project Number

2022-FM-68

Thanks

This study was supported by Scientific Research Projects (BAP) of Kafkas University in Turkey with Project No: 2022-FM-68.

References

  • Adhikari, L., Baral, R., Paudel, D., Min, D., Makaju, S. O., Poudel, H. P., Acharya, J. P., & Missaoui, A. M. (2022). Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress, 4, 100081.
  • Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272-284.
  • Akçay, M., Yazıcılar, B., Kassa, S. B., Ilhan, D., Shadıdızajı, A., & Bezırganoglu, I. (2025). Synergistic effects of salicylic acid and magnesium oxide nanoparticles on cold stress and miRNA expression in alfalfa (Medicago sativa L.) genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 161(3), 1-18.
  • Arif, Y., Sami, F., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany, 175, 104040.
  • Bhardwaj, B., Singh, P., Kumar, A., Kumar, S., & Budhwar, V. (2020). Eco-friendly greener synthesis of nanoparticles. Advanced pharmaceutical bulletin, 10(4), 566.
  • Cofer, T., Engelberth, M., & Engelberth, J. (2018). Green leaf volatiles protect maize (zea mays) seedlings against damage from cold stress. Plant Cell & Environment, 41(7), 1673-1682. https://doi.org/10.1111/pce.13204
  • Deng, X., Wang, J., Li, Y., Wu, S., Yang, S., Chao, J., Chen, Y., Zhang, S., Shi, M., & Tian, W. (2018). Comparative transcriptome analysis reveals phytohormone signalings, heat shock module and ros scavenger mediate the cold-tolerance of rubber tree. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-23094-y
  • Gondor, O. K., Pál, M., Janda, T., & Szalai, G. (2022). The role of methyl salicylate in plant growth under stress conditions. Journal of Plant Physiology, 277, 153809.
  • Hall, J., Cobb, J., Iqbal, M., Abidali, M., Liu, Z., & Mount, D. (2008). Uvh6, a plant homolog of the human/yeast tfiih transcription factor subunit xpd/rad3, regulates cold-stress genes in arabidopsis thaliana. Plant Molecular Biology Reporter, 27(2), 217-228. https://doi.org/10.1007/s11105-008-0076-x
  • Hong, J. and Ryu, H. (2023). Identification and functional analysis of cold-signaling-related genes in panax ginseng. Journal of Plant Biotechnology, 50. https://doi.org/10.5010/jpb.2023.50.028.225
  • Hernández, J. A., Diaz-Vivancos, P., Barba-Espín, G., & Clemente-Moreno, M. J. (2017). On the role of salicylic acid in plant responses to environmental stresses. Salicylic acid: a multifaceted hormone, 17-34. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green chemistry, 13(10), 2638-2650.
  • Karlidag, H., Yildirim, E., & Turan, M. (2009). Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. Journal of Plant Nutrition and Soil Science, 172(2), 270-276.
  • Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in plant science, 6, 462.
  • Kidokoro, S., Watanabe, K., Ohori, T., Moriwaki, T., Maruyama, K., Mizoi, J., Htwe, N. M. P. S., Fujita, Y., Sekita, S., Shinozaki, K., Shinozaki, K. Y., & Yamaguchi‐Shinozaki, K. (2015). Soybean dreb1/cbf‐type transcription factors function in heat and drought as well as cold stress‐responsive gene expression. The Plant Journal, 81(3), 505-518. https://doi.org/10.1111/tpj.12746
  • Klessig, D. F., Choi, H. W., & Dempsey, D. M. A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. Molecular plant-microbe interactions, 31(9), 871-888.
  • Kumari, R., & Nath, M. (2018). Synthesis and characterization of novel trimethyltin (IV) and tributylltin (IV) complexes of anticoagulant, WARFARIN: Potential DNA binding and plasmid cleaving agents. Inorganic Chemistry Communications, 95, 40-46.
  • Li, Y., Liu, G. B., Gao, H. W., Wang, Z., Zhao, H. M., Xie, N., & Wang, Y. H. (2009). Study on comprehensive evaluation of drought resistance of Medicago sativa L. germplasm at seedling stage. Acta Agrestia Sinica, 17(6), 807.
  • Liu, Y., Cai, Y., Li, Y., Zhang, X., Shi, N., Zhao, J., & Yang, H. (2022). Dynamic changes in the transcriptome landscape of arabidopsis thaliana in response to cold stress. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.983460
  • Ma, Z., Huang, B., Xu, S., Chen, Y., Li, S. and Lin, S. 2015. Isolation of high-quality total RNA from chinese fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One, 10(6), e0130234.
  • Miura, K., Ohta, M., Nakazawa, M., Ono, M., & Hasegawa, P. (2011). Ice1 ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. The Plant Journal, 67(2), 269-279. https://doi.org/10.1111/j.1365-313x.2011.04589.x
  • Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in plant science, 5, 4.
  • Nejati, M., Rostami, M., Mirzaei, H., Rahimi-Nasrabadi, M., Vosoughifar, M., Nasab, A. S., & Ganjali, M. R. (2022). Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications, 136, 109107.
  • Nian, L., Zhang, X., Yi, X., Liu, X., Ain, N. U., Yang, Y., Li, X., Haider, F. U., & Zhu, X. (2021). Genome-wide identification of ABA receptor PYL/RCAR gene family and their response to cold stress in Medicago sativa L. Physiology and Molecular Biology of Plants, 27, 1979-1995.
  • Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., & Natarajan, S. (2019). Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology, 190, 86-97.
  • Ren, C., Kuang, Y., Lin, Y., Guo, Y., Li, H., Fan, P., Li, S., & Liang, Z. (2022). Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in Arabidopsis. BMC Plant Biology, 22(1), 271.
  • Samac, D. A., & Jung, H. J. G, Lamb JFS (2006): Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bio products.
  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Shinozaki, K. Y., Carninci, P., Kawai, J., Hayashizaki, Y., & Shinozaki, K. (2002). Monitoring the expression profiles of 7000 arabidopsis genes under drought, cold and high‐salinity stresses using a full length cdna microarray. The Plant Journal, 31(3), 279-292. https://doi.org/10.1046/j.1365-313x.2002.01359.x
  • Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: a review. Molecules, 24(14), 2558.
  • Shen, Y., He, L., Yang, Z., & Xiong, Y. (2020). Corrosion behavior of different coatings prepared on the surface of AZ80 magnesium alloy in simulated body fluid. Journal of Materials Engineering and Performance, 29, 1609-1621.
  • Sun, C., Zhu, L., Cao, L., Qi, H., Liu, H., Zhao, F., & Han, X. (2022). Pks5 confers cold tolerance by controlling stomatal movement and regulating cold-responsive genes in arabidopsis. Life, 12(10), 1633. https://doi.org/10.3390/life12101633
  • Szczerba, A., Płażek, A., Pastuszak, J., Kopeć, P., Hornyák, M., & Dubert, F. (2021). Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agronomy, 11(4), 800.
  • Vijayakumar, H., Thamilarasan, S., Shanmugam, A., Natarajan, S., Jung, H., Park, J., Kim, H., Chung, M. Y., & Nou, I. (2016). Glutathione transferases superfamily: cold-inducible expression of distinct gst genes in brassica oleracea. International Journal of Molecular Sciences, 17(8), 1211. https://doi.org/10.3390/ijms17081211
  • Wang, W., Wang, X., Zhang, J., Huang, M., Cai, J., Zhou, Q., Dai, T., & Jiang, D. (2020). Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat. Plant Growth Regulation, 90, 109-121.
  • Wu, L., Zhang, Z., Zhang, H., Wang, X. C., & Huang, R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant physiology, 148(4), 1953-1963.
  • Yang, S. S., Xu, W. W., Tesfaye, M., Lamb, J. F., Jung, H. J. G., VandenBosch, K. A., Vance, C. P., & Gronwald, J. W. (2010). Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes. BMC genomics, 11, 1-18.
  • Yu, G., Jiang, L., Ma, X., Xu, Z., Liu, M., Shan, S., & Cheng, X. (2014). A soybean c2h2-type zinc finger gene gmzf1 enhanced cold tolerance in transgenic arabidopsis. Plos One, 9(10), e109399. https://doi.org/10.1371/journal.pone.0109399
  • Zhang, F., Huang, L., Wang, W., Zhao, X., Zhu, L., Fu, B., & Li, Z. (2012). Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-461
  • Zhao, C., Zhang, Z., Xie, S., Si, T., Li, Y., & Zhu, J. (2016). Mutational evidence for the critical role of cbf transcription factors in cold acclimation in arabidopsis. Plant Physiology, 171(4), 2744-2759. https://doi.org/10.1104/pp.16.00533
  • Zhao, H., Nie, K., Zhou, H., Yan, X., Zhan, Q., Zheng, Y., & Song, C. P. (2020). ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytologist, 228(2), 596-608.

Determination of Cold Tolerance in Local Alfalfa (Medicago sativa L.) Varieties Grown in Turkey under In Vitro Conditions through MsPYL3-3 and MsPYL5-1 Genes

Year 2025, Volume: 8 Issue: 1, 65 - 75, 30.06.2025
https://doi.org/10.46876/ja.1709167

Abstract

Alfalfa is an important legume cultivated worldwide. Cold stress adversely affects alfalfa’s growth and development. Recently, the use of phytohormone salicylic acid (SA) and nanoparticles are attracting attention as effective approaches for gaining tolerance in both plant development and stress defense mechanisms. This study investigated how salicylic acid (SA) and magnesium oxide nanoparticles (MgO NPs) influence the expression of MsPYL3-3 and MsPYL5-1 genes in two alfalfa varieties, Denizli and Van, under cold stresses of 10°C and 4°C. Initially, plants were grown under controlled conditions (25°C, 16-hours light/8-hours dark photoperiod, 60% humidity) for one month before being exposed to cold treatments. The treatments included foliar applications of 1 mM and 2 mM SA, as well as 5 ppm and 20 ppm MgO nanoparticles. Gene expression was measured using RT-qPCR analysis. Results showed that lowering temperatures induced upregulation of MsPYL3-3 and MsPYL5-1 in both varieties. Moreover, treatment with SA and MgO nanoparticles further increased the expression levels of these genes. Notably, the gene expression responses varied between the Denizli and Van varieties, indicating genotype-specific differences.

Project Number

2022-FM-68

References

  • Adhikari, L., Baral, R., Paudel, D., Min, D., Makaju, S. O., Poudel, H. P., Acharya, J. P., & Missaoui, A. M. (2022). Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress, 4, 100081.
  • Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272-284.
  • Akçay, M., Yazıcılar, B., Kassa, S. B., Ilhan, D., Shadıdızajı, A., & Bezırganoglu, I. (2025). Synergistic effects of salicylic acid and magnesium oxide nanoparticles on cold stress and miRNA expression in alfalfa (Medicago sativa L.) genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 161(3), 1-18.
  • Arif, Y., Sami, F., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany, 175, 104040.
  • Bhardwaj, B., Singh, P., Kumar, A., Kumar, S., & Budhwar, V. (2020). Eco-friendly greener synthesis of nanoparticles. Advanced pharmaceutical bulletin, 10(4), 566.
  • Cofer, T., Engelberth, M., & Engelberth, J. (2018). Green leaf volatiles protect maize (zea mays) seedlings against damage from cold stress. Plant Cell & Environment, 41(7), 1673-1682. https://doi.org/10.1111/pce.13204
  • Deng, X., Wang, J., Li, Y., Wu, S., Yang, S., Chao, J., Chen, Y., Zhang, S., Shi, M., & Tian, W. (2018). Comparative transcriptome analysis reveals phytohormone signalings, heat shock module and ros scavenger mediate the cold-tolerance of rubber tree. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-23094-y
  • Gondor, O. K., Pál, M., Janda, T., & Szalai, G. (2022). The role of methyl salicylate in plant growth under stress conditions. Journal of Plant Physiology, 277, 153809.
  • Hall, J., Cobb, J., Iqbal, M., Abidali, M., Liu, Z., & Mount, D. (2008). Uvh6, a plant homolog of the human/yeast tfiih transcription factor subunit xpd/rad3, regulates cold-stress genes in arabidopsis thaliana. Plant Molecular Biology Reporter, 27(2), 217-228. https://doi.org/10.1007/s11105-008-0076-x
  • Hong, J. and Ryu, H. (2023). Identification and functional analysis of cold-signaling-related genes in panax ginseng. Journal of Plant Biotechnology, 50. https://doi.org/10.5010/jpb.2023.50.028.225
  • Hernández, J. A., Diaz-Vivancos, P., Barba-Espín, G., & Clemente-Moreno, M. J. (2017). On the role of salicylic acid in plant responses to environmental stresses. Salicylic acid: a multifaceted hormone, 17-34. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green chemistry, 13(10), 2638-2650.
  • Karlidag, H., Yildirim, E., & Turan, M. (2009). Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. Journal of Plant Nutrition and Soil Science, 172(2), 270-276.
  • Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in plant science, 6, 462.
  • Kidokoro, S., Watanabe, K., Ohori, T., Moriwaki, T., Maruyama, K., Mizoi, J., Htwe, N. M. P. S., Fujita, Y., Sekita, S., Shinozaki, K., Shinozaki, K. Y., & Yamaguchi‐Shinozaki, K. (2015). Soybean dreb1/cbf‐type transcription factors function in heat and drought as well as cold stress‐responsive gene expression. The Plant Journal, 81(3), 505-518. https://doi.org/10.1111/tpj.12746
  • Klessig, D. F., Choi, H. W., & Dempsey, D. M. A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. Molecular plant-microbe interactions, 31(9), 871-888.
  • Kumari, R., & Nath, M. (2018). Synthesis and characterization of novel trimethyltin (IV) and tributylltin (IV) complexes of anticoagulant, WARFARIN: Potential DNA binding and plasmid cleaving agents. Inorganic Chemistry Communications, 95, 40-46.
  • Li, Y., Liu, G. B., Gao, H. W., Wang, Z., Zhao, H. M., Xie, N., & Wang, Y. H. (2009). Study on comprehensive evaluation of drought resistance of Medicago sativa L. germplasm at seedling stage. Acta Agrestia Sinica, 17(6), 807.
  • Liu, Y., Cai, Y., Li, Y., Zhang, X., Shi, N., Zhao, J., & Yang, H. (2022). Dynamic changes in the transcriptome landscape of arabidopsis thaliana in response to cold stress. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.983460
  • Ma, Z., Huang, B., Xu, S., Chen, Y., Li, S. and Lin, S. 2015. Isolation of high-quality total RNA from chinese fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One, 10(6), e0130234.
  • Miura, K., Ohta, M., Nakazawa, M., Ono, M., & Hasegawa, P. (2011). Ice1 ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. The Plant Journal, 67(2), 269-279. https://doi.org/10.1111/j.1365-313x.2011.04589.x
  • Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in plant science, 5, 4.
  • Nejati, M., Rostami, M., Mirzaei, H., Rahimi-Nasrabadi, M., Vosoughifar, M., Nasab, A. S., & Ganjali, M. R. (2022). Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications, 136, 109107.
  • Nian, L., Zhang, X., Yi, X., Liu, X., Ain, N. U., Yang, Y., Li, X., Haider, F. U., & Zhu, X. (2021). Genome-wide identification of ABA receptor PYL/RCAR gene family and their response to cold stress in Medicago sativa L. Physiology and Molecular Biology of Plants, 27, 1979-1995.
  • Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., & Natarajan, S. (2019). Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology, 190, 86-97.
  • Ren, C., Kuang, Y., Lin, Y., Guo, Y., Li, H., Fan, P., Li, S., & Liang, Z. (2022). Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in Arabidopsis. BMC Plant Biology, 22(1), 271.
  • Samac, D. A., & Jung, H. J. G, Lamb JFS (2006): Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bio products.
  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Shinozaki, K. Y., Carninci, P., Kawai, J., Hayashizaki, Y., & Shinozaki, K. (2002). Monitoring the expression profiles of 7000 arabidopsis genes under drought, cold and high‐salinity stresses using a full length cdna microarray. The Plant Journal, 31(3), 279-292. https://doi.org/10.1046/j.1365-313x.2002.01359.x
  • Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: a review. Molecules, 24(14), 2558.
  • Shen, Y., He, L., Yang, Z., & Xiong, Y. (2020). Corrosion behavior of different coatings prepared on the surface of AZ80 magnesium alloy in simulated body fluid. Journal of Materials Engineering and Performance, 29, 1609-1621.
  • Sun, C., Zhu, L., Cao, L., Qi, H., Liu, H., Zhao, F., & Han, X. (2022). Pks5 confers cold tolerance by controlling stomatal movement and regulating cold-responsive genes in arabidopsis. Life, 12(10), 1633. https://doi.org/10.3390/life12101633
  • Szczerba, A., Płażek, A., Pastuszak, J., Kopeć, P., Hornyák, M., & Dubert, F. (2021). Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agronomy, 11(4), 800.
  • Vijayakumar, H., Thamilarasan, S., Shanmugam, A., Natarajan, S., Jung, H., Park, J., Kim, H., Chung, M. Y., & Nou, I. (2016). Glutathione transferases superfamily: cold-inducible expression of distinct gst genes in brassica oleracea. International Journal of Molecular Sciences, 17(8), 1211. https://doi.org/10.3390/ijms17081211
  • Wang, W., Wang, X., Zhang, J., Huang, M., Cai, J., Zhou, Q., Dai, T., & Jiang, D. (2020). Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat. Plant Growth Regulation, 90, 109-121.
  • Wu, L., Zhang, Z., Zhang, H., Wang, X. C., & Huang, R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant physiology, 148(4), 1953-1963.
  • Yang, S. S., Xu, W. W., Tesfaye, M., Lamb, J. F., Jung, H. J. G., VandenBosch, K. A., Vance, C. P., & Gronwald, J. W. (2010). Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes. BMC genomics, 11, 1-18.
  • Yu, G., Jiang, L., Ma, X., Xu, Z., Liu, M., Shan, S., & Cheng, X. (2014). A soybean c2h2-type zinc finger gene gmzf1 enhanced cold tolerance in transgenic arabidopsis. Plos One, 9(10), e109399. https://doi.org/10.1371/journal.pone.0109399
  • Zhang, F., Huang, L., Wang, W., Zhao, X., Zhu, L., Fu, B., & Li, Z. (2012). Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-461
  • Zhao, C., Zhang, Z., Xie, S., Si, T., Li, Y., & Zhu, J. (2016). Mutational evidence for the critical role of cbf transcription factors in cold acclimation in arabidopsis. Plant Physiology, 171(4), 2744-2759. https://doi.org/10.1104/pp.16.00533
  • Zhao, H., Nie, K., Zhou, H., Yan, X., Zhan, Q., Zheng, Y., & Song, C. P. (2020). ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytologist, 228(2), 596-608.
There are 39 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Research Articles
Authors

Mustafa Akçay 0000-0003-1747-2314

Doğan İlhan 0000-0003-2805-1638

Büşra Yazıcılar 0000-0003-2465-7579

Ümmü Gülsüm Koç 0000-0003-1478-2616

İsmail Bezirganoglu 0000-0003-4079-5998

Project Number 2022-FM-68
Early Pub Date June 27, 2025
Publication Date June 30, 2025
Submission Date May 30, 2025
Acceptance Date June 27, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Akçay, M., İlhan, D., Yazıcılar, B., Koç, Ü. G., et al. (2025). Determination of Cold Tolerance in Local Alfalfa (M. sativa L.) Cultivars Grown in Türkiye under In Vitro Conditions through MsPYL3-3 and MsPYL5-1 Genes. Journal of Agriculture, 8(1), 65-75. https://doi.org/10.46876/ja.1709167

İletişim; 
 Tel : 0531 245 65 86