Research Article
BibTex RIS Cite

Derebaşı (Kaçkar Dağı) Kaya Buzulunun Jeomorfolojisi Ve Kinematik Özellikleri

Year 2025, Issue: 14, 74 - 96, 15.04.2025
https://doi.org/10.46453/jader.1633480

Abstract

Kaya buzulları, yüksek dağlık ortamlarda önemli periglasyal yer şekilleri olup, permafrost dağılımının ve iklim değişikliğinin etkilerinin belirlenmesinde kritik göstergelerden biridir. Bu çalışma, Türkiye’nin en geniş periglasyal alanlarından biri olan Kaçkar Dağları’ndaki Derebaşı Kaya Buzulu’nun jeomorfolojik özelliklerini ve kinematik davranışlarını incelemektedir. GNSS destekli İHA fotogrametrisi kullanılarak yüksek çözünürlüklü Sayısal Yüzey Modelleri (SYM) ve ortofotolar üretilmiş ve 2023-2024 yılları arasındaki yıllık hareket, yüzey deformasyonu ve aktivite durumu analiz edilmiştir. Bulgular, Derebaşı Kaya Buzulu’nun aktif, inaktif ve relikt bölümler içeren karmaşık bir morfolojiye sahip olduğunu ve hem glasyal (buz çekirdekli) hem de periglasyal (permafrost) süreçler tarafından şekillendiğini göstermektedir. Kaya buzulunun 3. lobu (LB3), yıllık maksimum 60 cm yatay hareket hızıyla en aktif bölüm olarak belirlenirken, LB1’in cephe kısmı bitki örtüsü ve durağan topoğrafyası ile relikt kaya buzulu karakteri sergilemektedir. LB1’in orta bölümü, derin sırt-oluk yapılarıyla permafrost hareketinin izlerini taşırken, LB3’ün dışbükey gövde yapısı ve düzgün yüzeyi buz çekirdeğinin varlığına işaret etmektedir. Kinematik analizler, topoğrafik kısıtlamalar ve döküntü beslenmesi ile şekillenen heterojen hareket paternlerini ortaya koymuştur. LB1’de sıkıştırmalı akışa bağlı deformasyon yapıları gözlenirken, LB3’te gerilmeli deformasyon desenleri belirlenmiştir. Çalışmada ayrıca bölgedeki dağ permafrostunun güncel alt sınırının yaklaşık 2900 m olduğu hesaplanmıştır. Tespit edilen hareketler permafrost istikrarsızlığına işaret etse de, tek yıllık gözlem periyodu uzun vadeli eğilimler hakkında kesin sonuçlar çıkarmaya yetmemektedir. Bu araştırma, Derebaşı Kaya Buzulu’nun yüksek çözünürlüklü kinematik değerlendirmesini sağlayarak, jeomorfolojik evrimi ve iklim değişikliğine duyarlılığı konusunda önemli bilgiler sunmaktadır. Gelecekte yapılacak çalışmaların uzun vadeli izleme programları, jeofizik araştırmalar ve sondaj incelemelerini içermesi, döküntü altı buz içeriğinin, permafrost kararlılığının ve kaya buzullarının iklim değişikliğine uzun vadeli tepkisinin daha iyi anlaşılmasına katkı sağlayacaktır.

Supporting Institution

TÜBİTAK

Project Number

122Y373

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 122Y373 numaralı proje ile desteklenmiştir. Projeye verdiği destekten ötürü TÜBİTAK’a teşekkürlerimi sunarım.

References

  • Akçar, N., Schlüchter, C. (2005). Paleoglaciation in Anatolia: a schematic review and first results. Eiszeitalter und Gegenwart, 55, 102–121. https://boris.unibe.ch/47000/1/Akcar_and_Schluchter_2005.pdf
  • Akçar, N., Yavuz, V. S., Ivy-Ochs, S., Kubik, P. W., Vardar, M., Schlüchter, C. (2007). Paleoglacial records from Kavron Valley, NE Turkey: Field and cosmogenic exposure dating evidence. Quaternary International, 164-165, 170-183. https://doi.org/10.1016/j.quaint.2006.12.020
  • Alcalá-Reygosa, J. (2019). Rock glaciers of the mountains of Mexico; a review of current knowledge and paleoclimatic implications. Journal of South American Earth Sciences, 96, 102321.https://doi.org/10.1016/j.jsames.2019.102321.
  • Baroni, C., Carton, A., Seppi, R. (2004). Distribution and behaviour of rock glaciers in the Adamello–Presanella Massif (Italian Alps). Permafr. Periglac. Process. 15 (3), 243–259. https://doi.org/10.1002/ppp.497
  • Barsch, D. (1996). Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments. Springer-Verlag, Berlin, Germany, pp. 331. ISBN: 3-540-60742-0.
  • Barsch, D. (1978). Active rock glaciers as indicators for discontingnuous alpine permafrost. An example from the Swiss Alps. Third International Conference on Permafrost, Edmonton, Alberta, Canada, I, 348-353.
  • Barsch, D. (1988). Rock glaciers, In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 69-90.
  • Barsch, D., King, L. (1975). An attempt to date fossil rock glaciers in Grison, Swiss Alps. Questiones Geographicae (Poznan), 2, 5-14.
  • Benedict, J.B., Benedict, R.J., Sanville, D. (1986). Arapaho rock glacier, Front Range, Colorado, USA: A 25-Year Resurvey. Arctic and Alpine Research, 18(3), 349-352.
  • Buckel, J., Reinosch, E., Voigtländer, A., Dietze, M., Bücker, M., Krebs, N., Schroeckh, R., Mäusbacher, R., Hördt, A. (2022). Rock glacier characteristics under semiarid climate conditions in the Western Nyainqêntanglha Range, Tibetan Plateau. Journal of Geophysical Research: Earth Surface, 127(1), e2021JF006256. https://doi.org/10.1029/2021jf006256.
  • Chiba, T., Kaneta, S.I., Suzuki, Y. (2008). Red relief image map: New visualization method for three dimensional data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXVII. Part B2. Beijing. https://www.isprs.org/proceedings/XXXVII/congress/2_pdf/11_ThS-6/08.pdf
  • Chu, H.J., Chen, Y.C., Ali, M.Z., Hofle, B. (2019). Multi-Parameter Relief Map from High-Resolution DEMs: A Case Study of Mudstone Badland. International Journal of Environmental Research and Public Health, 16(7), 1109. https://doi.org/10.3390/ijerph16071109.
  • Çalışkan, O., Gürgen, G., Yılmaz, E., Yeşilyurt, S. (2012). Bolkar Dağları Kuzeydoğusunun Glasyal Morfolojisi ve Döküntüyle Örtülü Buzullar. Uluslararası İnsani Bilimler Dergisi, 9(1), 889-910.https://arastirmax.com/en/system/files/dergiler/161047/makaleler/9/1/arastrmx_161047_9_pp_890-911.pdf
  • Dede, V. (2023). Karçal Dağları’nın Buzul Jeomorfolojisi ve 36Cl Kozmojenik Jeokronolojisi. 1. Baskı, 200 s., Kriter Yayınevi, No: 45353, ISBN: 978-625-6894-46-4.
  • Dede, V., Çiçek, İ., Uncu, L. (2015). Karçal Dağları’nda Kaya Buzulu Oluşumları. Hacettepe Üniversitesi, Yerbilimleri Dergisi, 36(2), 61-80. https://doi.org/10.17824/yrb.90910.
  • Dede, V., Çiçek, İ., Sarıkaya, M.A., Çiner, A., Uncu, L. (2017). First cosmogenic geochronology from the lesser Caucasus: late pleistocene Pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quat Sci Rev 164, 54–67. https://doi.org/10.1016/j.quascirev.2017.03.025
  • Degenhardt, J.J. (2009). Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys. Geomorphology 109(3-4): 94-107. https://doi.org/10.1016/j.geomorph.2009.02.020
  • Delaloye, R., Lambiel, C., Gartner-Roer, I. (2010). Overview of Rock Glacier Kinematics Research in the Swiss Alps: Geographica Helvetica, vol. 65, pp. 135–145. https://doi.org/10.5194/gh-65-135-2010, 2010
  • Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M., Gachet, S. (2013). Rapidly moving rock glaciers in Mattertal. Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 21–31. https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/Papers/Delaloye_et_al_(2013)_SSGm_Rapidly_moving_rock_glaciers.pdf
  • Doğu, A.F., Somuncu, M., Çiçek, İ., Tunçel, H., Gürgen, G. (1993). Kaçkar Dağı‘nda buzul şekilleri, yaylalar ve turizm. Ankara Üniversitesi, Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 2, 157-184.
  • Erinç, S. (1949). Eiszeitliche Formen und gegenwartige Verletscherung im nordostanatölischen Randgebirge. Geologische Rundschau, 37, 75-83.
  • Giardino, J.R., Regmi, N.R., Vitek, J.D. (2011). Rock Glaciers. In: Encyclopedia of Snow, Ice and Glaciers. Editors: Singh, V.J., Singh, P., Haritashya, U.K., Springer, Netherlands. https://doi.org/10.1007/978-90-481-2642-2_453
  • Giardino, J.R., Vitek, J.D. (1988). The significance of rock glaciers in the glacial–periglacial landscape continuum. J. Quat. Sci. 3, 97–103.
  • Gürgen, G. (2019). Çatakkaya Döküntü Örtülü Buzulu (Tatos Dağları). Coğrafi Bilimler Dergisi, 17(1), 217-236. https://doi.org/10.33688/aucbd.536616.
  • Gürgen, G., Çalışkan, O., Yılmaz, E., Yeşilyurt, S. (2010). Yedigöller Platosu ve Emli Vadisinde (Aladağlar) Döküntü Örtülü Buzullar. e Journal of New Science Academy, 5(2), 98-116.
  • Gürgen, G., Yeşilyurt, S. (2012). Karçal Dağı Buzulları (Artvin). Coğrafi Bilimler Dergisi, 10 (1), 91-104. https://dergipark.org.tr/tr/pub/aucbd/issue/44469/551196
  • Güven, İ.H. (1998). 1/100.000 ölçekli açınsama nitelikli Türkiye Jeoloji Haritaları, No. 58, Trabzon C29 ve D29 paftaları: Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara.
  • Haeberli, W. (1985). Creep of mountain permafrost: internal structure and flow of Alpine rock glaciers. Mitteilung VAW/ETHZ, 77, 142 pp.
  • Haeberli, W., Arenson, L.U., Wee, J., Hauck, C., Mölg, N. (2024). Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes. The Cryosphere, 18(4), 1669-1683. https://doi.org/10.5194/tc-18-1669-2024.
  • Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., Mühl, D. (2006). Permafrost creep and rock glacier dynamics. Permafrost and Periglacial Processes, 17(3), 189–214. https://doi.org/10.1002/ppp.561.
  • Haeberli, W., Huder, J., Keusen, H.-R., Pika, J., Röthlisberger, H. (1988). Core drilling through rock-glacier permafrost. In Fifth International Conference on Permafrost, Trondheim, Proceedings, 2, 937-942.
  • Haeberli, W., King, L., Flotron, A. (1979). Surface Movement and Lichen-Cover Studies at the Active Rock Glacier near the Grubengletscher, Wallis, Swiss Alps. Arctic and Alpine Research, Vol. 11(4), 421-441.
  • Heid, T., Kääb, A. (2012). Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sensing of Environment, 118, 339–355. https://doi.org/10.1016/j.rse.2011.11.024.
  • Hendrickx, H., Vivero, S., De Cock, L., De Wit, B., De Maeyer, P., Lambiel, C., Delaloye, R., Nyssen, J., Frankl, A. (2019). The reproducibility of SfM algorithm to produce detailed Digital Surface Models: The example of PhotoScan applied to a high-alpine rock glacier. Remote Sensing Letters, 10, 11–20. https://doi.org/10.1080/2150704X.2018.1519641.
  • Humlum, O. (1988). Rock glacier appearance level and rock glacier initiation line altitude: a methodological approach to the study of rock glaciers. Arctic and Alpine Research, 20(2), 160-178. https://doi.org/10.1080/00040851.1988.12002662.
  • Ikeda, A., Matsuoka, N. (2002). Degradation of talus-derived rock glaciers in the Upper Engadin, Swiss Alps. Permafrost and Periglacial Processes, 13, 145–161. https://doi.org/10.1002/ppp.413.
  • Janke, J. R., Frauenfelder, R. (2008). The relationship between rock glacier and contributing area parameters in the Front Range of Colorado. Journal of Quaternary Science, 32(2), 153–163. https://doi.org/10.1002/jqs.1133.
  • Janke, J.R., Bellisario, A.C., Ferrando, F.A. (2015). Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology, 241, 98-121. https://doi.org/10.1016/j.geomorph.2015.03.034.
  • Jones, D.B., Harrison, S., Anderson, K., Betts, R.A. (2018). Mountain rock glaciers contain globally significant water stores. Scientific Reports, 8(1), 2834. https://doi.org/10.1038/s41598-018-21244-w.
  • Kääb, A. (2013). Rock glaciers and protalus forms. In: The Encyclopedia of Quaternary Science, SA Elias (ed). Elsevier: Amsterdam, 535–541. https://doi.org/10.1016/B978-0-444-53643-3.00104-7.
  • Kaldırım, B. (2023). Ovit Vadisi’nin Glasyal Ve Periglasyal Jeomorfolojisi; Güncel Veri Ve Yöntemler Işığında Bir Değerlendirme. Ankara Üniversitesi, Sosyal Bilimler Enstitüsü, Basılmamış Yüksek Lisans Tezi.
  • Kaneda, H., Chiba, T. (2019). Stereopaired Morphometric Protection Index Red Relief Image Maps (Stereo MPI‐RRIMs): Effective Visualization of High‐Resolution Digital Elevation Models for Interpreting and Mapping Small Tectonic Geomorphic Features. Bulletin of the Seismological Society of America, 109(1), 99–109. https://doi.org/10.1785/0120180166.
  • Kellerer-Pirklbauer, A., Kaufmann, V. (2018). Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria. Science of The Total Environment, 621, 1397-1414. https://doi.org/10.1016/j.scitotenv.2017.10.087.
  • Knight, J., Harrison, S., Jones, D.B. (2019). Rock glaciers and the geomorphological evolution of deglacierizing mountains. Geomorphology, 324, 14–24. https://doi.org/10.1016/j.geomorph.2018.09.020. Krainer, K., He, X. (2006). Flow velocities of active rock glaciers in the Austrian Alps. Geografiska Annaler: Series A, Physical Geography, 88, 267–280. https://doi.org/10.1111/j.0435-3676.2006.00300.x.
  • Krenek, L. (1932). Gletscher im Pontischen Gebirge (Lasistan). Zeitschrift für Gletscherkunde, 20, 129-131, Bildtafel XV u. XVI.
  • Lane, S.N., Westaway, R.M., Hicks, D.M. (2003). Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms, 28, 249–271. https://doi.org/10.1002/esp.483.
  • Leopold, M., Williams, M.W., Caine, N., Völkel, J., Dethier, D. (2011). Internal structure of the Green lake 5 rock glacier, Colorado Front Range, USA. Permafrost and Periglacial Processes, 22(2), 107–119. https://doi.org/10.1002/ppp.706.
  • Liu, L., Millar, C.I., Westfall, R.D., Zebker, H.A. (2013). Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR. Cryosphere 7, 1109–1119. https://doi.org/10.5194/tc-7-1109-2013
  • Löffler, E. (1970). Unterschungen zum eiszeitlichen und rezenten klimagenetischen Formenschatz in den Gebirgen Anatoliens. Heidelberger Geographische Arbeiten, 27, 162 p.
  • Messerli, B., Zurbuchen, M. (1968). Block-gletscher im Weissmies und Aletsch und ihre photogrammetrische Kartierung. Die Alpen, 3, 139–152.
  • Munroe, J.S., Handwerger, A.L. (2024). Contemporary movement of rock glaciers in the La Sal and Uinta Mountains, Utah, USA. Quaternary Science Advances, 14, 100188. https://doi.org/10.1016/j.qsa.2024.100188.
  • Musil, M., Maurer, H., Green, A.G., Horstmeyer, H., Nitsche, F.O., Mühill, D.V., Springman, S. (2002). Shallow seismic surveying of an Alpine rock glacier. Geophysics, 67(6), 1701–1710. https://doi.org/10.1190/1.1527071.
  • Oliva, M., Žebre, M., Guglielmin, M.M., Hughes, P., Çiner, A., Vieria, G., Bodin, X., Andrés, N., Colucci, R.R., García-Hernández, C.A., Mora, C.A., Nofre, J., Palacios, D., Pérez-Alberti, A., Ribolini, A., Ruiz-Fernández, J., Sarıkaya, M.A., Serrano, E., Urdea, P., Valcárcel, M., Woodward, J., Yıldırım, C. (2018). Permafrost conditions in the Mediterranean basin since the Last Glaciation. Earth Science Reviews, 185, 397–436. https://doi.org/10.1016/j.earscirev.2018.06.01.
  • Oruç, M.E., Ulvi, A. (2023). Maden Sahalarındaki Deformasyonların İHA’lar ile İzlenmesi. Türkiye Fotogrametri Dergisi, 5(2), 43-57. https://doi.org/10.53030/tufod.1332958.
  • Pavoni, M., Boaga, J., Wagner, F.M., Bast, A., Phillips, M. (2023). Characterization of rock glaciers environments combining structurally-coupled and petrophysically-coupled joint inversions of electrical resistivity and seismic refraction datasets. Journal of Applied Geophysics, 215, 105097. https://doi.org/10.1016/j.jappgeo.2023.105097.
  • Potter, N. (1972). Ice cored rock glaciers, Galena Creek northern Absoraka Mountains, Wyoming. Geological Society of America Bulletin, 83, 3025-3058. https://doi.org/10.1130/0016-7606(1972)83[3025:IRGGCN]2.0.CO;2.
  • Potter, N., Steig, E.J., Clark, D.H., Speece, M.A., Clark, G.T, Updike, A.B. (1998). Galena Creek rock glacier revisited—New observations on an old controversy. Geografiska Annaler: Series A, Physical Geography, 80, 251–265. https://doi.org/10.1111/j.0435-3676.1998.00041.x.
  • Reber, R., Akçar, N., Tikhomirov, D., Yeşilyurt, S., Vockenhuber, C., Yavuz, V., Ivy-Ochs, S., Schlüchter, C. (2022). LGM Glaciations in the Northeastern Anatolian Mountains: New Insights. Geosciences, 12, 257, 1-22. https://doi.org/10.3390/geosciences12070257.
  • Scapozza, C., Lambiel, C., Bozzini, C., Mari, S., Conedera, M. (2014). Assessing the rock glacier kinematics on three different timescales: A case study from the southern Swiss Alps. Earth Surface Processes and Landforms, 39(15), 2056-2069. https://doi.org/10.1002/esp.3599.
  • Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., Crosta, G.B. (2013). A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology, 186, 136–149. https://doi.org/10.1016/j.geomorph.2012.12.028.
  • Tuncay, A.L. (2024). Aladağlar’daki Kaya Buzullarının Envanteri, Dağılışı Ve Morfolojik Özellikleri (Tez No: 869524) [Yüksek Lisans Tezi, Ankara Üniversitesi] Yök Tez Merkezi.
  • Türk, T., Öcalan, T. (2020). PPK GNSS Sistemine Sahip İnsansız Hava Araçları İle Elde Edilen Fotogrametrik Ürünlerin Doğruluğunun Farklı Yaklaşımlarla İrdelenmesi. Türkiye Fotogrametri Dergisi, 2(1), 22-28. https://dergipark.org.tr/tr/pub/tufod/issue/53476/693407
  • Uysal, M., Toprak, A.S., Polat, N. (2015). DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement 73, 539-543. https://doi.org/10.1016/j.measurement.2015.06.010.
  • Vivero, S., Hendrickx, H., Frankl, A., Delaloye, R., Lambiel, C. (2022). Kinematics and geomorphological changes of a destabilising rock glacier captured from close-range sensing techniques (Tsarmine rock glacier, Western Swiss Alps). Frontiers in Earth Science, 10, 1017949. https://doi.org/10.3389/feart.2022.1017949.
  • Vivero, S., Lambiel, C. (2024). Annual surface elevation changes of rock glaciers and their geomorphological significance: Examples from the Swiss Alps. Geomorphology, 467. https://doi.org/10.1016/j.geomorph.2024.109487.
  • Wagner, T., Brodacz, A., Krainer, K., Winkler, G. (2020). Active rock glaciers as shallow groundwater reservoirs, Austrian Alps. Grundwasser, 25, 215-230. https://doi.org/10.1007/s00767-020-00455-x.
  • Wahrhaftig, C., Cox, A. (1959). Rock glaciers in the Alaska Range. Geological Society of America Bulletin, 70, 383/436. https://doi.org/10.1130/0016-7606(1959)70[383:RGITAR]2.0CO;2.
  • Wayne, W.J. (1981). Ice segregation as an origin for lenses of non-glacial ice in “ice-cemented” rock glaciers. Journal of Glaciology, 27(97), 506–510. https://doi.org/10.3189/S0022143000011564.
  • Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021.
  • Whalley, W.B., Martin, H.E. (1992). Rock glaciers: II models and mechanisms. Progress in Physical Geography, 16(2), 127–186. https://doi.org/10.1177/030913339201600201.
  • Wheaton, J.M., Brasington, J., Darby, S.E., Sear, D.A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, 35, 136–156. https://doi.org/10.1002/esp.1886.
  • White, S.E. (1976). Rock glaciers and block fields, review and new data. Quaternary Research, 6, 77-97. https://doi.org/10.1016/0033-5894(76)90041-7.
  • Yeşilyurt, S., Doğan, U., Akçar, N. (2018). Narlıca Vadisi’nde Geç Kuvaterner buzullaşma izleri, Kavuşşahap Dağları. Türk Coğrafya Dergisi, 70, 99-108. https://doi.org/10.17211/tcd.415232.
  • Yılmaz, E., Yeşilyurt, S. (2023). Yer Sistem Modellerinin Son Buzul Maksimumu İklim Ardgörülerinin Holdridge Biyomları ve Paleobuzul Alanları ile Değerlendirilmesi. Coğrafi Bilimler Dergisi, 21(2), 394-426. https://doi.org/10.33688/aucbd.1290590.

Geomorphology and Kinematic Characteristics of the Derebaşı Rock Glacier, Mt. Kaçkar

Year 2025, Issue: 14, 74 - 96, 15.04.2025
https://doi.org/10.46453/jader.1633480

Abstract

Rock glaciers are significant periglacial landforms that play a crucial role in high mountain environments, acting as indicators of permafrost distribution and climate change impacts. This study investigates the geomorphological characteristics and kinematic behavior of the Derebaşı Rock Glacier (DRG), located in the Eastern Black Sea Mountains, one of the most extensive periglacial regions in Türkiye. Using GNSS-supported UAV photogrammetry, high-resolution Digital Surface Models (DSMs) and orthophotos were generated to analyze the annual movement, surface deformation, and activity status of the rock glacier between 2023 and 2024. The results reveal that the DRG exhibits a complex morphology consisting of active, inactive, and relict sections, shaped by both glacial (ice-core) and periglacial (permafrost) processes. The LB3 is identified as the most active part of the rock glacier, with a maximum annual horizontal movement of 60 cm, while LB1’s front section is classified as relict, characterized by a subdued topography and vegetation cover. The LB1’s mid-section exhibits deep parallel ridge-trough structures, indicative of permafrost creep, whereas LB3’s convex shape and smooth surface suggest an ice-core presence. The kinematic analysis indicates heterogeneous movement patterns influenced by topographic constraints and debris supply, with compression-induced flow structures in LB1 and tensile deformation patterns in LB3. The study also estimates that the current lower boundary of mountain permafrost in the region is approximately 2900 m. While the detected movements suggest possible permafrost instability, the single-year observation period limits conclusive assessments of long-term trends. This research provides the first high-resolution kinematic assessment of the Derebaşı Rock Glacier, offering essential insights into its geomorphological evolution and climate sensitivity in Türkiye. Future studies incorporating long-term monitoring programs, geophysical surveys, and borehole investigations will be essential to better understand the subsurface ice content, permafrost stability, and the long-term response of rock glaciers to climate change.

Project Number

122Y373

References

  • Akçar, N., Schlüchter, C. (2005). Paleoglaciation in Anatolia: a schematic review and first results. Eiszeitalter und Gegenwart, 55, 102–121. https://boris.unibe.ch/47000/1/Akcar_and_Schluchter_2005.pdf
  • Akçar, N., Yavuz, V. S., Ivy-Ochs, S., Kubik, P. W., Vardar, M., Schlüchter, C. (2007). Paleoglacial records from Kavron Valley, NE Turkey: Field and cosmogenic exposure dating evidence. Quaternary International, 164-165, 170-183. https://doi.org/10.1016/j.quaint.2006.12.020
  • Alcalá-Reygosa, J. (2019). Rock glaciers of the mountains of Mexico; a review of current knowledge and paleoclimatic implications. Journal of South American Earth Sciences, 96, 102321.https://doi.org/10.1016/j.jsames.2019.102321.
  • Baroni, C., Carton, A., Seppi, R. (2004). Distribution and behaviour of rock glaciers in the Adamello–Presanella Massif (Italian Alps). Permafr. Periglac. Process. 15 (3), 243–259. https://doi.org/10.1002/ppp.497
  • Barsch, D. (1996). Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments. Springer-Verlag, Berlin, Germany, pp. 331. ISBN: 3-540-60742-0.
  • Barsch, D. (1978). Active rock glaciers as indicators for discontingnuous alpine permafrost. An example from the Swiss Alps. Third International Conference on Permafrost, Edmonton, Alberta, Canada, I, 348-353.
  • Barsch, D. (1988). Rock glaciers, In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 69-90.
  • Barsch, D., King, L. (1975). An attempt to date fossil rock glaciers in Grison, Swiss Alps. Questiones Geographicae (Poznan), 2, 5-14.
  • Benedict, J.B., Benedict, R.J., Sanville, D. (1986). Arapaho rock glacier, Front Range, Colorado, USA: A 25-Year Resurvey. Arctic and Alpine Research, 18(3), 349-352.
  • Buckel, J., Reinosch, E., Voigtländer, A., Dietze, M., Bücker, M., Krebs, N., Schroeckh, R., Mäusbacher, R., Hördt, A. (2022). Rock glacier characteristics under semiarid climate conditions in the Western Nyainqêntanglha Range, Tibetan Plateau. Journal of Geophysical Research: Earth Surface, 127(1), e2021JF006256. https://doi.org/10.1029/2021jf006256.
  • Chiba, T., Kaneta, S.I., Suzuki, Y. (2008). Red relief image map: New visualization method for three dimensional data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XXXVII. Part B2. Beijing. https://www.isprs.org/proceedings/XXXVII/congress/2_pdf/11_ThS-6/08.pdf
  • Chu, H.J., Chen, Y.C., Ali, M.Z., Hofle, B. (2019). Multi-Parameter Relief Map from High-Resolution DEMs: A Case Study of Mudstone Badland. International Journal of Environmental Research and Public Health, 16(7), 1109. https://doi.org/10.3390/ijerph16071109.
  • Çalışkan, O., Gürgen, G., Yılmaz, E., Yeşilyurt, S. (2012). Bolkar Dağları Kuzeydoğusunun Glasyal Morfolojisi ve Döküntüyle Örtülü Buzullar. Uluslararası İnsani Bilimler Dergisi, 9(1), 889-910.https://arastirmax.com/en/system/files/dergiler/161047/makaleler/9/1/arastrmx_161047_9_pp_890-911.pdf
  • Dede, V. (2023). Karçal Dağları’nın Buzul Jeomorfolojisi ve 36Cl Kozmojenik Jeokronolojisi. 1. Baskı, 200 s., Kriter Yayınevi, No: 45353, ISBN: 978-625-6894-46-4.
  • Dede, V., Çiçek, İ., Uncu, L. (2015). Karçal Dağları’nda Kaya Buzulu Oluşumları. Hacettepe Üniversitesi, Yerbilimleri Dergisi, 36(2), 61-80. https://doi.org/10.17824/yrb.90910.
  • Dede, V., Çiçek, İ., Sarıkaya, M.A., Çiner, A., Uncu, L. (2017). First cosmogenic geochronology from the lesser Caucasus: late pleistocene Pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quat Sci Rev 164, 54–67. https://doi.org/10.1016/j.quascirev.2017.03.025
  • Degenhardt, J.J. (2009). Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys. Geomorphology 109(3-4): 94-107. https://doi.org/10.1016/j.geomorph.2009.02.020
  • Delaloye, R., Lambiel, C., Gartner-Roer, I. (2010). Overview of Rock Glacier Kinematics Research in the Swiss Alps: Geographica Helvetica, vol. 65, pp. 135–145. https://doi.org/10.5194/gh-65-135-2010, 2010
  • Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M., Gachet, S. (2013). Rapidly moving rock glaciers in Mattertal. Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 21–31. https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/Papers/Delaloye_et_al_(2013)_SSGm_Rapidly_moving_rock_glaciers.pdf
  • Doğu, A.F., Somuncu, M., Çiçek, İ., Tunçel, H., Gürgen, G. (1993). Kaçkar Dağı‘nda buzul şekilleri, yaylalar ve turizm. Ankara Üniversitesi, Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 2, 157-184.
  • Erinç, S. (1949). Eiszeitliche Formen und gegenwartige Verletscherung im nordostanatölischen Randgebirge. Geologische Rundschau, 37, 75-83.
  • Giardino, J.R., Regmi, N.R., Vitek, J.D. (2011). Rock Glaciers. In: Encyclopedia of Snow, Ice and Glaciers. Editors: Singh, V.J., Singh, P., Haritashya, U.K., Springer, Netherlands. https://doi.org/10.1007/978-90-481-2642-2_453
  • Giardino, J.R., Vitek, J.D. (1988). The significance of rock glaciers in the glacial–periglacial landscape continuum. J. Quat. Sci. 3, 97–103.
  • Gürgen, G. (2019). Çatakkaya Döküntü Örtülü Buzulu (Tatos Dağları). Coğrafi Bilimler Dergisi, 17(1), 217-236. https://doi.org/10.33688/aucbd.536616.
  • Gürgen, G., Çalışkan, O., Yılmaz, E., Yeşilyurt, S. (2010). Yedigöller Platosu ve Emli Vadisinde (Aladağlar) Döküntü Örtülü Buzullar. e Journal of New Science Academy, 5(2), 98-116.
  • Gürgen, G., Yeşilyurt, S. (2012). Karçal Dağı Buzulları (Artvin). Coğrafi Bilimler Dergisi, 10 (1), 91-104. https://dergipark.org.tr/tr/pub/aucbd/issue/44469/551196
  • Güven, İ.H. (1998). 1/100.000 ölçekli açınsama nitelikli Türkiye Jeoloji Haritaları, No. 58, Trabzon C29 ve D29 paftaları: Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara.
  • Haeberli, W. (1985). Creep of mountain permafrost: internal structure and flow of Alpine rock glaciers. Mitteilung VAW/ETHZ, 77, 142 pp.
  • Haeberli, W., Arenson, L.U., Wee, J., Hauck, C., Mölg, N. (2024). Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes. The Cryosphere, 18(4), 1669-1683. https://doi.org/10.5194/tc-18-1669-2024.
  • Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., Mühl, D. (2006). Permafrost creep and rock glacier dynamics. Permafrost and Periglacial Processes, 17(3), 189–214. https://doi.org/10.1002/ppp.561.
  • Haeberli, W., Huder, J., Keusen, H.-R., Pika, J., Röthlisberger, H. (1988). Core drilling through rock-glacier permafrost. In Fifth International Conference on Permafrost, Trondheim, Proceedings, 2, 937-942.
  • Haeberli, W., King, L., Flotron, A. (1979). Surface Movement and Lichen-Cover Studies at the Active Rock Glacier near the Grubengletscher, Wallis, Swiss Alps. Arctic and Alpine Research, Vol. 11(4), 421-441.
  • Heid, T., Kääb, A. (2012). Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sensing of Environment, 118, 339–355. https://doi.org/10.1016/j.rse.2011.11.024.
  • Hendrickx, H., Vivero, S., De Cock, L., De Wit, B., De Maeyer, P., Lambiel, C., Delaloye, R., Nyssen, J., Frankl, A. (2019). The reproducibility of SfM algorithm to produce detailed Digital Surface Models: The example of PhotoScan applied to a high-alpine rock glacier. Remote Sensing Letters, 10, 11–20. https://doi.org/10.1080/2150704X.2018.1519641.
  • Humlum, O. (1988). Rock glacier appearance level and rock glacier initiation line altitude: a methodological approach to the study of rock glaciers. Arctic and Alpine Research, 20(2), 160-178. https://doi.org/10.1080/00040851.1988.12002662.
  • Ikeda, A., Matsuoka, N. (2002). Degradation of talus-derived rock glaciers in the Upper Engadin, Swiss Alps. Permafrost and Periglacial Processes, 13, 145–161. https://doi.org/10.1002/ppp.413.
  • Janke, J. R., Frauenfelder, R. (2008). The relationship between rock glacier and contributing area parameters in the Front Range of Colorado. Journal of Quaternary Science, 32(2), 153–163. https://doi.org/10.1002/jqs.1133.
  • Janke, J.R., Bellisario, A.C., Ferrando, F.A. (2015). Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology, 241, 98-121. https://doi.org/10.1016/j.geomorph.2015.03.034.
  • Jones, D.B., Harrison, S., Anderson, K., Betts, R.A. (2018). Mountain rock glaciers contain globally significant water stores. Scientific Reports, 8(1), 2834. https://doi.org/10.1038/s41598-018-21244-w.
  • Kääb, A. (2013). Rock glaciers and protalus forms. In: The Encyclopedia of Quaternary Science, SA Elias (ed). Elsevier: Amsterdam, 535–541. https://doi.org/10.1016/B978-0-444-53643-3.00104-7.
  • Kaldırım, B. (2023). Ovit Vadisi’nin Glasyal Ve Periglasyal Jeomorfolojisi; Güncel Veri Ve Yöntemler Işığında Bir Değerlendirme. Ankara Üniversitesi, Sosyal Bilimler Enstitüsü, Basılmamış Yüksek Lisans Tezi.
  • Kaneda, H., Chiba, T. (2019). Stereopaired Morphometric Protection Index Red Relief Image Maps (Stereo MPI‐RRIMs): Effective Visualization of High‐Resolution Digital Elevation Models for Interpreting and Mapping Small Tectonic Geomorphic Features. Bulletin of the Seismological Society of America, 109(1), 99–109. https://doi.org/10.1785/0120180166.
  • Kellerer-Pirklbauer, A., Kaufmann, V. (2018). Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria. Science of The Total Environment, 621, 1397-1414. https://doi.org/10.1016/j.scitotenv.2017.10.087.
  • Knight, J., Harrison, S., Jones, D.B. (2019). Rock glaciers and the geomorphological evolution of deglacierizing mountains. Geomorphology, 324, 14–24. https://doi.org/10.1016/j.geomorph.2018.09.020. Krainer, K., He, X. (2006). Flow velocities of active rock glaciers in the Austrian Alps. Geografiska Annaler: Series A, Physical Geography, 88, 267–280. https://doi.org/10.1111/j.0435-3676.2006.00300.x.
  • Krenek, L. (1932). Gletscher im Pontischen Gebirge (Lasistan). Zeitschrift für Gletscherkunde, 20, 129-131, Bildtafel XV u. XVI.
  • Lane, S.N., Westaway, R.M., Hicks, D.M. (2003). Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms, 28, 249–271. https://doi.org/10.1002/esp.483.
  • Leopold, M., Williams, M.W., Caine, N., Völkel, J., Dethier, D. (2011). Internal structure of the Green lake 5 rock glacier, Colorado Front Range, USA. Permafrost and Periglacial Processes, 22(2), 107–119. https://doi.org/10.1002/ppp.706.
  • Liu, L., Millar, C.I., Westfall, R.D., Zebker, H.A. (2013). Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR. Cryosphere 7, 1109–1119. https://doi.org/10.5194/tc-7-1109-2013
  • Löffler, E. (1970). Unterschungen zum eiszeitlichen und rezenten klimagenetischen Formenschatz in den Gebirgen Anatoliens. Heidelberger Geographische Arbeiten, 27, 162 p.
  • Messerli, B., Zurbuchen, M. (1968). Block-gletscher im Weissmies und Aletsch und ihre photogrammetrische Kartierung. Die Alpen, 3, 139–152.
  • Munroe, J.S., Handwerger, A.L. (2024). Contemporary movement of rock glaciers in the La Sal and Uinta Mountains, Utah, USA. Quaternary Science Advances, 14, 100188. https://doi.org/10.1016/j.qsa.2024.100188.
  • Musil, M., Maurer, H., Green, A.G., Horstmeyer, H., Nitsche, F.O., Mühill, D.V., Springman, S. (2002). Shallow seismic surveying of an Alpine rock glacier. Geophysics, 67(6), 1701–1710. https://doi.org/10.1190/1.1527071.
  • Oliva, M., Žebre, M., Guglielmin, M.M., Hughes, P., Çiner, A., Vieria, G., Bodin, X., Andrés, N., Colucci, R.R., García-Hernández, C.A., Mora, C.A., Nofre, J., Palacios, D., Pérez-Alberti, A., Ribolini, A., Ruiz-Fernández, J., Sarıkaya, M.A., Serrano, E., Urdea, P., Valcárcel, M., Woodward, J., Yıldırım, C. (2018). Permafrost conditions in the Mediterranean basin since the Last Glaciation. Earth Science Reviews, 185, 397–436. https://doi.org/10.1016/j.earscirev.2018.06.01.
  • Oruç, M.E., Ulvi, A. (2023). Maden Sahalarındaki Deformasyonların İHA’lar ile İzlenmesi. Türkiye Fotogrametri Dergisi, 5(2), 43-57. https://doi.org/10.53030/tufod.1332958.
  • Pavoni, M., Boaga, J., Wagner, F.M., Bast, A., Phillips, M. (2023). Characterization of rock glaciers environments combining structurally-coupled and petrophysically-coupled joint inversions of electrical resistivity and seismic refraction datasets. Journal of Applied Geophysics, 215, 105097. https://doi.org/10.1016/j.jappgeo.2023.105097.
  • Potter, N. (1972). Ice cored rock glaciers, Galena Creek northern Absoraka Mountains, Wyoming. Geological Society of America Bulletin, 83, 3025-3058. https://doi.org/10.1130/0016-7606(1972)83[3025:IRGGCN]2.0.CO;2.
  • Potter, N., Steig, E.J., Clark, D.H., Speece, M.A., Clark, G.T, Updike, A.B. (1998). Galena Creek rock glacier revisited—New observations on an old controversy. Geografiska Annaler: Series A, Physical Geography, 80, 251–265. https://doi.org/10.1111/j.0435-3676.1998.00041.x.
  • Reber, R., Akçar, N., Tikhomirov, D., Yeşilyurt, S., Vockenhuber, C., Yavuz, V., Ivy-Ochs, S., Schlüchter, C. (2022). LGM Glaciations in the Northeastern Anatolian Mountains: New Insights. Geosciences, 12, 257, 1-22. https://doi.org/10.3390/geosciences12070257.
  • Scapozza, C., Lambiel, C., Bozzini, C., Mari, S., Conedera, M. (2014). Assessing the rock glacier kinematics on three different timescales: A case study from the southern Swiss Alps. Earth Surface Processes and Landforms, 39(15), 2056-2069. https://doi.org/10.1002/esp.3599.
  • Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., Crosta, G.B. (2013). A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology, 186, 136–149. https://doi.org/10.1016/j.geomorph.2012.12.028.
  • Tuncay, A.L. (2024). Aladağlar’daki Kaya Buzullarının Envanteri, Dağılışı Ve Morfolojik Özellikleri (Tez No: 869524) [Yüksek Lisans Tezi, Ankara Üniversitesi] Yök Tez Merkezi.
  • Türk, T., Öcalan, T. (2020). PPK GNSS Sistemine Sahip İnsansız Hava Araçları İle Elde Edilen Fotogrametrik Ürünlerin Doğruluğunun Farklı Yaklaşımlarla İrdelenmesi. Türkiye Fotogrametri Dergisi, 2(1), 22-28. https://dergipark.org.tr/tr/pub/tufod/issue/53476/693407
  • Uysal, M., Toprak, A.S., Polat, N. (2015). DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement 73, 539-543. https://doi.org/10.1016/j.measurement.2015.06.010.
  • Vivero, S., Hendrickx, H., Frankl, A., Delaloye, R., Lambiel, C. (2022). Kinematics and geomorphological changes of a destabilising rock glacier captured from close-range sensing techniques (Tsarmine rock glacier, Western Swiss Alps). Frontiers in Earth Science, 10, 1017949. https://doi.org/10.3389/feart.2022.1017949.
  • Vivero, S., Lambiel, C. (2024). Annual surface elevation changes of rock glaciers and their geomorphological significance: Examples from the Swiss Alps. Geomorphology, 467. https://doi.org/10.1016/j.geomorph.2024.109487.
  • Wagner, T., Brodacz, A., Krainer, K., Winkler, G. (2020). Active rock glaciers as shallow groundwater reservoirs, Austrian Alps. Grundwasser, 25, 215-230. https://doi.org/10.1007/s00767-020-00455-x.
  • Wahrhaftig, C., Cox, A. (1959). Rock glaciers in the Alaska Range. Geological Society of America Bulletin, 70, 383/436. https://doi.org/10.1130/0016-7606(1959)70[383:RGITAR]2.0CO;2.
  • Wayne, W.J. (1981). Ice segregation as an origin for lenses of non-glacial ice in “ice-cemented” rock glaciers. Journal of Glaciology, 27(97), 506–510. https://doi.org/10.3189/S0022143000011564.
  • Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021.
  • Whalley, W.B., Martin, H.E. (1992). Rock glaciers: II models and mechanisms. Progress in Physical Geography, 16(2), 127–186. https://doi.org/10.1177/030913339201600201.
  • Wheaton, J.M., Brasington, J., Darby, S.E., Sear, D.A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, 35, 136–156. https://doi.org/10.1002/esp.1886.
  • White, S.E. (1976). Rock glaciers and block fields, review and new data. Quaternary Research, 6, 77-97. https://doi.org/10.1016/0033-5894(76)90041-7.
  • Yeşilyurt, S., Doğan, U., Akçar, N. (2018). Narlıca Vadisi’nde Geç Kuvaterner buzullaşma izleri, Kavuşşahap Dağları. Türk Coğrafya Dergisi, 70, 99-108. https://doi.org/10.17211/tcd.415232.
  • Yılmaz, E., Yeşilyurt, S. (2023). Yer Sistem Modellerinin Son Buzul Maksimumu İklim Ardgörülerinin Holdridge Biyomları ve Paleobuzul Alanları ile Değerlendirilmesi. Coğrafi Bilimler Dergisi, 21(2), 394-426. https://doi.org/10.33688/aucbd.1290590.
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Glaciology
Journal Section Articles
Authors

Serdar Yeşilyurt 0000-0002-2896-9644

Project Number 122Y373
Early Pub Date February 17, 2025
Publication Date April 15, 2025
Submission Date February 4, 2025
Acceptance Date February 11, 2025
Published in Issue Year 2025 Issue: 14

Cite

APA Yeşilyurt, S. (2025). Derebaşı (Kaçkar Dağı) Kaya Buzulunun Jeomorfolojisi Ve Kinematik Özellikleri. Jeomorfolojik Araştırmalar Dergisi(14), 74-96. https://doi.org/10.46453/jader.1633480

Journal of Geomorphological Researches  ( JADER )

Turkish Society for Geomorphology ( www.jd.org.tr )