Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 559 - 569, 26.06.2025
https://doi.org/10.31015/2025.2.29

Abstract

References

  • Abbas, H. S., Abou Baker, D. H., & Ahmed, E. A. (2021). Cytotoxicity and antimicrobial efficiency of selenium nanoparticles biosynthesized by Spirulina platensis. Archives of Microbiology, 203(2), 523-532. https://doi.org/10.1007/s00203-020-02042-3
  • Akpomie, K. G., & Conradie, J. (2021). Biosorption and regeneration potentials of magnetite nanoparticle loaded Solanum tuberosum peel for celestine blue dye. International Journal of Phytoremediation, 23(4), 347-361. https://doi.org/10.1080/15226514.2020.1814198
  • Ansari, J. A., Malik, J. A., Ahmed, S., Manzoor, M., Ahemad, N., & Anwar, S. (2024). Recent advances in the therapeutic applications of selenium nanoparticles. Molecular biology reports, 51(1), 688. https://doi.org/10.1007/s11033-024-09598-z
  • Baran, M. F., Keskin, C., Baran, A., Kurt, K., İpek, P., Eftekhari, A., ... & Cho, W. C. (2024). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L.(Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery, 14(19), 23623-23633. http://dx.doi.org/10.1007/s13399-023-04366-8
  • Baskar, G., Lalitha, K., & Bikku George, G. (2019). Synthesis, characterization and anticancer activity of selenium nanobiocomposite of L-asparaginase. Bulletin of Materials Science, 42, 1-7. https://doi.org/10.1016/j.msec.2018.08.051
  • Boroumand, S., Safari, M., Shaabani, E., Shirzad, M., & Faridi-Majidi, R. (2019). Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Materials Research Express, 6(8), 0850d8. https://ui.adsabs.harvard.edu/link_gateway/2019MRE.....6h50d8B/doi:10.1088/2053-1591/ab2558
  • Burlec, A. F., Corciova, A., Boev, M., Batir-Marin, D., Mircea, C., Cioanca, O., ... & Hancianu, M. (2023). Current overview of metal nanoparticles’ synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticles. Pharmaceuticals, 16(10), 1410. https://doi.org/10.3390/ph16101410
  • Chaudhary, S., Umar, A., & Mehta, S. K. (2016). Selenium nanomaterials: an overview of recent developments in synthesis, properties and potential applications. Progress in Materials Science, 83, 270-329. https://doi.org/10.1016/j.pmatsci.2016.07.001
  • Chen, Y., Liu, W., Liu, Y., Li, S., Liu, H., Li, S., ... & Chen, T. (2025). Synergistic convergence of selenium and nanotechnology in dermatological therapeutics: Mechanistic insights and clinical prospects. Chinese Chemical Letters, 111298. https://doi.org/10.1016/j.cclet.2025.111298
  • Chen, T., & Wong, Y. S. (2009). Selenocystine induces reactive oxygen species–mediated apoptosis in human cancer cells. Biomedicine & Pharmacotherapy, 63(2), 105-113. https://doi.org/10.1016/j.biopha.2008.03.009
  • Chukwuemeka-Okorie, H. O., Ekemezie, P. N., Akpomie, K. G., & Olikagu, C. S. (2018). Calcined corncob-kaolinite Combo as new sorbent for sequestration of toxic metal ions from polluted aqua media and desorption. Frontiers in chemistry, 6, 273. https://doi.org/10.3389/fchem.2018.00273
  • Elahian, F., Reiisi, S., Shahidi, A., & Mirzaei, S. A. (2017). High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine: Nanotechnology, Biology and Medicine, 13(3), 853-861. https://doi.org/10.1016/j.nano.2016.10.009
  • Ezekoye, O. M., Akpomie, K. G., Eze, S. I., Chukwujindu, C. N., Ani, J. U., & Ujam, O. T. (2020). Biosorptive interaction of alkaline modified Dialium guineense seed powders with ciprofloxacin in contaminated solution: central composite, kinetics, isotherm, thermodynamics, and desorption. International journal of phytoremediation, 22(10), 1028-1037. https://doi.org/10.1080/15226514.2020.1725869
  • He, L., Zhang, L., Peng, Y., & He, Z. (2025). Selenium in cancer management: exploring the therapeutic potential. Frontiers in Oncology, 14, 1490740. https://doi.org/10.3389/fonc.2024.1490740
  • Huang, G., Liu, Z., He, L., Luk, K. H., Cheung, S. T., Wong, K. H., & Chen, T. (2018). Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti-colorectal cancer activity. Biomaterials science, 6(9), 2508-2517. http://dx.doi.org/10.1039/C8BM00670A
  • İpek, P., Baran, A., Hatipoğlu, A., & Baran, M. F. (2024). Cytotoxic potential of selenium nanoparticles (SeNPs) derived from leaf extract of Mentha longifolia L. International Journal of Agriculture Environment and Food Sciences, 8(1), 169-175. https://doi.org/10.31015/jaefs.2024.1.17
  • Jimenez-Champi, D., Romero-Orejon, F. L., Moran-Reyes, A., Muñoz, A. M., & Ramos-Escudero, F. (2023). Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review. Cyta-journal of Food, 21(1), 418-432. https://doi.org/10.1080/19476337.2023.2213746
  • Khiralla, G. M., & El-Deeb, B. A. (2015). Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT-Food Science and Technology, 63(2), 1001-1007. https://doi.org/10.1016/j.lwt.2015.03.086
  • Kowalczewski, P. Ł., Olejnik, A., Świtek, S., Bzducha-Wróbel, A., Kubiak, P., Kujawska, M., & Lewandowicz, G. (2022). Bioactive compounds of potato (Solanum tuberosum L.) juice: From industry waste to food and medical applications. Critical Reviews in Plant Sciences, 41(1), 52-89. https://doi.org/10.1080/07352689.2022.2057749
  • Kumar, A., & Prasad, K. S. (2021). Role of nano-selenium in health and environment. Journal of Biotechnology, 325, 152-163. https://doi.org/10.1016/j.jbiotec.2020.11.004
  • Lin, W., Zhang, J., Xu, J. F., & Pi, J. (2021). The advancing of selenium nanoparticles against infectious diseases. Frontiers in Pharmacology, 12, 682284. https://doi.org/10.3389/fphar.2021.682284
  • Liu, W., Li, X., Wong, Y. S., Zheng, W., Zhang, Y., Cao, W., & Chen, T. (2012). Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS nano, 6(8), 6578-6591. https://doi.org/10.1021/nn202452c
  • Medina Cruz, D., Mi, G., & Webster, T. J. (2018). Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A, 106(5), 1400-1412. https://doi.org/10.1002/jbm.a.36347
  • Menon, S., & Shanmugam, V. (2020). Cytotoxicity analysis of biosynthesized selenium nanoparticles towards A549 lung cancer cell line. Journal of Inorganic and Organometallic Polymers and Materials, 30(5), 1852-1864. https://link.springer.com/article/10.1007/s10904-019-01409-4
  • Menon, S., Ks, S. D., Santhiya, R., Rajeshkumar, S., & Kumar, V. (2018). Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids and Surfaces B: Biointerfaces, 170, 280-292. https://doi.org/10.1016/j.colsurfb.2018.06.006
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4.
  • Park, K. C., Choi, J., Choi, S., Lee, G., An, H. J., Yun, H., & Lee, S. (2025). Therapeutic potential of Polydopamine-Coated selenium nanoparticles in Osteoarthritis treatment. International Journal of Pharmaceutics, 675, 125568. https://doi.org/10.1007/s11033-024-09598-z
  • Rajasekar, S., & Kuppusamy, S. (2021). Eco-friendly formulation of selenium nanoparticles and its functional characterization against breast cancer and normal cells. Journal of Cluster Science, 32(4), 907-915. https://doi.org/10.1007/s10876-020-01856-x
  • Ramamurthy, C. H., Sampath, K. S., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and biosystems engineering, 36, 1131-1139. https://doi.org/10.1007/s00449-012-0867-1
  • Rasouli, M. (2019). Biosynthesis of selenium nanoparticles using yeast Nematospora coryli and examination of their anti‐candida and anti‐oxidant activities. IET nanobiotechnology, 13(2), 214-218. https://doi.org/10.1049/iet-nbt.2018.5187
  • Ren, Y., Zhao, T., Mao, G., Zhang, M., Li, F., Zou, Y., ... & Wu, X. (2013). Antitumor activity of hyaluronic acid–selenium nanoparticles in Heps tumor mice models. International journal of biological macromolecules, 57, 57-62. https://doi.org/10.1016/j.ijbiomac.2013.03.014
  • Roy, N., Nivedya, T., Paira, P., & Chakrabarty, R. (2025). Selenium-based nanomaterials: green and conventional synthesis methods, applications, and advances in dye degradation. RSC advances, 15(4), 3008-3025. https://doi.org/10.1039/D4RA07604D
  • Safaei, M., Mozaffari, H. R., Moradpoor, H., Imani, M. M., Sharifi, R., & Golshah, A. (2022). Optimization of green synthesis of selenium nanoparticles and evaluation of their antifungal activity against oral Candida albicans infection. Advances in Materials Science and Engineering, 2022(1), 1376998. https://doi.org/10.1155/2022/1376998
  • Sonkusre, P., & Cameotra, S. S. (2017). Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. Journal of nanobiotechnology, 15, 1-12. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-017-0276-3
  • Tran, P. A., O’Brien-Simpson, N., Reynolds, E. C., Pantarat, N., Biswas, D. P., & O’Connor, A. J. (2015). Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli. Nanotechnology, 27(4), 045101. https://doi.org/10.1088/0957-4484/27/4/045101
  • Trinh, V. T., Nguyen, T. M. P., Van, H. T., Hoang, L. P., Nguyen, T. V., Ha, L. T., ... & Nguyen, X. C. (2020). Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue. Scientific reports, 10(1), 3634. https://doi.org/10.1038/s41598-020-60542-0
  • Truong, L. B., Medina-Cruz, D., Mostafavi, E., & Rabiee, N. (2021). Selenium nanomaterials to combat antimicrobial resistance. Molecules, 26(12), 3611. https://doi.org/10.3390/molecules26123611
  • Toubhans, B. (2020). Bio-Geochemistry of ovarian cancer: Role of selenium nanoparticles in treatment and copper isotopes in detection of ovarian cancer (Doctoral dissertation, Université Grenoble Alpes [2020-....]; University of Swansea (Swansea (GB))).
  • Ullah, A., Yin, X., Wang, F., Xu, B., Mirani, Z. A., Xu, B., ... & Naveed, M. (2021). Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules, 26(18), 5559. https://doi.org/10.3390/molecules26185559
  • Vahdati, M., & Tohidi Moghadam, T. (2020). Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Scientific reports, 10(1), 510. https://doi.org/10.1038/s41598-019-57333-7
  • Xia, Y., Sun, M., Huang, H., & Jin, W. L. (2024). Drug repurposing for cancer therapy. Signal transduction and targeted therapy, 9(1), 92. https://doi.org/10.1038/s41392-024-01808-1
  • Xiao, X., Deng, H., Lin, X., Ali, A. S. M., Viscardi, A., Guo, Z., ... & Han, J. (2023). Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chemico-biological interactions, 378, 110483. https://doi.org/10.1016/j.cbi.2023.110483
  • Zambonino, M. C., Quizhpe, E. M., Jaramillo, F. E., Rahman, A., Santiago Vispo, N., Jeffryes, C., & Dahoumane, S. A. (2021). Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. International journal of molecular sciences, 22(3), 989. https://doi.org/10.3

Cytotoxic and antimicrobial analysis of biosynthesized selenium nanoparticles from Solanum tuberosum peels

Year 2025, Volume: 9 Issue: 2, 559 - 569, 26.06.2025
https://doi.org/10.31015/2025.2.29

Abstract

In recent years, interest in the eco-friendly manufacturing of metal nanoparticles from plant extracts has surged. Nonetheless, no research has examined the combined antibacterial and anticancer properties of SeNPs synthesized with Solanum tuberosum (S. tuberosum) extract. This study involved the synthesis of selenium nanoparticles (ST-SeNPs) utilizing phytochemicals with reducing and capturing properties derived from the aqueous extract of S. tuberosum shell through a green synthesis approach. To determine the unique characteristics of ST-SeNPs nanoparticles, a variety of techniques were used, including scanning electron microscopy (SEM), zeta potential analysis, transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and energy dispersive X-ray spectrometry (EDX). The optical characteristics of ST-SeNPs were validated using UV-Vis measurement, revealing the peak absorbance at 350 nm. FTIR examination verified the presence of functional groups on the surface of the produced ST-SeNPs nanoparticles. Upon examination of the SEM results, it was concluded that the synthesized SeNPs exhibited uniform distribution and possessed a round morphology. The anticancer efficacy of the produced nanoparticles on the A549 lung cancer cell line and OVCAR-3 ovarian cancer cell line after 24 and 48 hours of exposure was assessed using the MTT test. It was established that elevated concentration inhibited cell growth. The inhibitory efficacy of SeNPs against the proliferation of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans) was assessed using the disk diffusion agar technique. The evaluated SeNPs exhibited antibacterial efficacy against bacterial and yeast cells. The results indicate that ST-SeNPs produced via green synthesis can serve as anticancer and antibacterial agents.

Supporting Institution

Our study was supported by Mardin Artuklu University Scientific Research Projects Coordination, project number MAÜ.BAP.24.LEE.059.

Thanks

I would like to thank Mardin Artuklu University Scientific Research Projects Coordination for supporting our work and my co-author friends for their contributions.

References

  • Abbas, H. S., Abou Baker, D. H., & Ahmed, E. A. (2021). Cytotoxicity and antimicrobial efficiency of selenium nanoparticles biosynthesized by Spirulina platensis. Archives of Microbiology, 203(2), 523-532. https://doi.org/10.1007/s00203-020-02042-3
  • Akpomie, K. G., & Conradie, J. (2021). Biosorption and regeneration potentials of magnetite nanoparticle loaded Solanum tuberosum peel for celestine blue dye. International Journal of Phytoremediation, 23(4), 347-361. https://doi.org/10.1080/15226514.2020.1814198
  • Ansari, J. A., Malik, J. A., Ahmed, S., Manzoor, M., Ahemad, N., & Anwar, S. (2024). Recent advances in the therapeutic applications of selenium nanoparticles. Molecular biology reports, 51(1), 688. https://doi.org/10.1007/s11033-024-09598-z
  • Baran, M. F., Keskin, C., Baran, A., Kurt, K., İpek, P., Eftekhari, A., ... & Cho, W. C. (2024). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L.(Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery, 14(19), 23623-23633. http://dx.doi.org/10.1007/s13399-023-04366-8
  • Baskar, G., Lalitha, K., & Bikku George, G. (2019). Synthesis, characterization and anticancer activity of selenium nanobiocomposite of L-asparaginase. Bulletin of Materials Science, 42, 1-7. https://doi.org/10.1016/j.msec.2018.08.051
  • Boroumand, S., Safari, M., Shaabani, E., Shirzad, M., & Faridi-Majidi, R. (2019). Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Materials Research Express, 6(8), 0850d8. https://ui.adsabs.harvard.edu/link_gateway/2019MRE.....6h50d8B/doi:10.1088/2053-1591/ab2558
  • Burlec, A. F., Corciova, A., Boev, M., Batir-Marin, D., Mircea, C., Cioanca, O., ... & Hancianu, M. (2023). Current overview of metal nanoparticles’ synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticles. Pharmaceuticals, 16(10), 1410. https://doi.org/10.3390/ph16101410
  • Chaudhary, S., Umar, A., & Mehta, S. K. (2016). Selenium nanomaterials: an overview of recent developments in synthesis, properties and potential applications. Progress in Materials Science, 83, 270-329. https://doi.org/10.1016/j.pmatsci.2016.07.001
  • Chen, Y., Liu, W., Liu, Y., Li, S., Liu, H., Li, S., ... & Chen, T. (2025). Synergistic convergence of selenium and nanotechnology in dermatological therapeutics: Mechanistic insights and clinical prospects. Chinese Chemical Letters, 111298. https://doi.org/10.1016/j.cclet.2025.111298
  • Chen, T., & Wong, Y. S. (2009). Selenocystine induces reactive oxygen species–mediated apoptosis in human cancer cells. Biomedicine & Pharmacotherapy, 63(2), 105-113. https://doi.org/10.1016/j.biopha.2008.03.009
  • Chukwuemeka-Okorie, H. O., Ekemezie, P. N., Akpomie, K. G., & Olikagu, C. S. (2018). Calcined corncob-kaolinite Combo as new sorbent for sequestration of toxic metal ions from polluted aqua media and desorption. Frontiers in chemistry, 6, 273. https://doi.org/10.3389/fchem.2018.00273
  • Elahian, F., Reiisi, S., Shahidi, A., & Mirzaei, S. A. (2017). High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomedicine: Nanotechnology, Biology and Medicine, 13(3), 853-861. https://doi.org/10.1016/j.nano.2016.10.009
  • Ezekoye, O. M., Akpomie, K. G., Eze, S. I., Chukwujindu, C. N., Ani, J. U., & Ujam, O. T. (2020). Biosorptive interaction of alkaline modified Dialium guineense seed powders with ciprofloxacin in contaminated solution: central composite, kinetics, isotherm, thermodynamics, and desorption. International journal of phytoremediation, 22(10), 1028-1037. https://doi.org/10.1080/15226514.2020.1725869
  • He, L., Zhang, L., Peng, Y., & He, Z. (2025). Selenium in cancer management: exploring the therapeutic potential. Frontiers in Oncology, 14, 1490740. https://doi.org/10.3389/fonc.2024.1490740
  • Huang, G., Liu, Z., He, L., Luk, K. H., Cheung, S. T., Wong, K. H., & Chen, T. (2018). Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti-colorectal cancer activity. Biomaterials science, 6(9), 2508-2517. http://dx.doi.org/10.1039/C8BM00670A
  • İpek, P., Baran, A., Hatipoğlu, A., & Baran, M. F. (2024). Cytotoxic potential of selenium nanoparticles (SeNPs) derived from leaf extract of Mentha longifolia L. International Journal of Agriculture Environment and Food Sciences, 8(1), 169-175. https://doi.org/10.31015/jaefs.2024.1.17
  • Jimenez-Champi, D., Romero-Orejon, F. L., Moran-Reyes, A., Muñoz, A. M., & Ramos-Escudero, F. (2023). Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review. Cyta-journal of Food, 21(1), 418-432. https://doi.org/10.1080/19476337.2023.2213746
  • Khiralla, G. M., & El-Deeb, B. A. (2015). Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT-Food Science and Technology, 63(2), 1001-1007. https://doi.org/10.1016/j.lwt.2015.03.086
  • Kowalczewski, P. Ł., Olejnik, A., Świtek, S., Bzducha-Wróbel, A., Kubiak, P., Kujawska, M., & Lewandowicz, G. (2022). Bioactive compounds of potato (Solanum tuberosum L.) juice: From industry waste to food and medical applications. Critical Reviews in Plant Sciences, 41(1), 52-89. https://doi.org/10.1080/07352689.2022.2057749
  • Kumar, A., & Prasad, K. S. (2021). Role of nano-selenium in health and environment. Journal of Biotechnology, 325, 152-163. https://doi.org/10.1016/j.jbiotec.2020.11.004
  • Lin, W., Zhang, J., Xu, J. F., & Pi, J. (2021). The advancing of selenium nanoparticles against infectious diseases. Frontiers in Pharmacology, 12, 682284. https://doi.org/10.3389/fphar.2021.682284
  • Liu, W., Li, X., Wong, Y. S., Zheng, W., Zhang, Y., Cao, W., & Chen, T. (2012). Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS nano, 6(8), 6578-6591. https://doi.org/10.1021/nn202452c
  • Medina Cruz, D., Mi, G., & Webster, T. J. (2018). Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A, 106(5), 1400-1412. https://doi.org/10.1002/jbm.a.36347
  • Menon, S., & Shanmugam, V. (2020). Cytotoxicity analysis of biosynthesized selenium nanoparticles towards A549 lung cancer cell line. Journal of Inorganic and Organometallic Polymers and Materials, 30(5), 1852-1864. https://link.springer.com/article/10.1007/s10904-019-01409-4
  • Menon, S., Ks, S. D., Santhiya, R., Rajeshkumar, S., & Kumar, V. (2018). Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids and Surfaces B: Biointerfaces, 170, 280-292. https://doi.org/10.1016/j.colsurfb.2018.06.006
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4.
  • Park, K. C., Choi, J., Choi, S., Lee, G., An, H. J., Yun, H., & Lee, S. (2025). Therapeutic potential of Polydopamine-Coated selenium nanoparticles in Osteoarthritis treatment. International Journal of Pharmaceutics, 675, 125568. https://doi.org/10.1007/s11033-024-09598-z
  • Rajasekar, S., & Kuppusamy, S. (2021). Eco-friendly formulation of selenium nanoparticles and its functional characterization against breast cancer and normal cells. Journal of Cluster Science, 32(4), 907-915. https://doi.org/10.1007/s10876-020-01856-x
  • Ramamurthy, C. H., Sampath, K. S., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and biosystems engineering, 36, 1131-1139. https://doi.org/10.1007/s00449-012-0867-1
  • Rasouli, M. (2019). Biosynthesis of selenium nanoparticles using yeast Nematospora coryli and examination of their anti‐candida and anti‐oxidant activities. IET nanobiotechnology, 13(2), 214-218. https://doi.org/10.1049/iet-nbt.2018.5187
  • Ren, Y., Zhao, T., Mao, G., Zhang, M., Li, F., Zou, Y., ... & Wu, X. (2013). Antitumor activity of hyaluronic acid–selenium nanoparticles in Heps tumor mice models. International journal of biological macromolecules, 57, 57-62. https://doi.org/10.1016/j.ijbiomac.2013.03.014
  • Roy, N., Nivedya, T., Paira, P., & Chakrabarty, R. (2025). Selenium-based nanomaterials: green and conventional synthesis methods, applications, and advances in dye degradation. RSC advances, 15(4), 3008-3025. https://doi.org/10.1039/D4RA07604D
  • Safaei, M., Mozaffari, H. R., Moradpoor, H., Imani, M. M., Sharifi, R., & Golshah, A. (2022). Optimization of green synthesis of selenium nanoparticles and evaluation of their antifungal activity against oral Candida albicans infection. Advances in Materials Science and Engineering, 2022(1), 1376998. https://doi.org/10.1155/2022/1376998
  • Sonkusre, P., & Cameotra, S. S. (2017). Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. Journal of nanobiotechnology, 15, 1-12. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-017-0276-3
  • Tran, P. A., O’Brien-Simpson, N., Reynolds, E. C., Pantarat, N., Biswas, D. P., & O’Connor, A. J. (2015). Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli. Nanotechnology, 27(4), 045101. https://doi.org/10.1088/0957-4484/27/4/045101
  • Trinh, V. T., Nguyen, T. M. P., Van, H. T., Hoang, L. P., Nguyen, T. V., Ha, L. T., ... & Nguyen, X. C. (2020). Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue. Scientific reports, 10(1), 3634. https://doi.org/10.1038/s41598-020-60542-0
  • Truong, L. B., Medina-Cruz, D., Mostafavi, E., & Rabiee, N. (2021). Selenium nanomaterials to combat antimicrobial resistance. Molecules, 26(12), 3611. https://doi.org/10.3390/molecules26123611
  • Toubhans, B. (2020). Bio-Geochemistry of ovarian cancer: Role of selenium nanoparticles in treatment and copper isotopes in detection of ovarian cancer (Doctoral dissertation, Université Grenoble Alpes [2020-....]; University of Swansea (Swansea (GB))).
  • Ullah, A., Yin, X., Wang, F., Xu, B., Mirani, Z. A., Xu, B., ... & Naveed, M. (2021). Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules, 26(18), 5559. https://doi.org/10.3390/molecules26185559
  • Vahdati, M., & Tohidi Moghadam, T. (2020). Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Scientific reports, 10(1), 510. https://doi.org/10.1038/s41598-019-57333-7
  • Xia, Y., Sun, M., Huang, H., & Jin, W. L. (2024). Drug repurposing for cancer therapy. Signal transduction and targeted therapy, 9(1), 92. https://doi.org/10.1038/s41392-024-01808-1
  • Xiao, X., Deng, H., Lin, X., Ali, A. S. M., Viscardi, A., Guo, Z., ... & Han, J. (2023). Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chemico-biological interactions, 378, 110483. https://doi.org/10.1016/j.cbi.2023.110483
  • Zambonino, M. C., Quizhpe, E. M., Jaramillo, F. E., Rahman, A., Santiago Vispo, N., Jeffryes, C., & Dahoumane, S. A. (2021). Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. International journal of molecular sciences, 22(3), 989. https://doi.org/10.3
There are 43 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology Diagnostics
Journal Section Research Articles
Authors

Necmettin Aktepe 0000-0003-2192-9049

Ayşe Baran 0000-0002-2317-0489

Cumali Keskin 0000-0003-3758-0654

Publication Date June 26, 2025
Submission Date April 18, 2025
Acceptance Date June 5, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Aktepe, N., Baran, A., & Keskin, C. (2025). Cytotoxic and antimicrobial analysis of biosynthesized selenium nanoparticles from Solanum tuberosum peels. International Journal of Agriculture Environment and Food Sciences, 9(2), 559-569. https://doi.org/10.31015/2025.2.29


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27