Research Article
BibTex RIS Cite

Biyodedektör Sıçanlar İçin Etkili Bir Eğitim Protokolünün Geliştirilmesi: Bir Ön Çalışma

Year 2025, Volume: 10 Issue: 3, 230 - 236, 30.05.2025
https://doi.org/10.35229/jaes.1639518

Abstract

Sıçanlar, köpekler gibi hastalıkların/patolojik durumların tanısından arama kurtarma operasyonlarına veya yanıcı/patlayıcı/yasak maddelerin tespitine kadar biyodedektör hayvan olarak kullanılmaktadır. Bu çalışmada, biyodedektör sıçanlar için klasik ve operant koşullanma paradigmalarını entegre ederek etkili bir eğitim modeli oluşturmak amaçlanmıştır. On dişi Sprague Dawley sıçanı, modifiye edilmiş ve yeniden şekillendirilmiş Skinner kutusu kullanılarak klasik ve operant koşullanma eğitimine tabi tutulmuştur. Hayvanın koku odasındaki zili çalması beklenmiş ve ardından ödüllendirilmiştir. Sosyalleşme evresini takiben, her aşamada koşullu uyarıcı olarak bir tıklayıcı ve koşulsuz uyarıcı olarak işlev gören ve daha sonra olumlu pekiştirici olarak görev yapan ödül yiyeceği içeren bir eğitim prosedürü hazırlanmıştır. Çalışmalar haftada 5 gün, günde 1 aşama ve her sıçan için 15 dakika olacak şekilde düzenlenmiştir. Sıçanlara eğitimden 24 saat önce %60 gıda kısıtlaması yapılmıştır. Eğitim prosedürü, zili her iki pençeyle çalma davranışını hedefledi. Hedef ve hedef dışı davranışlar sayıldı ve yüzdelik değişimler belirlendi. Hedef davranış gerçekleşme oranı %628,57 iken hedef dışı davranışların değişim oranı %98,33 olarak kaydedildi. Bu çalışma, sıçanları biyodedektör olarak eğitmek için bir ön araştırmadır ve halen devam etmektedir. Klasik ve operant koşullanma paradigmalarının Sprague Dawley sıçanlarının eğitiminde etkili ve uygulanması kolay olduğu kanıtlanmıştır. Bu çalışmanın sonuçlarına dayanarak, makine öğrenimi ve yapay zeka ile modifiye edilmiş yeni bir kafesle yeni çalışmalar yapılması planlanmıştır.

References

  • Berg, P., Mappes, T., & Kujala, M.V. (2024). Olfaction in the canine cognitive and emotional processes: From behavioral and neural viewpoints to measurement possibilities. Neurosci Biobehav Rev., 157, 105527. DOI: 10.1016/j.neubiorev.2023.105527
  • Chiandetti, C., Avella, S., Fongaro, E., & Cerri, F. (2016). Can clicker training facilitate conditioning in dogs? Applied Animal Behaviour Science, 184, 109-116. DOI: 10.1016/j.applanim.2016.08.006
  • Crawley, J.N. (2007). What's wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice, 2nd ed., John Wiley & Sons Inc. DOI: 10.1002/0470119055
  • D'Amico, A., Pennazza, G., Santonico, M., Martinelli, E., Roscioni, C., Galluccio, G., Paolesse, R., & Di Natale, C. (2010). An investigation on electronic nose diagnosis of lung cancer. Lung Cancer, 68(2), 170-6. DOI: 10.1016/j.lungcan.2009.11.003
  • Dalkiran, B., Acikgoz, B., & Dayi, A. (2022). Behavioral Tests Used in the Evaluation of Learning and Memory in Experimental Animals. Journal of Basic and Clinical Health Sciences, 6, 938-945. DOI: 10.30621/jbachs.1017172
  • Feng, L.C., Howell, T.J., & Bennet, P.C. (2016). How clicker training works: Comparing Reinforcing, Marking, and Bridging Hypotheses. Applied Animal Behavior Sci., 181, 34-40. DOI: 10.1016/j.applanim.2016.05.012
  • Leidinger, C., Herrmann, F., Thöne-Reineke, C., Baumgart, N., & Baumgart, J. (2017) Introducing Clicker Training as a Cognitive Enrichment for Laboratory Mice. Journal of Visualized Experiments, 121, e55415, DOI: 10.3791/55415
  • Loos, M., Koopmans, B., Aarts, E., Maroteaux, G., & van der Sluis, S. (2015). Neuro-BSIK Mouse Phenomics Consortium; Verhage M, Smit AB. Within-strain variation in behavior differs consistently between common inbred strains of mice. Mammalian Genome, 26(7-8), 348-54. DOI: 10.1007/s00335-015-9578-7
  • Martin, S., & Friedman, S.G. (2020). Blazing clickers. Available online: http://www.behaviorworks.org/files/journals/Bla zing%20Clickers.pdf (accessed on 23 September 2020).
  • Mayes, A.R., & Roberts. N. (2001). Theories of episodic memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1413), 1395-1408. DOI: 10.1098/rstb.2001.0941
  • McCall, C.A., & Burgin, S.E. (2002). Equine utilization of secondary reinforcement during response extinction and acquisition. Applied Animal Behaviour Science, 78, 253-262. DOI: 10.1016/S0168-1591(02)00109-0
  • More, S.V., Kumar, H., Cho, D.Y., Yun, Y.S., & Choi, D.K. (2016). Toxin-induced experimental models of learning and memory impairment. International Journal of Molecular Sciences, 17, 1447. DOI: 10.3390/ijms17091447
  • Oh, Y., Lee, Y., Heath, J., & Kim, M. (2015). Applications of Animal Biosensors: A Review. IEEE Sensors Journal, 15, 637-645. DOI: 10.1109/JSEN.2014.2358261
  • Pfaller-Sadovsky, N., Hurtado-Parrado, C., Cardillo, D., Medina, L.G., & Friedman, S.G. (2020). What’s in a Click? The Efficacy of Conditioned Reinforcement in Applied Animal Training: A Systematic Review and Meta-Analysis. Animals, 10, 1757. DOI: 10.3390/ani10101757
  • Poling, A., Weetjens, B., Cox, C., Beyene, N. W., Bach, H., & Sully, A. (2011). Using trained pouched rats to detect land mines: Another victory for operant conditioning. Journal of Applied Behavior Analysis, 44(2), 351-355. DOI: 10.1901/jaba.2011.44-351
  • Rautio, I.V., Holmberg, E.H., Kurup, D., Dunn, B.A., & Whitlock, J.R. (2024). A novel paradigm for observational learning in rats. Cognitive Neurodynamics, 18(2), 757-767. DOI: 10.1007/s11571-023-10022-8
  • Quillfeldt, J.A. (2006). Behavioral methods to study learning and memory in rats. İçinde M.L. Andersen ve S. Tufik (Ed.), Rodent Models as Tools in Ethical Biomedical Research, eBook, 341-383p, Springer, Switzerland.
  • Schoenberg, H.L., Sola, E.X., Seyller, E., Kelberman, M., & Toufexis, D.J. (2019). Female rats express habitual behavior earlier in operant training than males. Behavioral Neuroscience, 133(1), 110- 120. DOI: 10.1037/bne0000282
  • Skinner, B.F. (1938). The behavior of organisms: an experimental analysis. Appleton-Century, Skinner Foundation: Cambridge, MA, USA,
  • Skinner, B.F. (1961). How to teach animals. In Skinner, B.F. (Ed.), Cumulative record, Enlarged ed., 412- 419p, Appleton-Century-Crofts. DOI: 10.1037/11324-031
  • Tanila, H. (2018). Testing cognitive functions in rodent disease models: present pitfalls and future perspectives. Behavioural Brain Research, 352, 23-27. DOI: 10.1016/j.bbr.2017.05.040
  • Thorn, J.M., Templeton, J.J., Van Winkle, K.M.M., & Castillo, R.R. (2006). Conditioning shelter dogs to sit. Journal of Applied Animal Welfare Science, 9, 25-39. DOI: 10.1207/s15327604jaws0901_3
  • Tomšiˇc, U., & Muševiˇc, I. (2013). Detection of explosives: Dogs vs. CMOS capacitive sensors. Faculty of Mathematics and Physics, Univ. Ljubljana, Ljubljana, Slovenia, Tech. Rep., SEMINAR 1a 1st year, 2nd cycle, 2013.

Developing an Effective Training Protocol for Biodetector Rats: A Preliminary Study

Year 2025, Volume: 10 Issue: 3, 230 - 236, 30.05.2025
https://doi.org/10.35229/jaes.1639518

Abstract

Rats have been used as biodedector animals from the diagnosis of diseases/pathological conditions to search and rescue operations or the detection of flammable/explosive/prohibited substances, just like dogs.In this study, it was aimed to create an effective training model by integrating classical and operant conditioning paradigms for biodedector rats. Ten female Sprague Dawley rats were integrated classical and operant conditioning paradigms using a modified and reshaped Skinner box.The animal was expected to ring the bell in the odor chamber, then was rewarded. Following the socialization phase, a training procedure was prepared including a clicker as a conditioned stimulus at every stage and reward food which functioned as an unconditioned stimulus and later served as a positive reinforcer. The studies were organized 5days a week, 1stage per day and 15minutes for each rats. Rats should have received restricted 60% of the food 24 hours before the training.The training procedure targeted the behavior ringing the bell with both paws. Target and non-target behaviors were counted, and percentage changes were determined. It was recorded that while the target behavior realization rate was 628.57%, the change rate of non-target behaviors was 98.33%.This study is a preliminary investigation for training rats as biodetectors, and is still ongoing.The classical and operant conditioning paradigms have been proven to be effective and easy to implement in the training of Sprague Dawley rats. Based on the results of this study, new studies are going to plan to be conducted with a new cage modified with machine learning and artificial intelligence.

References

  • Berg, P., Mappes, T., & Kujala, M.V. (2024). Olfaction in the canine cognitive and emotional processes: From behavioral and neural viewpoints to measurement possibilities. Neurosci Biobehav Rev., 157, 105527. DOI: 10.1016/j.neubiorev.2023.105527
  • Chiandetti, C., Avella, S., Fongaro, E., & Cerri, F. (2016). Can clicker training facilitate conditioning in dogs? Applied Animal Behaviour Science, 184, 109-116. DOI: 10.1016/j.applanim.2016.08.006
  • Crawley, J.N. (2007). What's wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice, 2nd ed., John Wiley & Sons Inc. DOI: 10.1002/0470119055
  • D'Amico, A., Pennazza, G., Santonico, M., Martinelli, E., Roscioni, C., Galluccio, G., Paolesse, R., & Di Natale, C. (2010). An investigation on electronic nose diagnosis of lung cancer. Lung Cancer, 68(2), 170-6. DOI: 10.1016/j.lungcan.2009.11.003
  • Dalkiran, B., Acikgoz, B., & Dayi, A. (2022). Behavioral Tests Used in the Evaluation of Learning and Memory in Experimental Animals. Journal of Basic and Clinical Health Sciences, 6, 938-945. DOI: 10.30621/jbachs.1017172
  • Feng, L.C., Howell, T.J., & Bennet, P.C. (2016). How clicker training works: Comparing Reinforcing, Marking, and Bridging Hypotheses. Applied Animal Behavior Sci., 181, 34-40. DOI: 10.1016/j.applanim.2016.05.012
  • Leidinger, C., Herrmann, F., Thöne-Reineke, C., Baumgart, N., & Baumgart, J. (2017) Introducing Clicker Training as a Cognitive Enrichment for Laboratory Mice. Journal of Visualized Experiments, 121, e55415, DOI: 10.3791/55415
  • Loos, M., Koopmans, B., Aarts, E., Maroteaux, G., & van der Sluis, S. (2015). Neuro-BSIK Mouse Phenomics Consortium; Verhage M, Smit AB. Within-strain variation in behavior differs consistently between common inbred strains of mice. Mammalian Genome, 26(7-8), 348-54. DOI: 10.1007/s00335-015-9578-7
  • Martin, S., & Friedman, S.G. (2020). Blazing clickers. Available online: http://www.behaviorworks.org/files/journals/Bla zing%20Clickers.pdf (accessed on 23 September 2020).
  • Mayes, A.R., & Roberts. N. (2001). Theories of episodic memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1413), 1395-1408. DOI: 10.1098/rstb.2001.0941
  • McCall, C.A., & Burgin, S.E. (2002). Equine utilization of secondary reinforcement during response extinction and acquisition. Applied Animal Behaviour Science, 78, 253-262. DOI: 10.1016/S0168-1591(02)00109-0
  • More, S.V., Kumar, H., Cho, D.Y., Yun, Y.S., & Choi, D.K. (2016). Toxin-induced experimental models of learning and memory impairment. International Journal of Molecular Sciences, 17, 1447. DOI: 10.3390/ijms17091447
  • Oh, Y., Lee, Y., Heath, J., & Kim, M. (2015). Applications of Animal Biosensors: A Review. IEEE Sensors Journal, 15, 637-645. DOI: 10.1109/JSEN.2014.2358261
  • Pfaller-Sadovsky, N., Hurtado-Parrado, C., Cardillo, D., Medina, L.G., & Friedman, S.G. (2020). What’s in a Click? The Efficacy of Conditioned Reinforcement in Applied Animal Training: A Systematic Review and Meta-Analysis. Animals, 10, 1757. DOI: 10.3390/ani10101757
  • Poling, A., Weetjens, B., Cox, C., Beyene, N. W., Bach, H., & Sully, A. (2011). Using trained pouched rats to detect land mines: Another victory for operant conditioning. Journal of Applied Behavior Analysis, 44(2), 351-355. DOI: 10.1901/jaba.2011.44-351
  • Rautio, I.V., Holmberg, E.H., Kurup, D., Dunn, B.A., & Whitlock, J.R. (2024). A novel paradigm for observational learning in rats. Cognitive Neurodynamics, 18(2), 757-767. DOI: 10.1007/s11571-023-10022-8
  • Quillfeldt, J.A. (2006). Behavioral methods to study learning and memory in rats. İçinde M.L. Andersen ve S. Tufik (Ed.), Rodent Models as Tools in Ethical Biomedical Research, eBook, 341-383p, Springer, Switzerland.
  • Schoenberg, H.L., Sola, E.X., Seyller, E., Kelberman, M., & Toufexis, D.J. (2019). Female rats express habitual behavior earlier in operant training than males. Behavioral Neuroscience, 133(1), 110- 120. DOI: 10.1037/bne0000282
  • Skinner, B.F. (1938). The behavior of organisms: an experimental analysis. Appleton-Century, Skinner Foundation: Cambridge, MA, USA,
  • Skinner, B.F. (1961). How to teach animals. In Skinner, B.F. (Ed.), Cumulative record, Enlarged ed., 412- 419p, Appleton-Century-Crofts. DOI: 10.1037/11324-031
  • Tanila, H. (2018). Testing cognitive functions in rodent disease models: present pitfalls and future perspectives. Behavioural Brain Research, 352, 23-27. DOI: 10.1016/j.bbr.2017.05.040
  • Thorn, J.M., Templeton, J.J., Van Winkle, K.M.M., & Castillo, R.R. (2006). Conditioning shelter dogs to sit. Journal of Applied Animal Welfare Science, 9, 25-39. DOI: 10.1207/s15327604jaws0901_3
  • Tomšiˇc, U., & Muševiˇc, I. (2013). Detection of explosives: Dogs vs. CMOS capacitive sensors. Faculty of Mathematics and Physics, Univ. Ljubljana, Ljubljana, Slovenia, Tech. Rep., SEMINAR 1a 1st year, 2nd cycle, 2013.
There are 23 citations in total.

Details

Primary Language English
Subjects Animal Behaviour, Zoology (Other), Veterinary Anatomy and Physiology, Veterinary Pharmacology
Journal Section Articles
Authors

Büşra Nisa Yılmaz 0009-0008-5931-9354

Yeşim Hayta 0009-0008-0017-7849

Hüseyin Küçükmutaf 0009-0003-9149-0497

Nurgül Süzer 0009-0008-9750-9837

Nilay Seyidoğlu 0000-0002-2817-5131

Cenk Aydin 0000-0002-3090-0099

Early Pub Date May 15, 2025
Publication Date May 30, 2025
Submission Date February 13, 2025
Acceptance Date April 11, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Yılmaz, B. N., Hayta, Y., Küçükmutaf, H., Süzer, N., et al. (2025). Developing an Effective Training Protocol for Biodetector Rats: A Preliminary Study. Journal of Anatolian Environmental and Animal Sciences, 10(3), 230-236. https://doi.org/10.35229/jaes.1639518


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS