Fusarium proliferatum: isolation, identification and evaluation of its association with the model insect Galleria mellonella (L.) (Lepidoptera: Pyralidae)
Year 2025,
Volume: 10 Issue: 4, 416 - 423
Pınar Güner
,
Aylin Er
,
Tülin Aşkun
,
Görkem Deniz Sönmez
,
Selin Meryem Şengül
Abstract
Although the genus Fusarium is widely recognized for including significant plant pathogens and mycotoxin producers, many Fusarium species have also demonstrated promising potential for insect control. These species exhibit characteristics such as high mortality rates, rapid action, and prolific sporulation, making them attractive candidates for agricultural pest management. In this study, the micro and macromorphology, DNA sequencing, and the effects on the model insect Galleria mellonella of Fusarium proliferatum isolated from soil using the trap method were investigated. Morphological analyses revealed detailed colony and spore structures on various agar media. Species identification was confirmed through DNA analysis using ITS and CaM gene sequences. F. proliferatum was observed to prolong the larval stage of model ınsect G. mellonella while reducing pupal duration, weight, and total egg production. Our findings indicate that the fungus exerts a dose-dependent impact on the development and reproduction of G. mellonella. Future studies should focus on identifying secondary metabolites responsible for the observed biological effects, evaluating possible effects on non-target organisms, and conducting field trials under different environmental conditions.
Supporting Institution
TÜBİTAK
Project Number
TUBITAK-1001 (122O398) and TUBITAK 2209-A Research Project Support Program for Undergraduate Students
Thanks
Our work was financially supported by TUBITAK-1001, The Scientific and Technological Research Projects Funding Program (122O398) and TUBITAK 2209-A Research Project Support Program for Undergraduate Students.
References
- Aoki, T., Smith, J.A., Kasson, M.T., Freeman, S.,
Geiser, D.M., Geering, A.D., & O’Donnell, K.
(2019). Three novel Ambrosia Fusarium Clade
species producing clavate macroconidia known
(F. floridanum and F. obliquiseptatum) or
predicted (F. tuaranense) to be farmed by
Euwallacea spp. (Coleoptera: Scolytinae) on
woody hosts. Mycologia, 111(6), 919-935. DOI:
10.1080/00275514.2019.1647074
- Azor, M., Gené, J., Cano, J., Manikandan, P.,
Venkatapathy, N., & Guarro, J. (2009). Less-
frequent Fusarium species of clinical interest:
correlation between morphological and molecular
identification and antifungal susceptibility.
Journal of Clinical Microbiology, 47(5), 1463-
1468. DOI: 10.1128/JCM.02467-08
- da Silva Santos, A.C., Diniz, A.G., Tiago, P.V., & de
Oliveira, N.T. (2020). Entomopathogenic
Fusarium species: a review of their potential for
the biological control of insects, implications and
prospects. Fungal Biology Reviews, 34(1), 41-57.
DOI: 10.1016/j.fbr.2019.12.002
- De Silva, D.D., Crous, P.W., Ades, P.K., Hyde, K.D., &
Taylor, P.W. (2017). Life styles of
Colletotrichum species and implications for plant
biosecurity. Fungal Biology Reviews, 31(3), 155-
168. DOI: 10.1016/j.fbr.2017.05.001
- Fan, J.H., Xie, Y.P., Xue, J.L., Xiong, Q., Jiang, W.J.,
Zhang, Y., & Ren, Z. (2014). The strain HEB01
of Fusarium sp., a new pathogen that infects
brown soft scale. Annals of Microbiology, 64,
333-341. DOI: 10.1007/s13213-013-0668-z
- Fancelli, M., Dias, A.B., Delalibera, I.J., Cerqueira de
Jesus, S., Souza do Nascimento, A., & Oliveira
e Silva, S. (2013). Beauveria bassiana Strains for
Biological Control of Cosmopolites sordidus
(Germ.) (Coleoptera: Curculionidae) in Plantain.
BioMed Research International, 2013(1), 184756.
DOI: 10.1155/2013/184756
- Fujita, S. (2013). Simple modified method for fungal slide
preparation. Journal of Medical Mycology, 54(2),
141-146. DOI: 10.3314/mmj.54.141
- Ganassi, S., Moretti, A., Stornelli, C., Fratello, B.,
Bonvicini Pagliai, A.M., Logrieco, A., &
Sabatini, M.A. (2001). Effect of Fusarium,
Paecilomyces and Trichoderma formulations
against aphid Schizaphis graminum.
Mycopathologia, 151, 131-138. DOI:
10.1023/a:1017940604692
- Geiser, D.M., del Mar Jiménez-Gasco, M., Kang, S.,
Makalowska, I., Veeraraghavan, N., Ward,
T.J., & O'donnell, K. (2004). FUSARIUM-ID v.
1.0: A DNA sequence database for identifying
Fusarium. European Journal of Plant Pathology,
110, 473-479. DOI:
10.1023/B:EJPP.0000032386.75915.a0
- Goettel, M.S., Eilenberg, J., & Glare, T. (2010).
Entomopathogenic fungi and their role in
regulation of insect populations. In: Gilbert, L.I.
& Gill, S.S. (Eds.), Insect Control: Biological and
Synthetic Agents, 387-432p, Academic Press.,
Cambridge.
- Gradmann, C. (2008). A matter of methods: the
historicity of Koch's postulates. Medical Journal,
43(2), 121-148.
https://www.jstor.org/stable/25805450
- Gurjar, G., Barve, M., Giri, A., & Gupta, V. (2009).
Identification of Indian pathogenic races of
Fusarium oxysporum f. sp. Ciceris with gene
specific, ITS and random markers. Mycologia,
101, 484-495. DOI: 10.3852/08-085
- Hall, T.A. (1999). BioEdit: a user-friendly biological
sequence alignment editor and analysis program
for windows 95/98/NT. In Nucleic acids
symposium series, 41, 95-98.
- Kuruvilla, S., & Jacob, A. (1979). Comparative
susceptibility of nymphs and adults of
Nilaparvata lugens to Fusarium oxysporum and
its use in microbial control. Agricultural Research
Journal Kerala, 17, 287-288.
- Kuruvilla, S., & Jacob, A. (1980). Studies on Fusarium
oxysporum Schlecht infecting rice brown plant
hopper. Agricultural Research Journal Kerala,
18, 51-54.
- Larone, D.H. (1995). Medically Important Fungi, A
Guide to İdentification (3rd ed.). American
Society for Microbiology, Washington.
Laurence, M.H., Walsh, J.L., Shuttleworth, L.A.,
Robinson, D.M., Johansen, R.M., Petrovic, T.,
Vu, T.H., Burgess, L.W., Summerell, B.A., &
Liew, E.C.Y. (2015). Six novel species of
Fusarium from natural ecosystems in Australia.
Fungal Diversity, 77, 349-366. DOI:
10.1007/s13225-015-0337-6
- Leger, R.J.S., Wang, C., & Fang, W. (2011). New
perspectives on insect pathogens. Fungal Biology
Reviews, 25, 84-88. DOI:
10.1016/j.fbr.2011.04.005
- Nilsson, R.H., Larsson, K.H., Taylor, A.F.S.,
Bengtsson-Palme, J., Jeppesen, T.S., Schigel,
D., & Abarenkov, K. (2019). The UNITE
database for molecular identification of fungi:
handling dark taxa and parallel taxonomic
classifications. Nucleic Acids Research, 47(D1),
D259-D264. DOI: 10.1093/nar/gky1022
- O’Donnell, K., Humber, R.A., Geiser, D.M., Kang, S.,
Park, B., Robert, V.A.R.G., Crous, P.W.,
Johnston, P.R., Aoki, T., Rooney, A.P. &
Rehner, S.A. (2012). Phylogenetic diversity of
insecticolous fusaria inferred from multilocus
DNA sequence data and their molecular
identification via FUSARIUM-ID and Fusarium
MLST. Mycologia, 104, 427-445. DOI:
10.3852/11-179
- O’Donnell, K., Sutton, D.A., Rinaldi, M.G., Sarver,
B.A.J., Balajee, S.A., Schroers, H.,
Summerbell, R.C., Robert, V.A.R.G., Crous,
P.W., Zhang, N., Aoki, T., Jung, K., Park, J.,
Lee, Y., Kang, S., Park, B., & Geiser, D.M.
(2010). Internet-accessible DNA sequence
database for identifying fusaria from human and
animal infections. Journal of Clinical
Microbiology, 48, 3708-3718. DOI:
10.1128/JCM.00989-10
- O'Donnell, K., Cigelnik, E. & Casper, H.H. (1998).
Molecular phylogenetic, morphological, and
mycotoxin data support reidentification of the
Quorn mycoprotein fungus as Fusarium
venenatum. Fungal Genetic Biology, 23, 57-67.
DOI: 10.1006/fgbi.1997.1018
- Padmaja G.K.V. (2001). Use of the fungus Beauveria
bassiana (Bals.) Vuill (Moniliales:
Deuteromycetes) for controlling termites. Current
Science, 81(6), 647-647.
- Sak, O., & Uçkan, F. (2009). Cypermethrinin Galleria
mellonella L. (Lepidoptera: Pyralidae)’nın
Puplaşma ve Ölüm Oranlarına Etkisi. Uludag Bee
Journal, 9(3), 88-96.
- Sanchez-Pena, S.R., Lara, J.S.J., & Medina, R.F.
(2011). Occurrence of entomopathogenic fungi
from agricultural and natural ecosystems in
Saltillo, México, and their virulence towards
thrips and whiteflies. Journal of Insect Science,
11, 1. DOI: 10.1673/031.011.0101
- Sang, T., Crawford, D.J., & Stuessy, T.F. (1995).
Documentation of reticulate evolution in peonies
(Paeonia) using internal transcribed spacer
sequences of nuclear ribosomal DNA:
Implications for biogeography and concerted
evolution. Proceedings of the National Academy
of Sciences, 92, 6813-6817. DOI:
10.1073/pnas.92.15.681
- Sharma, L., & Marques, G. (2018). Fusarium, an
entomopathogen-a myth or reality? Pathogens,
7(4). DOI: 10.3390/pathogens7040093
- Summerell, B.A., & Leslie, J.F. (2011). Fifty years of
Fusarium: how could nine species have ever been
enough? Fungal Diversity, 50, 135-144. DOI:
10.1007/s13225-011-0132-y
- Thangam, S.D., Selvakumar, G., Verghese, A., Kamala,
K., & Jayanthi, P.D. (2014). Natural mycosis of
mango leafhoppers (Cicadellidae: Hemiptera) by
Fusarium sp. Biocontrol Science and Technology,
24(2), 229-232. DOI:
10.1080/09583157.2013.851171
- Torbati, M., Arzanlou, M., Sandoval-Denis, M., &
Crous, P.W. (2018). Multigene phylogeny
reveals new fungicolous species in the Fusarium
tricinctum species complex and novel hosts in the
genus Fusarium from Iran. Mycological Progress,
18, 119-133. DOI: 10.1007/s11557-018-1422-5
- Tosi, L., Beccari, G., Rondoni, G., Covarelli, L., &
Ricci, C. (2015). Natural occurrence of Fusarium
proliferatum on chestnut in Italy and its potential
entomopathogenicity against the Asian chestnut
gall wasp Dryocosmus kuriphilus. Journal of Pest
Science, 88, 369-381. DOI: 10.1007/s10340-014-
0624-0
- Van Diepeningen, A. D. & de Hoog, G.S. (2016).
Challenges in Fusarium, a Trans-Kingdom
Pathogen. Mycopathologia, 181, 161-163. DOI:
10.1007/s11046-016-9993-7
- Vannini, A., Vettrainoa, A., Martignonia, D., Morales
Rodriguezc, C., Contarini, M., Caccia
Paparatti, B., & Speranza, S. (2017). Does
Gnomoniopsis castanea contribute to the natural
biological control of chestnut gall wasp? Fungal
Biology, 121, 44-52. DOI:
10.1016/j.funbio.2016.08.013
- White, T.J., Bruns, T., Lee, S., & Taylor, J.W. (1990).
Amplification and direct sequencing of fungal
ribosomal RNA genes for phylogenetics. In: Innis,
M.A., Gelfand, D.H., Sninsky, J. J. & White T. J.
(eds.) PCR Proto-cols: A Guide to Methods and
Applications, 315-322p. Academic Press, Inc.,
New York.
Fusarium proliferatum: izolasyonu, tanımlaması ve model Böcek Galleria mellonella (L.) (Lepidoptera: Pyralidae) ile ilişkisinin değerlendirilmesi
Year 2025,
Volume: 10 Issue: 4, 416 - 423
Pınar Güner
,
Aylin Er
,
Tülin Aşkun
,
Görkem Deniz Sönmez
,
Selin Meryem Şengül
Abstract
Fusarium cinsi, önemli bitki patojenleri ve mikotoksin üreticileri içermesiyle dikkat çekmesine rağmen birçok Fusarium türünün böcekleri kontrol etmede etkili olduğu ve yüksek ölüm oranlarına neden olma, hızlı etki ve bol sporlanma gibi tarımsal zararlı kontrolü için umut verici özellikler sergilediği bilinmektedir. Bu çalışmada, topraktan tuzak metodu ile izole edilen Fusarium proliferatum'un mikro-makro morfolojisi, DNA dizilimi ve model böcek Galleria mellonella üzerindeki etkisi araştırılmıştır. Morfolojik analizler, farklı agarlarda ayrıntılı koloni ve spor yapıları ortaya koymuştur. DNA analizi ile ITS ve CaM gen dizileri kullanılarak tür tanımlamasını doğrulanmıştır. F. proliferatum'un model böcek G. mellonella 'nın larval evresi uzattığı ve pupa süresini, ağırlığını ve toplam yumurta sayısını azalttığı gözlenmiştir. Çalışmamız fungusun G. mellonella 'nın gelişme ve üremesi üzerinde doza bağlı bir etkiye sahip olduğunu göstermektedir. Gelecekteki çalışmalar, gözlenen biyolojik etkilerden sorumlu ikincil metabolitlerin tanımlanmasına, hedef dışı organizmalar üzerindeki olası etkilerin değerlendirilmesi ve farklı çevre koşulları altında saha denemelerinin yürütülmesine odaklanmalıdır.
Project Number
TUBITAK-1001 (122O398) and TUBITAK 2209-A Research Project Support Program for Undergraduate Students
References
- Aoki, T., Smith, J.A., Kasson, M.T., Freeman, S.,
Geiser, D.M., Geering, A.D., & O’Donnell, K.
(2019). Three novel Ambrosia Fusarium Clade
species producing clavate macroconidia known
(F. floridanum and F. obliquiseptatum) or
predicted (F. tuaranense) to be farmed by
Euwallacea spp. (Coleoptera: Scolytinae) on
woody hosts. Mycologia, 111(6), 919-935. DOI:
10.1080/00275514.2019.1647074
- Azor, M., Gené, J., Cano, J., Manikandan, P.,
Venkatapathy, N., & Guarro, J. (2009). Less-
frequent Fusarium species of clinical interest:
correlation between morphological and molecular
identification and antifungal susceptibility.
Journal of Clinical Microbiology, 47(5), 1463-
1468. DOI: 10.1128/JCM.02467-08
- da Silva Santos, A.C., Diniz, A.G., Tiago, P.V., & de
Oliveira, N.T. (2020). Entomopathogenic
Fusarium species: a review of their potential for
the biological control of insects, implications and
prospects. Fungal Biology Reviews, 34(1), 41-57.
DOI: 10.1016/j.fbr.2019.12.002
- De Silva, D.D., Crous, P.W., Ades, P.K., Hyde, K.D., &
Taylor, P.W. (2017). Life styles of
Colletotrichum species and implications for plant
biosecurity. Fungal Biology Reviews, 31(3), 155-
168. DOI: 10.1016/j.fbr.2017.05.001
- Fan, J.H., Xie, Y.P., Xue, J.L., Xiong, Q., Jiang, W.J.,
Zhang, Y., & Ren, Z. (2014). The strain HEB01
of Fusarium sp., a new pathogen that infects
brown soft scale. Annals of Microbiology, 64,
333-341. DOI: 10.1007/s13213-013-0668-z
- Fancelli, M., Dias, A.B., Delalibera, I.J., Cerqueira de
Jesus, S., Souza do Nascimento, A., & Oliveira
e Silva, S. (2013). Beauveria bassiana Strains for
Biological Control of Cosmopolites sordidus
(Germ.) (Coleoptera: Curculionidae) in Plantain.
BioMed Research International, 2013(1), 184756.
DOI: 10.1155/2013/184756
- Fujita, S. (2013). Simple modified method for fungal slide
preparation. Journal of Medical Mycology, 54(2),
141-146. DOI: 10.3314/mmj.54.141
- Ganassi, S., Moretti, A., Stornelli, C., Fratello, B.,
Bonvicini Pagliai, A.M., Logrieco, A., &
Sabatini, M.A. (2001). Effect of Fusarium,
Paecilomyces and Trichoderma formulations
against aphid Schizaphis graminum.
Mycopathologia, 151, 131-138. DOI:
10.1023/a:1017940604692
- Geiser, D.M., del Mar Jiménez-Gasco, M., Kang, S.,
Makalowska, I., Veeraraghavan, N., Ward,
T.J., & O'donnell, K. (2004). FUSARIUM-ID v.
1.0: A DNA sequence database for identifying
Fusarium. European Journal of Plant Pathology,
110, 473-479. DOI:
10.1023/B:EJPP.0000032386.75915.a0
- Goettel, M.S., Eilenberg, J., & Glare, T. (2010).
Entomopathogenic fungi and their role in
regulation of insect populations. In: Gilbert, L.I.
& Gill, S.S. (Eds.), Insect Control: Biological and
Synthetic Agents, 387-432p, Academic Press.,
Cambridge.
- Gradmann, C. (2008). A matter of methods: the
historicity of Koch's postulates. Medical Journal,
43(2), 121-148.
https://www.jstor.org/stable/25805450
- Gurjar, G., Barve, M., Giri, A., & Gupta, V. (2009).
Identification of Indian pathogenic races of
Fusarium oxysporum f. sp. Ciceris with gene
specific, ITS and random markers. Mycologia,
101, 484-495. DOI: 10.3852/08-085
- Hall, T.A. (1999). BioEdit: a user-friendly biological
sequence alignment editor and analysis program
for windows 95/98/NT. In Nucleic acids
symposium series, 41, 95-98.
- Kuruvilla, S., & Jacob, A. (1979). Comparative
susceptibility of nymphs and adults of
Nilaparvata lugens to Fusarium oxysporum and
its use in microbial control. Agricultural Research
Journal Kerala, 17, 287-288.
- Kuruvilla, S., & Jacob, A. (1980). Studies on Fusarium
oxysporum Schlecht infecting rice brown plant
hopper. Agricultural Research Journal Kerala,
18, 51-54.
- Larone, D.H. (1995). Medically Important Fungi, A
Guide to İdentification (3rd ed.). American
Society for Microbiology, Washington.
Laurence, M.H., Walsh, J.L., Shuttleworth, L.A.,
Robinson, D.M., Johansen, R.M., Petrovic, T.,
Vu, T.H., Burgess, L.W., Summerell, B.A., &
Liew, E.C.Y. (2015). Six novel species of
Fusarium from natural ecosystems in Australia.
Fungal Diversity, 77, 349-366. DOI:
10.1007/s13225-015-0337-6
- Leger, R.J.S., Wang, C., & Fang, W. (2011). New
perspectives on insect pathogens. Fungal Biology
Reviews, 25, 84-88. DOI:
10.1016/j.fbr.2011.04.005
- Nilsson, R.H., Larsson, K.H., Taylor, A.F.S.,
Bengtsson-Palme, J., Jeppesen, T.S., Schigel,
D., & Abarenkov, K. (2019). The UNITE
database for molecular identification of fungi:
handling dark taxa and parallel taxonomic
classifications. Nucleic Acids Research, 47(D1),
D259-D264. DOI: 10.1093/nar/gky1022
- O’Donnell, K., Humber, R.A., Geiser, D.M., Kang, S.,
Park, B., Robert, V.A.R.G., Crous, P.W.,
Johnston, P.R., Aoki, T., Rooney, A.P. &
Rehner, S.A. (2012). Phylogenetic diversity of
insecticolous fusaria inferred from multilocus
DNA sequence data and their molecular
identification via FUSARIUM-ID and Fusarium
MLST. Mycologia, 104, 427-445. DOI:
10.3852/11-179
- O’Donnell, K., Sutton, D.A., Rinaldi, M.G., Sarver,
B.A.J., Balajee, S.A., Schroers, H.,
Summerbell, R.C., Robert, V.A.R.G., Crous,
P.W., Zhang, N., Aoki, T., Jung, K., Park, J.,
Lee, Y., Kang, S., Park, B., & Geiser, D.M.
(2010). Internet-accessible DNA sequence
database for identifying fusaria from human and
animal infections. Journal of Clinical
Microbiology, 48, 3708-3718. DOI:
10.1128/JCM.00989-10
- O'Donnell, K., Cigelnik, E. & Casper, H.H. (1998).
Molecular phylogenetic, morphological, and
mycotoxin data support reidentification of the
Quorn mycoprotein fungus as Fusarium
venenatum. Fungal Genetic Biology, 23, 57-67.
DOI: 10.1006/fgbi.1997.1018
- Padmaja G.K.V. (2001). Use of the fungus Beauveria
bassiana (Bals.) Vuill (Moniliales:
Deuteromycetes) for controlling termites. Current
Science, 81(6), 647-647.
- Sak, O., & Uçkan, F. (2009). Cypermethrinin Galleria
mellonella L. (Lepidoptera: Pyralidae)’nın
Puplaşma ve Ölüm Oranlarına Etkisi. Uludag Bee
Journal, 9(3), 88-96.
- Sanchez-Pena, S.R., Lara, J.S.J., & Medina, R.F.
(2011). Occurrence of entomopathogenic fungi
from agricultural and natural ecosystems in
Saltillo, México, and their virulence towards
thrips and whiteflies. Journal of Insect Science,
11, 1. DOI: 10.1673/031.011.0101
- Sang, T., Crawford, D.J., & Stuessy, T.F. (1995).
Documentation of reticulate evolution in peonies
(Paeonia) using internal transcribed spacer
sequences of nuclear ribosomal DNA:
Implications for biogeography and concerted
evolution. Proceedings of the National Academy
of Sciences, 92, 6813-6817. DOI:
10.1073/pnas.92.15.681
- Sharma, L., & Marques, G. (2018). Fusarium, an
entomopathogen-a myth or reality? Pathogens,
7(4). DOI: 10.3390/pathogens7040093
- Summerell, B.A., & Leslie, J.F. (2011). Fifty years of
Fusarium: how could nine species have ever been
enough? Fungal Diversity, 50, 135-144. DOI:
10.1007/s13225-011-0132-y
- Thangam, S.D., Selvakumar, G., Verghese, A., Kamala,
K., & Jayanthi, P.D. (2014). Natural mycosis of
mango leafhoppers (Cicadellidae: Hemiptera) by
Fusarium sp. Biocontrol Science and Technology,
24(2), 229-232. DOI:
10.1080/09583157.2013.851171
- Torbati, M., Arzanlou, M., Sandoval-Denis, M., &
Crous, P.W. (2018). Multigene phylogeny
reveals new fungicolous species in the Fusarium
tricinctum species complex and novel hosts in the
genus Fusarium from Iran. Mycological Progress,
18, 119-133. DOI: 10.1007/s11557-018-1422-5
- Tosi, L., Beccari, G., Rondoni, G., Covarelli, L., &
Ricci, C. (2015). Natural occurrence of Fusarium
proliferatum on chestnut in Italy and its potential
entomopathogenicity against the Asian chestnut
gall wasp Dryocosmus kuriphilus. Journal of Pest
Science, 88, 369-381. DOI: 10.1007/s10340-014-
0624-0
- Van Diepeningen, A. D. & de Hoog, G.S. (2016).
Challenges in Fusarium, a Trans-Kingdom
Pathogen. Mycopathologia, 181, 161-163. DOI:
10.1007/s11046-016-9993-7
- Vannini, A., Vettrainoa, A., Martignonia, D., Morales
Rodriguezc, C., Contarini, M., Caccia
Paparatti, B., & Speranza, S. (2017). Does
Gnomoniopsis castanea contribute to the natural
biological control of chestnut gall wasp? Fungal
Biology, 121, 44-52. DOI:
10.1016/j.funbio.2016.08.013
- White, T.J., Bruns, T., Lee, S., & Taylor, J.W. (1990).
Amplification and direct sequencing of fungal
ribosomal RNA genes for phylogenetics. In: Innis,
M.A., Gelfand, D.H., Sninsky, J. J. & White T. J.
(eds.) PCR Proto-cols: A Guide to Methods and
Applications, 315-322p. Academic Press, Inc.,
New York.