Research Article
BibTex RIS Cite

Çinko Oksit Nanopartiküllerinin Ocimum basilicum L.'nin İn Vitro Kültürlerinde Büyüme ve Sekonder Metabolit Birikimi Üzerine Etkileri

Year 2025, , 37 - 60, 20.06.2025
https://doi.org/10.35206/jan.1464551

Abstract

Bu çalışmada, çinko oksit nanopartikülünün (ZnO-NP) Ocimum basilicum L. (fesleğen) sürgünlerinin in vitro büyümesi, ikincil metabolit birikimi ve antioksidan aktivitesi üzerindeki etkileri araştırılmıştır. Çeşitli ZnO-NP konsantrasyonları (5, 10, 20, 40 ve 50 mg/L) sürgün uzaması, nod ve yaprak sayıları, kardeşlenme sayısı, kök oluşum yüzdesi ve kök uzunluğu gibi büyüme parametreleri üzerindeki etkilerini değerlendirmek için uygulanmıştır. Sonuçlar, düşük ZnO-NP konsantrasyonlarının sürgün uzamasını uyardığını, yüksek konsantrasyonların ise kök gelişimini olumsuz etkilediğini göstermiştir. Metanolik ekstraktlarda toplam fenolik içerik (TPC) ve antioksidan aktivite değerlendirilmiş, köklerde saplara kıyasla daha yüksek TPC gözlenmiştir. DPPH ve CUPRAC analizleri kullanılarak değerlendirilen antioksidan kapasite, ZnO-NP konsantrasyonlarına değişken tepkiler göstermiş, köklerde 40 mg/L ZnO-NP konsantrasyonunda daha yüksek antioksidan aktivite (sırasıyla SC50: 0,77 mg/mL ve 0,512 mmol TE/g bitki) tespit edilmiştir. Ayrıca, çalışmada O. basilicum'daki ana fenolik bileşik olan rosmarinik asit içeriği analiz edilmiş ve ZnO-NP uygulamasıyla, özellikle de köklerde 40 mg/L ZnO-NP konsantrasyonunda 35,98 µg fenolik/mg bitki değeriyle birikiminin arttığı bulunmuştur. Genel olarak, bulgular ZnO-NP uygulamasının O. basilicum'da büyümeyi, ikincil metabolit birikimini ve antioksidan aktiviteyi etkilediğini, etkilerin konsantrasyona ve bitki kısmına göre değiştiğini göstermektedir.

References

  • Açıkgöz, M. A. (2020). Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Industrial Crops and Products, 148, 112278.
  • Anjum, S., Anjum, I., Hano, C., & Kousar, S. (2019). Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: Current status and future outlooks. RSC Adv., 9, 40404-40423.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel antioxidant capacity index for dietary polyphenols and vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970-7981.
  • Bauer, N., Kiseljak, D., & Jelaska, S. (2009). The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biol Plant, 53(4), 650-656.
  • Bektaş, E. & Sökmen, A. (2016). In vitro seed germination, plantlet growth, tuberization, and syntheticseed production of Serapias vomeracea (Burm.f.) Briq., Turkish Journal of Botany, 40(6), 584-594.
  • Bektaş, E. (2020). Changes in essential oil composition, phenylalanine ammonia lyase gene expression and rosmarinic acid content during shoot organogenesis in cytokinin-treated Satureja spicigera (C. Koch) boiss. shoots. Journal of Plant Biochemistry and Biotechnology, 29, 450-460.
  • Bektaş, E., Sahin, H., Beldüz, A. O., & Güler, H. İ. (2022). HIV-1-RT inhibition activity of Satureja spicigera (C.KOCH) BOISS. Aqueous extract and docking studies of phenolic compounds identified by RP-HPLC-DAD. Journal of Food Biochemistry, 46(4), 13921.
  • Biswas, T. (2020). Elicitor induced increased rosmarinic acid content of in vitro root cultures of Ocimum basilicum L. (sweet basil). Plant Science Today, 7(2), 157-163.
  • Briskin, D. P. (2000). Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiology, 124, 507-514.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol, 94(3), 223-253.
  • Chamani, E., Karimi Ghalehtaki, S., Mohebodini, M., & Ghanbari, A. (2015). The effect of Zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss. Iran J Genet Plant Breed., 4, 11-19.
  • Choi, O., & Hu, Z. (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol., 42, 4583-4588.
  • Costa, P., Gonçalves, S., Valentão, P., Andrade, P. B., & Romano, A. (2013). Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food Chem Toxicol., 57, 69-74.
  • Costa, P., Gonçalves, S., Valentão, P., Andrade, P. B., Coelho, N., Romano, A. (2012). Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chem., 135(3), 1253-1260.
  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci. 57(5), 779-795.
  • Duke, J. A., Bogenschutz-Godwin, M. J., DuCellier, J., & Duke, P. A. K. (2008). Handbook of Medicinal Herbs (2nd ed., pp. 60-62). CRC Press, Boca Raton, FL, USA.Duran, R. E., Kilic, S., & Coskun, Y. (2019). Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). In Vitro Cell Dev. Biol-Plant, 55, 468-475.
  • Espinosa-Leal, C. A., Puente-Garza, C. A., & García-Lara, S. (2018). In vitro plant tissue culture: Means for production of biological active compounds. Planta, 248, 1-18.
  • Farag, M. A., Al-Mahdy, D. A., Meyer, A., Westphal, H., & Wessjohann, L. A. (2017). Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content. Sci Rep. 2017, 7(1), 648-611.
  • Ghorbanpour, M., Hatami, M., & Hatami, M. (2015). Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nanosized titanium dioxide and bulk application. Acta Agric. Slov., 105, 23-32.
  • Gonçalves, S., Mansinhos, I., Rodríguez-Solana, R., Pereira-Caro, G., Moreno-Rojas, J. M., & Romano, A. (2021). Impact of metallic nanoparticles on in vitro culture, phenolic profile and biological activity of two mediterranean Lamiaceae species: Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales. Molecules, 26(21), 6427.
  • Gülçin, I., Elmastaş, M., & Aboul-Enein, H. Y. (2007). Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytotherapy Research, 21(4), 354-361.
  • Grayer, R. J., Bryan, S. E., Veitch, N. C., Goldstone, F. J., Paton, A., & Wollenweber, E. (1996). External flavones in sweet basil, Ocimum basilicum, and related taxa. Phytochemistry, 43 (5), 1041-1047.
  • Hanif, M. A., Al-Maskari, M. Y., Al-Maskari, A., Al-Shukaili, A., Al-Maskari, A. Y., & Al-Sabahi, J. N. (2011). Essential oil composition antimicrobial and antioxidant activitiesof unexplored Omani basil. J. Med. Plants Res., 5, 751-757.
  • Inam, M., Attique, I., Zahra, M., Khan, A. K., Hahim, M., Hano, C., & Anjum, S. (2023). Metal oxide nanoparticles and plant secondary metabolism: unraveling the game-changer nano-elicitors. Plant Cell Tissue and Organ Culture, 155(2),1-18.
  • Jalil, S. U., & Ansari, M. I. (2019). Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms. In Plant Signaling Molecules: Role and Regulation under Stressful Environments (pp. 596), Elsevier Inc.
  • Janas, K. M., Amarowicz, R., Zieli´nska-Tomaszewska, J., Kosi´nska, A., & Posmyk, M. M. (2009). Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiol. Plant., 31, 587-595.
  • Javed, R., Usman, M., Yücesan, B., Zia, M., & Gürel, E. (2017). Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol. Biochem., 110, 94-99.
  • Javed, R., Yucesan, B., Zia, M., & Ekrem, G. (2017). Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles Stress. Sugar Tech., 20, 194-201.
  • Kamalizadeh, M., Bihamta, M., & Zarei, A. (2019). Drought stress and TiO2 nanoparticles affect the composition of different active compounds in the Moldavian dragonhead plant. Acta Physiologiae Plantarum, 41(2), 21.
  • Karaca, M., Kara, Ş. M. & Özcan, M. M. (2017). Bazı fesleğen (Ocimum basilicum L.) popülasyonlarının herba verimi ve uçucu yağ oranının belirlenmesi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), 160-169.
  • Karataş, İ. (2022). Production of rosmarinic acid and biomass from adventitious root cultures of Ocimum basilicum by optimization of medium components in airlift bioreactors. Plant Cell Tiss Organ Cult., 151, 235-251.
  • Khair-ul-Bariyah, S., Ahmed, D., & Ikram, M. (2012). Ocimum basilicum: a review on phytochemical and pharmacological studies. Journal of the Chemical Society of Pakistan, 2(2), 78-85.
  • Khalid, Kh. A., Hendawy, S. F., & El-Gezawy, E. (2006). Ocimum basilicum L. productionunder organic farming. Res. J. Agric. Biol. Sci., 2, 25-32.
  • Kim, D. H., Gopal, J., Sivanesan, I. (2017). Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv., 7, 36492-36505.
  • Kim, K. H., Lee, Y. H., Kim, D., Park, Y. H., Lee, J. Y., Hwang, Y. S., & Kim, Y. H. (2004). Agrobacterium-mediated genetic transformation of Perilla frutescens. Plant Cell Rep., 23, 386-390.
  • Kračun-Kolarević, M., Dmitrović, S., Filipović, B., Perić, M., Mišić, D., Simonović, A., & Todorović, S. (2015). Influence of sodium salicylate on rosmarinic acid, carnosol and carnosic acid accumulation by Salvia officinalis L. shoots grown in vitro. Biotechnol Lett., 37(8), 1693-1701.
  • Krzyzanowska, J., Czubacka, A., Pecio, L., Przybys, M., Doroszewska, T., Stochmal, A., & Oleszek, W. (2012). The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tissue and Organ Culture 108(1), 73-81.
  • Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y., Braam, J., & Alvarez, P. J. J. (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. Int. J., 29, 669-675.
  • Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental pollution, 150(2), 243-250.
  • Mahajan, P., Dhoke, S. K., & Khanna, A. S. (2011). Effect of nano‐ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011(1), 696535.
  • Marslin, G., Sheeba, C. J., & Franklin, G. (2017). Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst. Front Plant Sci., 8, 832.
  • Mildvan, A. S. (1970). 9 metals in enzyme catalysis. In Boyer, P. D. (ed.), The Enzymes (pp. 445-536), Volume 2, Academic Press.
  • Mittler, R. (2017). ROS are good. Trends Plant Sci. 22, 11-19.
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490-498.
  • Molyneux, P. (2004). The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26, 211-219.
  • Mumivand, H., Khanizadeh, P., Morshedloo, M. R., Sierka, E., Zuk-Gołaszewska, K., Horaczek, T., & Kalaji, H. M. (2021). Improvement of growth, yield, seed production and phytochemical properties of Satureja khuzistanica Jamzad by foliar application of boron and zinc. Plants, 10(11), 2469.
  • Nair, R. (2016). Effects of nanoparticles on plant growth and development. In: Kole, C., Kumar, D., & Khodakovskaya, M. (Eds), Plant Nanotechnology (pp. 95-118). Springer, Cham.
  • Nascimento, N. C., & Fett-Neto, A. G. (2010). Plant secondary metabolism and challenges in modifying its operation: An overview. Methods in Molecular Biology, 643, 1-13.
  • Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior andecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5), 372-386.
  • Nazir, M., Tungmunnithum, D., Bose, S., Drouet, S., Garros, L., Giglioli- Guivarc’h, N., Abbasi, B. H., & Hano, C. (2019). Differential production of phenylpropanoid metabolites in callus cultures of Ocimum basilicum L. with distinct in vitro antioxidant activities and in vivo protective effects against UV stress. J. Agric. Food Chem., 67(7), 1847-1859.
  • Ncube, B., Finnie, J. F., & Van Staden, J. (2012). Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, 82, 11-20.
  • Nekoukhou, M., Fallah, S., Abbasi-Surki, A., Pokhrel, L. R., & Rostamnejadi, A. (2022). Improved efficacy of foliar application of zinc oxide nanoparticles on zinc biofortification, primary productivity and secondary metabolite production in dragonhead. Journal of Cleaner Production, 379(2), 134803.
  • Nourozi, E., Hosseini, B., Malek, R., & Abdollahi Mandoulakani, B. (2019a). Iron oxide nanoparticle: a novel elicitor to enhancing anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J Sci Food Agric., 99(14), 6418-6430.
  • Nourozi, E., Hosseini, B., Maleki, R., & Abdollahi Mandoulakani, B. (2019b). Pharmaceutical important phenolic compounds overproduction and gene expression analysis in Dracocephalum kotschyi hairy roots elicited by SiO2 nanoparticles. Industrial Crops and Products, 133, 435-446.
  • Nourozi, E., Hosseini, B., Maleki, R., & Mandoulakani, B. A. (2021). Inductive effect of titanium dioxide nanoparticles on the anticancer compounds production and expression of rosmarinic acid biosynthesis genes in Dracocephalum kotschyi transformed roots. Plant Physiology and Biochemistry, 167, 934-945.
  • Ranjan, A., Rajput, V. D., Minkina, T., Bauer, T., Chauhan, A., & Jindal, T. (2021). Nanoparticles induced stress and toxicity in plants. Environmental Nanotechnology Monitoring and Management, 5, 100457.
  • Roy, D., & Mukhopadhyay, S. (2012). Enhanced rosmarinic acid production in cultured plants of two species of Mentha. Indian J Exp Biol., 50, 817-825.
  • Santos-Gomes, P. C., Seabra, R. M., Andrade, P. B., & Fernandes-Ferreira, M. (2003). Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J Plant Physiol., 160, 1025-1032.
  • Salama, D. M., Osman, S. A., Abd El-Aziz, M. E., Abd Elwahed, M. S., & Shaaban, E. A. (2019). Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology, 18, 101083.
  • Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. Int J Food Prop, 23, 1961-1970.
  • Sharafi, E., Khayam Nekoei, S. M., Fotokian, M. H., Davoodi, D., Hadavand Mirzaei, H., & Hasanloo, T. (2013). Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L.). Journal of Medicinal Plants and By-products (JMPB), 2, 177-184.
  • Singleton, V., & Rossi, J. (1965). Colorimetry of total phenolic compounds with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • Sousa, S. F., Lopes, A. B., Fernandes, P. A., & Ramos, M. J. (2009). The zinc proteome: a tale of stability and functionality. Dalton Transactions, 38, 7946-7956.
  • Srivastava, S., Conlan, X. A., Adholeya, A., & Cahill, D. M. (2016). Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell Tissue and Organ Culture, 126, 19-32.
  • Stadtman, E. R., & Oliver, C. N. (1991). Metal-catalyzed oxidation of proteins. Physiological consequences. J. Biol. Chem., 266, 2005-2008.
  • Taghizadeh, M., Nasibi, F., Manouchehri Kalantari, K., & Mohseni-Moghadam, M. (2021). Modification of phytochemical production and antioxidant activity of Dracocephalum kotschyi cells by exposure to static magnetic field and magnetite nanoparticles. Plant Cell, Tissue and Organ Culture, 147(2), 365-377.
  • Teofilović, B., Grujić-Letić, N., Karadžić, M., Kovačević, S., Podunavac-Kuzmanović, S., Gligorića, E., & Gadžurić, S. (2021). Analysis of functional ingredients and composition of Ocimum basilicum. South African Journal of Botany, 141(4), 227-234.
  • Tepe, B., & Sokmen, A. (2007). Production and optimisation of rosmarinic acid by Satureja hortensis L. callus cultures. Natural Product Research, 21(13), 1133-1144.
  • Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silvernanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf., 104, 302-309.
  • Torre-Roche, R. D. L., Cantu, J., Tamez, C., Zuverza-Mena, N., Hamdi, H., Adisa, I. O., Elmer, W., Gardea Torreday, J., & White, J. C. (2020). Seed biofortification by engineered nanomaterials a pathway to alleviate malnutrition. Journal of Agricultural and Food Chemistry, 68(44), 12189-12202.
  • Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiol. Biochem., 110, 59-69.
  • Verma, S. K., Sahin, G., Das, A. K., & Gurel, E. (2016). In vitro plant regeneration of Ocimum basilicum L. is accelerated by zinc sulfate. In Vitro Cellular and Developmental Biology-Plant, 52(1), 20-27.
  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5(1), 3-42.
  • Wang, Q., Xu, S., Zhong, L., Zhao, X., & Wang, L. (2023). Effects of zinc oxide nanoparticles on growth, development, and flavonoid synthesis in Ginkgo biloba. International Journal of Molecular Sciences, 24(21), 15775.
  • Wen Wang, J., & Yong Wu, J. (2010). Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl. Microbiol. Biotechnol., 88, 437-449.
  • Zaeem, A., Drouet, S., Anjum, S., Khurshid, R., Younas, M., Jean Philippe Blondeau, J. P., Tungmunnithum, D., Giglioli-Guivarc’h, N., Hano, C., & Abbasi, B. H. (2020). Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. In vitro cultures: A comparative analysis, Biomolecules, 10(6), 918.
  • Zeljković, S. Ć., Komzáková, K., Šišková, J., Karalija, E., Smékalová, K., & Tarkowski, P. (2020). Phytochemical variability of selected basil genotypes. Industrial Crops and Products, 157, 112910.
  • Zhoua, L. G., & Wu, J. U. (2006). Development and application of medicinal plant tissue cultures for production of drugs and herbal medicinals in China. Nat. Prod. Rep., 23, 789-810.

Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum basilicum L.

Year 2025, , 37 - 60, 20.06.2025
https://doi.org/10.35206/jan.1464551

Abstract

The study investigated the effects of zinc oxide nanoparticle (ZnO-NP) on the growth, secondary metabolite accumulation, and antioxidant activity of Ocimum basilicum L. (basil) shoots in vitro. Various concentrations of ZnO-NP (5, 10, 20, 40 and 50 mg/L) were applied to assess their impact on growth parameters such as shoot elongation, node and leaf numbers, shoot multiplication rate, root formation percentage, and root length. Results showed that lower ZnO-NP concentrations stimulated shoot elongation, while higher concentrations negatively affected root development. Total phenolic content (TPC) and antioxidant activity were assessed in methanolic extracts, with higher TPC observed in roots compared to stems. The antioxidant capacity, evaluated using DPPH and CUPRAC assays, showed variable responses to ZnO-NP concentrations, with higher antioxidant activity (SC50: 0.77 mg/mL and 0.512 mmol TE/g plant, respectively) detected at 40 mg/L ZnO-NP concentration in roots. Additionally, the study analyzed rosmarinic acid content, the main phenolic compound in O. basilicum, and found that its accumulation increased with ZnO-NP application, especially in roots at the 40 mg/L ZnO-NP concentration with the value of 35.98 µg phenolic/mg plant. Overall, the findings suggest that ZnO-NP application influences growth, secondary metabolite accumulation, and antioxidant activity in O. basilicum, with effects varying based on concentration and plant part.

References

  • Açıkgöz, M. A. (2020). Establishment of cell suspension cultures of Ocimum basilicum L. and enhanced production of pharmaceutical active ingredients. Industrial Crops and Products, 148, 112278.
  • Anjum, S., Anjum, I., Hano, C., & Kousar, S. (2019). Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: Current status and future outlooks. RSC Adv., 9, 40404-40423.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel antioxidant capacity index for dietary polyphenols and vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52, 7970-7981.
  • Bauer, N., Kiseljak, D., & Jelaska, S. (2009). The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biol Plant, 53(4), 650-656.
  • Bektaş, E. & Sökmen, A. (2016). In vitro seed germination, plantlet growth, tuberization, and syntheticseed production of Serapias vomeracea (Burm.f.) Briq., Turkish Journal of Botany, 40(6), 584-594.
  • Bektaş, E. (2020). Changes in essential oil composition, phenylalanine ammonia lyase gene expression and rosmarinic acid content during shoot organogenesis in cytokinin-treated Satureja spicigera (C. Koch) boiss. shoots. Journal of Plant Biochemistry and Biotechnology, 29, 450-460.
  • Bektaş, E., Sahin, H., Beldüz, A. O., & Güler, H. İ. (2022). HIV-1-RT inhibition activity of Satureja spicigera (C.KOCH) BOISS. Aqueous extract and docking studies of phenolic compounds identified by RP-HPLC-DAD. Journal of Food Biochemistry, 46(4), 13921.
  • Biswas, T. (2020). Elicitor induced increased rosmarinic acid content of in vitro root cultures of Ocimum basilicum L. (sweet basil). Plant Science Today, 7(2), 157-163.
  • Briskin, D. P. (2000). Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiology, 124, 507-514.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol, 94(3), 223-253.
  • Chamani, E., Karimi Ghalehtaki, S., Mohebodini, M., & Ghanbari, A. (2015). The effect of Zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss. Iran J Genet Plant Breed., 4, 11-19.
  • Choi, O., & Hu, Z. (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol., 42, 4583-4588.
  • Costa, P., Gonçalves, S., Valentão, P., Andrade, P. B., & Romano, A. (2013). Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food Chem Toxicol., 57, 69-74.
  • Costa, P., Gonçalves, S., Valentão, P., Andrade, P. B., Coelho, N., Romano, A. (2012). Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chem., 135(3), 1253-1260.
  • Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci. 57(5), 779-795.
  • Duke, J. A., Bogenschutz-Godwin, M. J., DuCellier, J., & Duke, P. A. K. (2008). Handbook of Medicinal Herbs (2nd ed., pp. 60-62). CRC Press, Boca Raton, FL, USA.Duran, R. E., Kilic, S., & Coskun, Y. (2019). Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). In Vitro Cell Dev. Biol-Plant, 55, 468-475.
  • Espinosa-Leal, C. A., Puente-Garza, C. A., & García-Lara, S. (2018). In vitro plant tissue culture: Means for production of biological active compounds. Planta, 248, 1-18.
  • Farag, M. A., Al-Mahdy, D. A., Meyer, A., Westphal, H., & Wessjohann, L. A. (2017). Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content. Sci Rep. 2017, 7(1), 648-611.
  • Ghorbanpour, M., Hatami, M., & Hatami, M. (2015). Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nanosized titanium dioxide and bulk application. Acta Agric. Slov., 105, 23-32.
  • Gonçalves, S., Mansinhos, I., Rodríguez-Solana, R., Pereira-Caro, G., Moreno-Rojas, J. M., & Romano, A. (2021). Impact of metallic nanoparticles on in vitro culture, phenolic profile and biological activity of two mediterranean Lamiaceae species: Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales. Molecules, 26(21), 6427.
  • Gülçin, I., Elmastaş, M., & Aboul-Enein, H. Y. (2007). Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytotherapy Research, 21(4), 354-361.
  • Grayer, R. J., Bryan, S. E., Veitch, N. C., Goldstone, F. J., Paton, A., & Wollenweber, E. (1996). External flavones in sweet basil, Ocimum basilicum, and related taxa. Phytochemistry, 43 (5), 1041-1047.
  • Hanif, M. A., Al-Maskari, M. Y., Al-Maskari, A., Al-Shukaili, A., Al-Maskari, A. Y., & Al-Sabahi, J. N. (2011). Essential oil composition antimicrobial and antioxidant activitiesof unexplored Omani basil. J. Med. Plants Res., 5, 751-757.
  • Inam, M., Attique, I., Zahra, M., Khan, A. K., Hahim, M., Hano, C., & Anjum, S. (2023). Metal oxide nanoparticles and plant secondary metabolism: unraveling the game-changer nano-elicitors. Plant Cell Tissue and Organ Culture, 155(2),1-18.
  • Jalil, S. U., & Ansari, M. I. (2019). Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms. In Plant Signaling Molecules: Role and Regulation under Stressful Environments (pp. 596), Elsevier Inc.
  • Janas, K. M., Amarowicz, R., Zieli´nska-Tomaszewska, J., Kosi´nska, A., & Posmyk, M. M. (2009). Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiol. Plant., 31, 587-595.
  • Javed, R., Usman, M., Yücesan, B., Zia, M., & Gürel, E. (2017). Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol. Biochem., 110, 94-99.
  • Javed, R., Yucesan, B., Zia, M., & Ekrem, G. (2017). Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles Stress. Sugar Tech., 20, 194-201.
  • Kamalizadeh, M., Bihamta, M., & Zarei, A. (2019). Drought stress and TiO2 nanoparticles affect the composition of different active compounds in the Moldavian dragonhead plant. Acta Physiologiae Plantarum, 41(2), 21.
  • Karaca, M., Kara, Ş. M. & Özcan, M. M. (2017). Bazı fesleğen (Ocimum basilicum L.) popülasyonlarının herba verimi ve uçucu yağ oranının belirlenmesi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 7(2), 160-169.
  • Karataş, İ. (2022). Production of rosmarinic acid and biomass from adventitious root cultures of Ocimum basilicum by optimization of medium components in airlift bioreactors. Plant Cell Tiss Organ Cult., 151, 235-251.
  • Khair-ul-Bariyah, S., Ahmed, D., & Ikram, M. (2012). Ocimum basilicum: a review on phytochemical and pharmacological studies. Journal of the Chemical Society of Pakistan, 2(2), 78-85.
  • Khalid, Kh. A., Hendawy, S. F., & El-Gezawy, E. (2006). Ocimum basilicum L. productionunder organic farming. Res. J. Agric. Biol. Sci., 2, 25-32.
  • Kim, D. H., Gopal, J., Sivanesan, I. (2017). Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv., 7, 36492-36505.
  • Kim, K. H., Lee, Y. H., Kim, D., Park, Y. H., Lee, J. Y., Hwang, Y. S., & Kim, Y. H. (2004). Agrobacterium-mediated genetic transformation of Perilla frutescens. Plant Cell Rep., 23, 386-390.
  • Kračun-Kolarević, M., Dmitrović, S., Filipović, B., Perić, M., Mišić, D., Simonović, A., & Todorović, S. (2015). Influence of sodium salicylate on rosmarinic acid, carnosol and carnosic acid accumulation by Salvia officinalis L. shoots grown in vitro. Biotechnol Lett., 37(8), 1693-1701.
  • Krzyzanowska, J., Czubacka, A., Pecio, L., Przybys, M., Doroszewska, T., Stochmal, A., & Oleszek, W. (2012). The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tissue and Organ Culture 108(1), 73-81.
  • Lee, C. W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y., Braam, J., & Alvarez, P. J. J. (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. Int. J., 29, 669-675.
  • Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental pollution, 150(2), 243-250.
  • Mahajan, P., Dhoke, S. K., & Khanna, A. S. (2011). Effect of nano‐ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011(1), 696535.
  • Marslin, G., Sheeba, C. J., & Franklin, G. (2017). Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst. Front Plant Sci., 8, 832.
  • Mildvan, A. S. (1970). 9 metals in enzyme catalysis. In Boyer, P. D. (ed.), The Enzymes (pp. 445-536), Volume 2, Academic Press.
  • Mittler, R. (2017). ROS are good. Trends Plant Sci. 22, 11-19.
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490-498.
  • Molyneux, P. (2004). The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26, 211-219.
  • Mumivand, H., Khanizadeh, P., Morshedloo, M. R., Sierka, E., Zuk-Gołaszewska, K., Horaczek, T., & Kalaji, H. M. (2021). Improvement of growth, yield, seed production and phytochemical properties of Satureja khuzistanica Jamzad by foliar application of boron and zinc. Plants, 10(11), 2469.
  • Nair, R. (2016). Effects of nanoparticles on plant growth and development. In: Kole, C., Kumar, D., & Khodakovskaya, M. (Eds), Plant Nanotechnology (pp. 95-118). Springer, Cham.
  • Nascimento, N. C., & Fett-Neto, A. G. (2010). Plant secondary metabolism and challenges in modifying its operation: An overview. Methods in Molecular Biology, 643, 1-13.
  • Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior andecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(5), 372-386.
  • Nazir, M., Tungmunnithum, D., Bose, S., Drouet, S., Garros, L., Giglioli- Guivarc’h, N., Abbasi, B. H., & Hano, C. (2019). Differential production of phenylpropanoid metabolites in callus cultures of Ocimum basilicum L. with distinct in vitro antioxidant activities and in vivo protective effects against UV stress. J. Agric. Food Chem., 67(7), 1847-1859.
  • Ncube, B., Finnie, J. F., & Van Staden, J. (2012). Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, 82, 11-20.
  • Nekoukhou, M., Fallah, S., Abbasi-Surki, A., Pokhrel, L. R., & Rostamnejadi, A. (2022). Improved efficacy of foliar application of zinc oxide nanoparticles on zinc biofortification, primary productivity and secondary metabolite production in dragonhead. Journal of Cleaner Production, 379(2), 134803.
  • Nourozi, E., Hosseini, B., Malek, R., & Abdollahi Mandoulakani, B. (2019a). Iron oxide nanoparticle: a novel elicitor to enhancing anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J Sci Food Agric., 99(14), 6418-6430.
  • Nourozi, E., Hosseini, B., Maleki, R., & Abdollahi Mandoulakani, B. (2019b). Pharmaceutical important phenolic compounds overproduction and gene expression analysis in Dracocephalum kotschyi hairy roots elicited by SiO2 nanoparticles. Industrial Crops and Products, 133, 435-446.
  • Nourozi, E., Hosseini, B., Maleki, R., & Mandoulakani, B. A. (2021). Inductive effect of titanium dioxide nanoparticles on the anticancer compounds production and expression of rosmarinic acid biosynthesis genes in Dracocephalum kotschyi transformed roots. Plant Physiology and Biochemistry, 167, 934-945.
  • Ranjan, A., Rajput, V. D., Minkina, T., Bauer, T., Chauhan, A., & Jindal, T. (2021). Nanoparticles induced stress and toxicity in plants. Environmental Nanotechnology Monitoring and Management, 5, 100457.
  • Roy, D., & Mukhopadhyay, S. (2012). Enhanced rosmarinic acid production in cultured plants of two species of Mentha. Indian J Exp Biol., 50, 817-825.
  • Santos-Gomes, P. C., Seabra, R. M., Andrade, P. B., & Fernandes-Ferreira, M. (2003). Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J Plant Physiol., 160, 1025-1032.
  • Salama, D. M., Osman, S. A., Abd El-Aziz, M. E., Abd Elwahed, M. S., & Shaaban, E. A. (2019). Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology, 18, 101083.
  • Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Chemical components and pharmacological benefits of Basil (Ocimum basilicum): a review. Int J Food Prop, 23, 1961-1970.
  • Sharafi, E., Khayam Nekoei, S. M., Fotokian, M. H., Davoodi, D., Hadavand Mirzaei, H., & Hasanloo, T. (2013). Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L.). Journal of Medicinal Plants and By-products (JMPB), 2, 177-184.
  • Singleton, V., & Rossi, J. (1965). Colorimetry of total phenolic compounds with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • Sousa, S. F., Lopes, A. B., Fernandes, P. A., & Ramos, M. J. (2009). The zinc proteome: a tale of stability and functionality. Dalton Transactions, 38, 7946-7956.
  • Srivastava, S., Conlan, X. A., Adholeya, A., & Cahill, D. M. (2016). Elite hairy roots of Ocimum basilicum as a new source of rosmarinic acid and antioxidants. Plant Cell Tissue and Organ Culture, 126, 19-32.
  • Stadtman, E. R., & Oliver, C. N. (1991). Metal-catalyzed oxidation of proteins. Physiological consequences. J. Biol. Chem., 266, 2005-2008.
  • Taghizadeh, M., Nasibi, F., Manouchehri Kalantari, K., & Mohseni-Moghadam, M. (2021). Modification of phytochemical production and antioxidant activity of Dracocephalum kotschyi cells by exposure to static magnetic field and magnetite nanoparticles. Plant Cell, Tissue and Organ Culture, 147(2), 365-377.
  • Teofilović, B., Grujić-Letić, N., Karadžić, M., Kovačević, S., Podunavac-Kuzmanović, S., Gligorića, E., & Gadžurić, S. (2021). Analysis of functional ingredients and composition of Ocimum basilicum. South African Journal of Botany, 141(4), 227-234.
  • Tepe, B., & Sokmen, A. (2007). Production and optimisation of rosmarinic acid by Satureja hortensis L. callus cultures. Natural Product Research, 21(13), 1133-1144.
  • Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silvernanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf., 104, 302-309.
  • Torre-Roche, R. D. L., Cantu, J., Tamez, C., Zuverza-Mena, N., Hamdi, H., Adisa, I. O., Elmer, W., Gardea Torreday, J., & White, J. C. (2020). Seed biofortification by engineered nanomaterials a pathway to alleviate malnutrition. Journal of Agricultural and Food Chemistry, 68(44), 12189-12202.
  • Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E. R., Sharma, N. C., & Sahi, S. V. (2017). Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. Plant Physiol. Biochem., 110, 59-69.
  • Verma, S. K., Sahin, G., Das, A. K., & Gurel, E. (2016). In vitro plant regeneration of Ocimum basilicum L. is accelerated by zinc sulfate. In Vitro Cellular and Developmental Biology-Plant, 52(1), 20-27.
  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5(1), 3-42.
  • Wang, Q., Xu, S., Zhong, L., Zhao, X., & Wang, L. (2023). Effects of zinc oxide nanoparticles on growth, development, and flavonoid synthesis in Ginkgo biloba. International Journal of Molecular Sciences, 24(21), 15775.
  • Wen Wang, J., & Yong Wu, J. (2010). Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl. Microbiol. Biotechnol., 88, 437-449.
  • Zaeem, A., Drouet, S., Anjum, S., Khurshid, R., Younas, M., Jean Philippe Blondeau, J. P., Tungmunnithum, D., Giglioli-Guivarc’h, N., Hano, C., & Abbasi, B. H. (2020). Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. In vitro cultures: A comparative analysis, Biomolecules, 10(6), 918.
  • Zeljković, S. Ć., Komzáková, K., Šišková, J., Karalija, E., Smékalová, K., & Tarkowski, P. (2020). Phytochemical variability of selected basil genotypes. Industrial Crops and Products, 157, 112910.
  • Zhoua, L. G., & Wu, J. U. (2006). Development and application of medicinal plant tissue cultures for production of drugs and herbal medicinals in China. Nat. Prod. Rep., 23, 789-810.
There are 78 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Funda Yılmaz Baydu 0000-0002-2128-5733

Ersan Bektaş 0000-0001-9030-6908

Publication Date June 20, 2025
Submission Date April 4, 2024
Acceptance Date September 3, 2024
Published in Issue Year 2025

Cite

APA Yılmaz Baydu, F., & Bektaş, E. (2025). Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum basilicum L. Journal of Apitherapy and Nature, 8(1), 37-60. https://doi.org/10.35206/jan.1464551
AMA Yılmaz Baydu F, Bektaş E. Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum basilicum L. J.Apit.Nat. June 2025;8(1):37-60. doi:10.35206/jan.1464551
Chicago Yılmaz Baydu, Funda, and Ersan Bektaş. “Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum Basilicum L”. Journal of Apitherapy and Nature 8, no. 1 (June 2025): 37-60. https://doi.org/10.35206/jan.1464551.
EndNote Yılmaz Baydu F, Bektaş E (June 1, 2025) Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum basilicum L. Journal of Apitherapy and Nature 8 1 37–60.
IEEE F. Yılmaz Baydu and E. Bektaş, “Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum basilicum L”., J.Apit.Nat., vol. 8, no. 1, pp. 37–60, 2025, doi: 10.35206/jan.1464551.
ISNAD Yılmaz Baydu, Funda - Bektaş, Ersan. “Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum Basilicum L”. Journal of Apitherapy and Nature 8/1 (June 2025), 37-60. https://doi.org/10.35206/jan.1464551.
JAMA Yılmaz Baydu F, Bektaş E. Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum basilicum L. J.Apit.Nat. 2025;8:37–60.
MLA Yılmaz Baydu, Funda and Ersan Bektaş. “Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum Basilicum L”. Journal of Apitherapy and Nature, vol. 8, no. 1, 2025, pp. 37-60, doi:10.35206/jan.1464551.
Vancouver Yılmaz Baydu F, Bektaş E. Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum basilicum L. J.Apit.Nat. 2025;8(1):37-60.

  • Google Akademik (Google Scholar)
  • idealonline
  • Directory of Research Journal Indexing (DRJI)
  • Asos İndeks