Review
BibTex RIS Cite

Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey

Year 2025, Volume: 8 Issue: 1, 1 - 23, 20.06.2025

Abstract

Honey volatiles are a complex mixture of substances formed during the nectar collection, honey-making process, and storage by bees. They contribute to the honey's distinct aroma and flavor, with potential health benefits and antioxidant properties. Understanding the fragrance constituents and floral origins of honey can help standardize quality and prevent mislabeling. Honey is a complex structure with numerous components, including phenolic and volatile compounds. These volatile compounds give honey its basic aroma and are found in almost all varieties. Monofloral honey varieties have unique odors and flavors due to these compounds. Research has shown that citrus sp. pollen-containing honey's volatile fraction distinguishes it from other types of honey. Other types of honey, such as Turkish honey, lavender honey, and thyme honey, also contain volatile compounds. These compounds can be used as floral identifiers for honey types, but their significance is still unknown. Further research is needed to understand the interaction between local natural flora volatiles and honey and to determine the effectiveness of volatile compounds in classifying monofloral honey.

References

  • Alissandrakis, E., Tarantilis, P. A., Harizanis, P. C. & Polissiou, M. (2005) Evaluation of four isolation techniques for honey aroma compounds. Journal of the Science of Food and Agriculture, 85, 91-97.
  • Alissandrakis, E., Tarantilis, P. A., Pappas, C., Harizanis, P. C. & Polissiou, M. (2011) Investigation of organic extractives from unifloral chestnut (Castanea sativa L.) and eucalyptus (Eucalyptus globulus Labill.) honeys and flowers to identification of botanical marker compounds. LWT-Food Science and Technology, 44, 1042-1051.
  • Almeida-Muradian, L., Sancho, M. & Pascual-Maté, A. (2018) Composition and properties of Apis mellifera honey: a review. J Apic Res, 57, 5-37.
  • Ampuero, S., Bogdanov, S. & Bosset, J.-O. (2004) Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218, 198-207.
  • Aronne, G. & De micco, V. (2010) Traditional melissopalynology integrated by multivariate analysis and sampling methods to improve botanical and geographical characterisation of honeys. Plant Biosystems, 144, 833-840.
  • Baroni, M. V., Nores, M. L., Díaz, M. D. P., Chiabrando, G. A., Fassano, J. P., Costa, C., et al. (2006) Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction− gas chromatography− mass spectrometry coupled to chemometrics. Journal of agricultural and food chemistry, 54, 7235-7241.
  • Beitlich, N., Koelling-Speer, I., Oelschlaegel, S. & Speer, K. (2014) Differentiation of manuka honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. Journal of agricultural and food chemistry, 62, 6435-6444.
  • Bogdanov, S., Ruoff, K. & Oddo, L. (2004) Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie, 35, S4-S17.
  • Čajka, T., Hajšlová, J., Cochran, J., Holadová, K. & Klimánková, E. (2007) Solid phase microextraction–comprehensive two‐dimensional gas chromatography–time‐of‐flight mass spectrometry for the analysis of honey volatiles. Journal of Separation Science, 30, 534-546.
  • Cajka, T., Hajslova, J., Pudil, F. & Riddellova, K. (2009) Traceability of honey origin based on volatiles pattern processing by artificial neural networks. Journal of Chromatography A, 1216, 1458-1462.
  • Castro-Vázquez, L., Díaz-Maroto, M. C. & Pérez-Coello, M. S. (2007) Aroma composition and new chemical markers of Spanish citrus honeys. Food chemistry, 103, 601-606.
  • Commission, E. U. (2021) Annual Report: The EU Agri− Food Fraud Network and the Administrative Assistance and Cooperation System. European Union Commission: Brussels, Belgium, 1-21.
  • Costa, A. C., Garruti, D. S. & Madruga, M. S. (2019) The power of odour volatiles from unifloral melipona honey evaluated by gas chromatography–olfactometry Osme techniques. Journal of the Science of Food and Agriculture, 99, 4493-4497.
  • Cuevas-Glory, L. F., Pino, J. A., Santiago, L. S. & Sauri-Duch, E. (2007) A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103, 1032-1043. de la Fuente, E., Martínez‐Castro, I. & Sanz, J. (2005) Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography‐mass spectrometry. Journal of separation science, 28, 1093-1100.
  • Escriche, I., Conchado, A., Peral, A. M. & Juan-Borrás, M. (2023) Volatile markers as a reliable alternative for the correct classification of citrus monofloral honey. Food Research International, 168, 112699.
  • Escriche, I., Sobrino-Gregorio, L., Conchado, A. & Juan-Borrás, M. (2017) Volatile profile in the accurate labelling of monofloral honey. The case of lavender and thyme honey. Food chemistry, 226, 61-68.
  • Fakhlaei, R., Selamat, J., Khatib, A., Razis, A. F. A., Sukor, R., Ahmad, S., et al. (2020) The toxic impact of honey adulteration: A review. Foods, 9, 1538.
  • Ferreres, F., Giner, J. M. & Tomás‐Barberán, F. A. (1994) A comparative study of hesperetin and methyl anthranilate as markers of the floral origin of citrus honey. Journal of the Science of Food and Agriculture, 65, 371-372.
  • Guyot, C., Scheirman, V. & Collin, S. (1999) Floral origin markers of heather honeys: Calluna vulgaris and Erica arborea. Food chemistry, 64, 3-11.
  • Guyot-Declerck, C., Renson, S., Bouseta, A. & Collin, S. (2002) Floral quality and discrimination of Lavandula stoechas, Lavandula angustifolia, and Lavandula angustifolia× latifolia honeys. Food Chemistry, 79, 453-459.
  • Jaafar, M., Othman, M., Yaacob, M., Talip, B., Ilyas, M., Ngajikin, N., et al. (2020) A review on honey adulteration and the available detection approaches. International Journal of Integrated Engineering, 12, 125-131.
  • Jerković, I., Mastelić, J., Marijanović, Z., Klein, Ž. & Jelić, M. (2007) Comparison of hydrodistillation and ultrasonic solvent extraction for the isolation of volatile compounds from two unifloral honeys of Robinia pseudoacacia L. and Castanea sativa L. Ultrasonics sonochemistry, 14, 750-756.
  • Jerković, I. & Marijanović, Z. (2010) Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chemistry & biodiversity, 7, 2309-2325.
  • Jerković, I., Marijanović, Z., Ljubičić, I. & Gugić, M. (2010) Contribution of the Bees and Combs to Honey Volatiles: Blank‐Trial Probe for Chemical Profiling of Honey Biodiversity. Chemistry & Biodiversity, 7, 1217-1230.
  • Jerković, I., Tuberoso, C. I., Kasum, A. & Marijanović, Z. (2011) Volatile compounds of Asphodelus microcarpus Salzm. et Viv. Honey obtained by HS‐SPME and USE analyzed by GC/MS. Chemistry & biodiversity, 8, 587-598.
  • Jerković, I. (2013) Volatile benzene derivatives as honey biomarkers. Synlett, 24, 2331-2334.
  • Jerković, I. & Kuś, P. M. (2014) Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Advances, 4, 31710-31728.
  • Karabagias, I. K., Louppis, A. P., Karabournioti, S., Kontakos, S., Papastephanou, C. & Kontominas, M. G. (2017) Characterization and geographical discrimination of commercial Citrus spp. honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics. Food Chemistry, 217, 445-455.
  • Karabagias, I. K. (2018) Volatile metabolites or pollen characteristics as regional markers of monofloral thyme honey? Separation Science Plus, 1, 83-92.
  • Karabagias, I. K., Papastephanou, C. & Karabagias, V. K. (2019) Geographical differentiation of Cypriot multifloral honeys through specific volatile compounds and the use of DFA. AIMS Agriculture and Food, 4, 149-162.
  • Kaškonienė, V. & Venskutonis, P. R. (2010) Floral markers in honey of various botanical and geographic origins: a review. Comprehensive reviews in food science and food safety, 9, 620-634. Kaškonienė, V., Venskutonis, P. R. & Čeksterytė, V. (2008) Composition of volatile compounds of honey of various floral origin and beebread collected in Lithuania. Food Chemistry, 111, 988-997.
  • Lammertyn, J., Veraverbeke, E. A. & Irudayaraj, J. (2004) zNose™ technology for the classification of honey based on rapid aroma profiling. Sensors and actuators B: Chemical, 98, 54-62.
  • Li, H., Liu, Z., Song, M., Jiang, A., Lang, Y. & Chen, L. (2023) Aromatic Profiles and Enantiomeric Distributions of Volatile Compounds during the Ripening of Dendropanax dentiger Honey. Food Research International, 113677.
  • Liang, D., Wen, H., Zhou, Y., Wang, T., Jia, G., Cui, Z., et al. (2023) Simultaneous qualitative and quantitative analyses of volatile components in Chinese honey of six botanical origins using headspace solid‐phase microextraction and gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 103, 7631-7642.
  • Machado, A. M., Miguel, M. G., Vilas-Boas, M. & Figueiredo, A. C. (2020) Honey volatiles as a fingerprint for botanical origin—a review on their occurrence on monofloral honeys. Molecules, 25, 374.
  • Mamedova, M. & Alimzhanova, M. B. (2023) Determination of Biomarkers in Multifloral Honey by Vacuum-Assisted Headspace Solid-Phase Microextraction. Food Analytical Methods, 1-11.
  • Manousi, N., Kalogiouri, N., Ferracane, A., Zachariadis, G. A., Samanidou, V. F., Tranchida, P. Q., et al. (2023) Solid-phase microextraction Arrow combined with comprehensive two-dimensional gas chromatography–mass spectrometry for the elucidation of the volatile composition of honey samples. Analytical and Bioanalytical Chemistry, 415, 2547-2560.
  • Manyi-Loh, C. E., Clarke, A. M. & Ndip, R. N. (2011a) Identification of volatile compounds in solvent extracts of honeys produced in South Africa. African Journal of Agricultural Research, 6, 4327-4334.
  • Manyi-Loh, C. E., Clarke, A. M. & Ndip, R. N. (2011b) An overview of honey: Therapeutic properties and contribution in nutrition and human health. African Journal of Microbiology Research, 5, 844-852.
  • Manyi-Loh, C. E., Ndip, R. N. & Clarke, A. M. (2011c) Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. International Journal of Molecular Sciences, 12, 9514-9532.
  • Montenegro, G., Gómez, M., Casaubon, G., Belancic, A., Mujica, A. & Peña, R. (2009) Analysis of volatile compounds in three unifloral native Chilean honeys. Phyton (Buenos Aires), 78, 61-65.
  • Nayik, G. A. & Nanda, V. (2015) Characterization of the volatile profile of unifloral honey from Kashmir Valley of India by using solid-phase microextraction and gas chromatography–mass spectrometry. European Food Research and Technology, 240, 1091-1100.
  • Odeh, I., Abu-Lafi, S., Dewik, H., Al-Najjar, I., Imam, A., Dembitsky, V. M., et al. (2007) A variety of volatile compounds as markers in Palestinian honey from Thymus capitatus, Thymelaea hirsuta, and Tolpis virgata. Food Chemistry, 101, 1393-1397.
  • Patrignani, M., Fagúndez, G. A., Tananaki, C., Thrasyvoulou, A. & Lupano, C. E. (2018) Volatile compounds of Argentinean honeys: Correlation with floral and geographical origin. Food Chemistry, 246, 32-40.
  • Peña, R. M., Barciela, J., Herrero, C. & García‐Martín, S. (2004) Solid‐phase microextraction gas chromatography‐mass spectrometry determination of monoterpenes in honey. Journal of separation science, 27, 1540-1544.
  • Pérez, R. A., Sánchez-Brunete, C., Calvo, R. M. & Tadeo, J. L. (2002) Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography− mass spectrometry. Journal of Agricultural and Food Chemistry, 50, 2633-2637.
  • Petretto, G. L., Urgeghe, P. P., Mascia, I., Fadda, C., Rourke, J. P. & Pintore, G. (2017) Stir bar sorptive extraction coupled with GC/MS applied to honey: optimization of method and comparative study with headspace extraction techniques. European Food Research and Technology, 243, 735-741.
  • Piasenzotto, L., Gracco, L. & Conte, L. (2003) Solid phase microextraction (SPME) applied to honey quality control. Journal of the Science of Food and Agriculture, 83, 1037-1044.
  • Pino, J. A. (2012) Analysis of odour‐active compounds of black mangrove (Avicennia germinans L.) honey by solid‐phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. International journal of food science & technology, 47, 1688-1694.
  • Pita-Calvo, C. & Vázquez, M. (2017) Differences between honeydew and blossom honeys: A review. Trends in Food Science & Technology, 59, 79-87.
  • Plutowska, B., Chmiel, T., Dymerski, T. & Wardencki, W. (2011) A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chemistry, 126, 1288-1298.
  • Pontes, M., Marques, J. & Câmara, J. (2007) Screening of volatile composition from Portuguese multifloral honeys using headspace solid-phase microextraction-gas chromatography–quadrupole mass spectrometry. Talanta, 74, 91-103.
  • Radovic, B., Careri, M., Mangia, A., Musci, M., Gerboles, M. & Anklam, E. (2001) Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food chemistry, 72, 511-520.
  • Roberts, T., Aureli, P., Flamini, C. & Yndestad, M. (2002) Honey and microbioogical hazards. Proceedings of the scientific committee on veterinary measures relating to public health.
  • Senyuva, H. Z., Gilbert, J., Silici, S., Charlton, A., Dal, C., Gürel, N., et al. (2009) Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. Journal of Agricultural and Food Chemistry, 57, 3911-3919.
  • Siddiqui, A. J., Musharraf, S. G. & Choudhary, M. I. (2017) Application of analytical methods in authentication and adulteration of honey. Food chemistry, 217, 687-698.
  • Siegmund, B., Urdl, K., Jurek, A. & Leitner, E. (2017) “More than Honey”: Investigation on volatiles from monovarietal honeys using new analytical and sensory approaches. Journal of agricultural and food chemistry, 66, 2432-2442.
  • Soares, S., Amaral, J. S., Oliveira, M. B. P. & Mafra, I. (2017) A comprehensive review on the main honey authentication issues: Production and origin. Comprehensive Reviews in Food Science and Food Safety, 16, 1072-1100.
  • Soria, A., González, M., De Lorenzo, C., Martınez-Castro, I. & Sanz, J. (2004) Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85, 121-130.
  • Sotiropoulou, N. S., Xagoraris, M., Revelou, P. K., Kaparakou, E., Kanakis, C., Pappas, C., et al. (2021) The use of SPME-GC-MS IR and Raman techniques for botanical and geographical authentication and detection of adulteration of honey. Foods, 10, 1671.
  • Tan, S. T., Holland, P. T., Wilkins, A. L. & Molan, P. C. (1988) Extractives from New Zealand honeys. 1. White clover, manuka and kanuka unifloral honeys. Journal of Agricultural and Food Chemistry, 36, 453-460.
  • Tananaki, C., Zotou, A. & Thrasyvoulou, A. (2005) Determination of 1, 2-dibromoethane, 1, 4-dichlorobenzene and naphthalene residues in honey by gas chromatography–mass spectrometry using purge and trap thermal desorption extraction. Journal of Chromatography A, 1083, 146-152.
  • Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., et al. (2013) Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124-131.
  • Uma Bharathi, K., Chandrasekar, S., Loganathan, M., Vignesh, S. & Jagan Mohan, R. (2023) Identification of the volatile components of the litchi unifloral honey by electronic nose.
  • Viuda‐Martos, M., Ruiz‐Navajas, Y., Zaldivar‐Cruz, J. M., Kuri, V., Fernández‐López, J., Carbonell‐Barrachina, Á. A., et al. (2010) Aroma profile and physico‐chemical properties of artisanal honey from Tabasco, Mexico. International journal of food science & technology, 45, 1111-1118.
  • Vyviurska, O., Chlebo, R., Pysarevska, S. & Špánik, I. (2016) The Tracing of VOC Composition of Acacia Honey During Ripening Stages by Comprehensive Two‐Dimensional Gas Chromatography. Chemistry & Biodiversity, 13, 1316-1325.
  • Wang, X., Yang, S., He, J., Chen, L., Zhang, J., Jin, Y., et al. (2019) A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry. Food Research International, 119, 960-967.
  • Wang, T., Zhang, S., Zhang, H., Zhao, G., Li, X., Wei, Y., et al. (2020) Determination of volatile components in buckwheat honey and correlation analysis with honey maturity. Shipin Kexue/Food Science, 41, 222-230.
  • Yang, Y., Battesti, M. J., Costa, J., Dupuy, N. & Paolini, J. (2018) Volatile components as chemical markers of the botanical origin of Corsican honeys. Flavour and Fragrance Journal, 33, 52-62.
  • Yildiz, O., Gurkan, H., Sahingil, D., Degirmenci, A., Er Kemal, M., Kolayli, S., et al. (2022) Floral authentication of some monofloral honeys based on volatile composition and physicochemical parameters. European Food Research and Technology, 248, 2145-2155.
  • Zhao, L., Ren, C., Xue, X., Lu, H., Wang, K. & Wu, L. (2022) Safflomin A: A novel chemical marker for Carthamus tinctorius L.(Safflower) monofloral honey. Food Chemistry, 366, 130584.

Baldaki Uçucu Belirteçlerin Değerlendirilmesi: Balın Aromatik Bileşikleri Üzerine Bir İnceleme

Year 2025, Volume: 8 Issue: 1, 1 - 23, 20.06.2025

Abstract

References

  • Alissandrakis, E., Tarantilis, P. A., Harizanis, P. C. & Polissiou, M. (2005) Evaluation of four isolation techniques for honey aroma compounds. Journal of the Science of Food and Agriculture, 85, 91-97.
  • Alissandrakis, E., Tarantilis, P. A., Pappas, C., Harizanis, P. C. & Polissiou, M. (2011) Investigation of organic extractives from unifloral chestnut (Castanea sativa L.) and eucalyptus (Eucalyptus globulus Labill.) honeys and flowers to identification of botanical marker compounds. LWT-Food Science and Technology, 44, 1042-1051.
  • Almeida-Muradian, L., Sancho, M. & Pascual-Maté, A. (2018) Composition and properties of Apis mellifera honey: a review. J Apic Res, 57, 5-37.
  • Ampuero, S., Bogdanov, S. & Bosset, J.-O. (2004) Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218, 198-207.
  • Aronne, G. & De micco, V. (2010) Traditional melissopalynology integrated by multivariate analysis and sampling methods to improve botanical and geographical characterisation of honeys. Plant Biosystems, 144, 833-840.
  • Baroni, M. V., Nores, M. L., Díaz, M. D. P., Chiabrando, G. A., Fassano, J. P., Costa, C., et al. (2006) Determination of volatile organic compound patterns characteristic of five unifloral honey by solid-phase microextraction− gas chromatography− mass spectrometry coupled to chemometrics. Journal of agricultural and food chemistry, 54, 7235-7241.
  • Beitlich, N., Koelling-Speer, I., Oelschlaegel, S. & Speer, K. (2014) Differentiation of manuka honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. Journal of agricultural and food chemistry, 62, 6435-6444.
  • Bogdanov, S., Ruoff, K. & Oddo, L. (2004) Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie, 35, S4-S17.
  • Čajka, T., Hajšlová, J., Cochran, J., Holadová, K. & Klimánková, E. (2007) Solid phase microextraction–comprehensive two‐dimensional gas chromatography–time‐of‐flight mass spectrometry for the analysis of honey volatiles. Journal of Separation Science, 30, 534-546.
  • Cajka, T., Hajslova, J., Pudil, F. & Riddellova, K. (2009) Traceability of honey origin based on volatiles pattern processing by artificial neural networks. Journal of Chromatography A, 1216, 1458-1462.
  • Castro-Vázquez, L., Díaz-Maroto, M. C. & Pérez-Coello, M. S. (2007) Aroma composition and new chemical markers of Spanish citrus honeys. Food chemistry, 103, 601-606.
  • Commission, E. U. (2021) Annual Report: The EU Agri− Food Fraud Network and the Administrative Assistance and Cooperation System. European Union Commission: Brussels, Belgium, 1-21.
  • Costa, A. C., Garruti, D. S. & Madruga, M. S. (2019) The power of odour volatiles from unifloral melipona honey evaluated by gas chromatography–olfactometry Osme techniques. Journal of the Science of Food and Agriculture, 99, 4493-4497.
  • Cuevas-Glory, L. F., Pino, J. A., Santiago, L. S. & Sauri-Duch, E. (2007) A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103, 1032-1043. de la Fuente, E., Martínez‐Castro, I. & Sanz, J. (2005) Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography‐mass spectrometry. Journal of separation science, 28, 1093-1100.
  • Escriche, I., Conchado, A., Peral, A. M. & Juan-Borrás, M. (2023) Volatile markers as a reliable alternative for the correct classification of citrus monofloral honey. Food Research International, 168, 112699.
  • Escriche, I., Sobrino-Gregorio, L., Conchado, A. & Juan-Borrás, M. (2017) Volatile profile in the accurate labelling of monofloral honey. The case of lavender and thyme honey. Food chemistry, 226, 61-68.
  • Fakhlaei, R., Selamat, J., Khatib, A., Razis, A. F. A., Sukor, R., Ahmad, S., et al. (2020) The toxic impact of honey adulteration: A review. Foods, 9, 1538.
  • Ferreres, F., Giner, J. M. & Tomás‐Barberán, F. A. (1994) A comparative study of hesperetin and methyl anthranilate as markers of the floral origin of citrus honey. Journal of the Science of Food and Agriculture, 65, 371-372.
  • Guyot, C., Scheirman, V. & Collin, S. (1999) Floral origin markers of heather honeys: Calluna vulgaris and Erica arborea. Food chemistry, 64, 3-11.
  • Guyot-Declerck, C., Renson, S., Bouseta, A. & Collin, S. (2002) Floral quality and discrimination of Lavandula stoechas, Lavandula angustifolia, and Lavandula angustifolia× latifolia honeys. Food Chemistry, 79, 453-459.
  • Jaafar, M., Othman, M., Yaacob, M., Talip, B., Ilyas, M., Ngajikin, N., et al. (2020) A review on honey adulteration and the available detection approaches. International Journal of Integrated Engineering, 12, 125-131.
  • Jerković, I., Mastelić, J., Marijanović, Z., Klein, Ž. & Jelić, M. (2007) Comparison of hydrodistillation and ultrasonic solvent extraction for the isolation of volatile compounds from two unifloral honeys of Robinia pseudoacacia L. and Castanea sativa L. Ultrasonics sonochemistry, 14, 750-756.
  • Jerković, I. & Marijanović, Z. (2010) Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chemistry & biodiversity, 7, 2309-2325.
  • Jerković, I., Marijanović, Z., Ljubičić, I. & Gugić, M. (2010) Contribution of the Bees and Combs to Honey Volatiles: Blank‐Trial Probe for Chemical Profiling of Honey Biodiversity. Chemistry & Biodiversity, 7, 1217-1230.
  • Jerković, I., Tuberoso, C. I., Kasum, A. & Marijanović, Z. (2011) Volatile compounds of Asphodelus microcarpus Salzm. et Viv. Honey obtained by HS‐SPME and USE analyzed by GC/MS. Chemistry & biodiversity, 8, 587-598.
  • Jerković, I. (2013) Volatile benzene derivatives as honey biomarkers. Synlett, 24, 2331-2334.
  • Jerković, I. & Kuś, P. M. (2014) Terpenes in honey: Occurrence, origin and their role as chemical biomarkers. RSC Advances, 4, 31710-31728.
  • Karabagias, I. K., Louppis, A. P., Karabournioti, S., Kontakos, S., Papastephanou, C. & Kontominas, M. G. (2017) Characterization and geographical discrimination of commercial Citrus spp. honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics. Food Chemistry, 217, 445-455.
  • Karabagias, I. K. (2018) Volatile metabolites or pollen characteristics as regional markers of monofloral thyme honey? Separation Science Plus, 1, 83-92.
  • Karabagias, I. K., Papastephanou, C. & Karabagias, V. K. (2019) Geographical differentiation of Cypriot multifloral honeys through specific volatile compounds and the use of DFA. AIMS Agriculture and Food, 4, 149-162.
  • Kaškonienė, V. & Venskutonis, P. R. (2010) Floral markers in honey of various botanical and geographic origins: a review. Comprehensive reviews in food science and food safety, 9, 620-634. Kaškonienė, V., Venskutonis, P. R. & Čeksterytė, V. (2008) Composition of volatile compounds of honey of various floral origin and beebread collected in Lithuania. Food Chemistry, 111, 988-997.
  • Lammertyn, J., Veraverbeke, E. A. & Irudayaraj, J. (2004) zNose™ technology for the classification of honey based on rapid aroma profiling. Sensors and actuators B: Chemical, 98, 54-62.
  • Li, H., Liu, Z., Song, M., Jiang, A., Lang, Y. & Chen, L. (2023) Aromatic Profiles and Enantiomeric Distributions of Volatile Compounds during the Ripening of Dendropanax dentiger Honey. Food Research International, 113677.
  • Liang, D., Wen, H., Zhou, Y., Wang, T., Jia, G., Cui, Z., et al. (2023) Simultaneous qualitative and quantitative analyses of volatile components in Chinese honey of six botanical origins using headspace solid‐phase microextraction and gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 103, 7631-7642.
  • Machado, A. M., Miguel, M. G., Vilas-Boas, M. & Figueiredo, A. C. (2020) Honey volatiles as a fingerprint for botanical origin—a review on their occurrence on monofloral honeys. Molecules, 25, 374.
  • Mamedova, M. & Alimzhanova, M. B. (2023) Determination of Biomarkers in Multifloral Honey by Vacuum-Assisted Headspace Solid-Phase Microextraction. Food Analytical Methods, 1-11.
  • Manousi, N., Kalogiouri, N., Ferracane, A., Zachariadis, G. A., Samanidou, V. F., Tranchida, P. Q., et al. (2023) Solid-phase microextraction Arrow combined with comprehensive two-dimensional gas chromatography–mass spectrometry for the elucidation of the volatile composition of honey samples. Analytical and Bioanalytical Chemistry, 415, 2547-2560.
  • Manyi-Loh, C. E., Clarke, A. M. & Ndip, R. N. (2011a) Identification of volatile compounds in solvent extracts of honeys produced in South Africa. African Journal of Agricultural Research, 6, 4327-4334.
  • Manyi-Loh, C. E., Clarke, A. M. & Ndip, R. N. (2011b) An overview of honey: Therapeutic properties and contribution in nutrition and human health. African Journal of Microbiology Research, 5, 844-852.
  • Manyi-Loh, C. E., Ndip, R. N. & Clarke, A. M. (2011c) Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. International Journal of Molecular Sciences, 12, 9514-9532.
  • Montenegro, G., Gómez, M., Casaubon, G., Belancic, A., Mujica, A. & Peña, R. (2009) Analysis of volatile compounds in three unifloral native Chilean honeys. Phyton (Buenos Aires), 78, 61-65.
  • Nayik, G. A. & Nanda, V. (2015) Characterization of the volatile profile of unifloral honey from Kashmir Valley of India by using solid-phase microextraction and gas chromatography–mass spectrometry. European Food Research and Technology, 240, 1091-1100.
  • Odeh, I., Abu-Lafi, S., Dewik, H., Al-Najjar, I., Imam, A., Dembitsky, V. M., et al. (2007) A variety of volatile compounds as markers in Palestinian honey from Thymus capitatus, Thymelaea hirsuta, and Tolpis virgata. Food Chemistry, 101, 1393-1397.
  • Patrignani, M., Fagúndez, G. A., Tananaki, C., Thrasyvoulou, A. & Lupano, C. E. (2018) Volatile compounds of Argentinean honeys: Correlation with floral and geographical origin. Food Chemistry, 246, 32-40.
  • Peña, R. M., Barciela, J., Herrero, C. & García‐Martín, S. (2004) Solid‐phase microextraction gas chromatography‐mass spectrometry determination of monoterpenes in honey. Journal of separation science, 27, 1540-1544.
  • Pérez, R. A., Sánchez-Brunete, C., Calvo, R. M. & Tadeo, J. L. (2002) Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography− mass spectrometry. Journal of Agricultural and Food Chemistry, 50, 2633-2637.
  • Petretto, G. L., Urgeghe, P. P., Mascia, I., Fadda, C., Rourke, J. P. & Pintore, G. (2017) Stir bar sorptive extraction coupled with GC/MS applied to honey: optimization of method and comparative study with headspace extraction techniques. European Food Research and Technology, 243, 735-741.
  • Piasenzotto, L., Gracco, L. & Conte, L. (2003) Solid phase microextraction (SPME) applied to honey quality control. Journal of the Science of Food and Agriculture, 83, 1037-1044.
  • Pino, J. A. (2012) Analysis of odour‐active compounds of black mangrove (Avicennia germinans L.) honey by solid‐phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. International journal of food science & technology, 47, 1688-1694.
  • Pita-Calvo, C. & Vázquez, M. (2017) Differences between honeydew and blossom honeys: A review. Trends in Food Science & Technology, 59, 79-87.
  • Plutowska, B., Chmiel, T., Dymerski, T. & Wardencki, W. (2011) A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chemistry, 126, 1288-1298.
  • Pontes, M., Marques, J. & Câmara, J. (2007) Screening of volatile composition from Portuguese multifloral honeys using headspace solid-phase microextraction-gas chromatography–quadrupole mass spectrometry. Talanta, 74, 91-103.
  • Radovic, B., Careri, M., Mangia, A., Musci, M., Gerboles, M. & Anklam, E. (2001) Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food chemistry, 72, 511-520.
  • Roberts, T., Aureli, P., Flamini, C. & Yndestad, M. (2002) Honey and microbioogical hazards. Proceedings of the scientific committee on veterinary measures relating to public health.
  • Senyuva, H. Z., Gilbert, J., Silici, S., Charlton, A., Dal, C., Gürel, N., et al. (2009) Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. Journal of Agricultural and Food Chemistry, 57, 3911-3919.
  • Siddiqui, A. J., Musharraf, S. G. & Choudhary, M. I. (2017) Application of analytical methods in authentication and adulteration of honey. Food chemistry, 217, 687-698.
  • Siegmund, B., Urdl, K., Jurek, A. & Leitner, E. (2017) “More than Honey”: Investigation on volatiles from monovarietal honeys using new analytical and sensory approaches. Journal of agricultural and food chemistry, 66, 2432-2442.
  • Soares, S., Amaral, J. S., Oliveira, M. B. P. & Mafra, I. (2017) A comprehensive review on the main honey authentication issues: Production and origin. Comprehensive Reviews in Food Science and Food Safety, 16, 1072-1100.
  • Soria, A., González, M., De Lorenzo, C., Martınez-Castro, I. & Sanz, J. (2004) Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85, 121-130.
  • Sotiropoulou, N. S., Xagoraris, M., Revelou, P. K., Kaparakou, E., Kanakis, C., Pappas, C., et al. (2021) The use of SPME-GC-MS IR and Raman techniques for botanical and geographical authentication and detection of adulteration of honey. Foods, 10, 1671.
  • Tan, S. T., Holland, P. T., Wilkins, A. L. & Molan, P. C. (1988) Extractives from New Zealand honeys. 1. White clover, manuka and kanuka unifloral honeys. Journal of Agricultural and Food Chemistry, 36, 453-460.
  • Tananaki, C., Zotou, A. & Thrasyvoulou, A. (2005) Determination of 1, 2-dibromoethane, 1, 4-dichlorobenzene and naphthalene residues in honey by gas chromatography–mass spectrometry using purge and trap thermal desorption extraction. Journal of Chromatography A, 1083, 146-152.
  • Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., et al. (2013) Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124-131.
  • Uma Bharathi, K., Chandrasekar, S., Loganathan, M., Vignesh, S. & Jagan Mohan, R. (2023) Identification of the volatile components of the litchi unifloral honey by electronic nose.
  • Viuda‐Martos, M., Ruiz‐Navajas, Y., Zaldivar‐Cruz, J. M., Kuri, V., Fernández‐López, J., Carbonell‐Barrachina, Á. A., et al. (2010) Aroma profile and physico‐chemical properties of artisanal honey from Tabasco, Mexico. International journal of food science & technology, 45, 1111-1118.
  • Vyviurska, O., Chlebo, R., Pysarevska, S. & Špánik, I. (2016) The Tracing of VOC Composition of Acacia Honey During Ripening Stages by Comprehensive Two‐Dimensional Gas Chromatography. Chemistry & Biodiversity, 13, 1316-1325.
  • Wang, X., Yang, S., He, J., Chen, L., Zhang, J., Jin, Y., et al. (2019) A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry. Food Research International, 119, 960-967.
  • Wang, T., Zhang, S., Zhang, H., Zhao, G., Li, X., Wei, Y., et al. (2020) Determination of volatile components in buckwheat honey and correlation analysis with honey maturity. Shipin Kexue/Food Science, 41, 222-230.
  • Yang, Y., Battesti, M. J., Costa, J., Dupuy, N. & Paolini, J. (2018) Volatile components as chemical markers of the botanical origin of Corsican honeys. Flavour and Fragrance Journal, 33, 52-62.
  • Yildiz, O., Gurkan, H., Sahingil, D., Degirmenci, A., Er Kemal, M., Kolayli, S., et al. (2022) Floral authentication of some monofloral honeys based on volatile composition and physicochemical parameters. European Food Research and Technology, 248, 2145-2155.
  • Zhao, L., Ren, C., Xue, X., Lu, H., Wang, K. & Wu, L. (2022) Safflomin A: A novel chemical marker for Carthamus tinctorius L.(Safflower) monofloral honey. Food Chemistry, 366, 130584.
There are 71 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Review Articles
Authors

Nurullah Demir 0000-0002-9221-7826

Publication Date June 20, 2025
Submission Date December 10, 2023
Acceptance Date August 7, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Demir, N. (2025). Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey. Journal of Apitherapy and Nature, 8(1), 1-23.
AMA Demir N. Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey. J.Apit.Nat. June 2025;8(1):1-23.
Chicago Demir, Nurullah. “Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey”. Journal of Apitherapy and Nature 8, no. 1 (June 2025): 1-23.
EndNote Demir N (June 1, 2025) Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey. Journal of Apitherapy and Nature 8 1 1–23.
IEEE N. Demir, “Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey”, J.Apit.Nat., vol. 8, no. 1, pp. 1–23, 2025.
ISNAD Demir, Nurullah. “Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey”. Journal of Apitherapy and Nature 8/1 (June 2025), 1-23.
JAMA Demir N. Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey. J.Apit.Nat. 2025;8:1–23.
MLA Demir, Nurullah. “Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey”. Journal of Apitherapy and Nature, vol. 8, no. 1, 2025, pp. 1-23.
Vancouver Demir N. Evaluation of Marker Volatiles in Honey: A Review of Aromatic Compounds of Honey. J.Apit.Nat. 2025;8(1):1-23.

  • Google Akademik (Google Scholar)
  • idealonline
  • Directory of Research Journal Indexing (DRJI)
  • Asos İndeks