Research Article
BibTex RIS Cite

Türkiye'deki Yer Tabanlı Astronomi Gözlemevleri için Soğurucu Aerosollerin Analizi

Year 2025, Volume: 4 Issue: 1, 38 - 50, 27.06.2025
https://doi.org/10.5281/zenodo.15739554

Abstract

Bu çalışmada, Türkiye'deki yer tabanlı astronomik gözlemler üzerinde aerosollerin etkisi incelenmiş, aerosollerin mekânsal ve zamansal değişimleri değerlendirilmiştir. Çalışmada geniş alan kapsama avantajı nedeniyle uydu verileri tercih edilmiş, çoklu sensör gözlemlerinden türetilen Absorbe Edici Aerosol İndeksi (AAI) ürünü kullanılmıştır. Pozitif AAI (PAAI), atmosferdeki ışığı absorbe eden aerosollerin (toz, duman, volkanik kül gibi) yoğunluğunu ölçen bir parametredir. Yüksek PAAI değerleri, genellikle toz fırtınaları, orman yangınları ve volkanik patlamalar gibi büyük ölçekli atmosferik olayların varlığını göstermektedir. Bu nedenle, PAAI değerleri astronomik gözlemler için atmosferik koşulların belirlenmesinde önemli bir gösterge olarak kullanılmaktadır.
Çalışma sonucunda, Türkiye’deki gözlemevlerinin mevcut aerosol özellikleri ayrıntılı biçimde ortaya konmuştur. 2024 yılı için küresel ortalama PAAI değeri 0,34 olarak hesaplanmış ve bu değer 45 yıllık uzun dönem küresel ortalama olan 0,38'in altında bulunmuştur. Öte yandan, Türkiye'nin 2024 yılı ortalama PAAI değeri 0,38 olarak ölçülmüş ve uzun dönem küresel ortalama ile uyumlu olduğu belirlenmiştir.
Bu bulgular, Türkiye’deki gözlemevlerinin, atmosferik aerosol koşulları açısından dünya ortalamasına yakın değerlere sahip olduğunu göstermektedir. Elde edilen sonuçlar, astronomik gözlem verilerinin doğruluk düzeylerinin değerlendirilmesi, gözlem programlarının planlanması ve uygun gözlem yerlerinin seçimi açısından önemli katkılar sunmaktadır. Atmosferik aerosollerin fotometrik ve spektroskopik veriler üzerindeki etkilerinin anlaşılması, gelecekteki yüksek hassasiyetli astronomik gözlemlerin başarısını artırmak için kritik öneme sahiptir.

References

  • Aslanoğlu, S. Y., Proestakis, E., Gkikas, A., Güllü, G., & Amiridis, V. (2022). Dust climatology of Turkey as a part of the Eastern Mediterranean Basin via 9-year CALIPSO-derived product. Atmosphere, 13(5), 733. https://doi.org/10.3390/atmos13050733.
  • Balarabe, M., Abdullah, K., Nawawi, M., & Khalil, A. E. (2016). Monthly temporal-spatial variability and estimation of absorbing aerosol index using ground-based meteorological data in Nigeria. Atmospheric and Climate Sciences, 6(03), 425. https://doi.org/10.4236/acs.2016.63035.
  • Cavazzani, S., Ortolani, S., Bertolo, A., Binotto, R., Fiorentin, P., Carraro, G., & Zitelli, V. (2020). Satellite measurements of artificial light at night: Aerosol effects. Monthly Notices of the Royal Astronomical Society, 499(4), 5075–5089. https://doi.org/10.1093/mnras/staa3157.
  • Gan, Y., Zhang, Z., Liu, F., Chen, Z., Guo, Q., Zhu, Z., & Ren, Y. (2024). Analysis of characteristics and changes in three-dimensional spatial and temporal distribution of aerosol types in Central Asia. Science of The Total Environment, 927, 172196. https://doi.org/10.1016/j.scitotenv.2024.172196.
  • Holben, B. N., Eck, T. F., Slutsker, I. A., Tanre, D., Buis, J. P., Setzer, A., ... & Smirnov, A. (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote sensing of environment, 66(1), 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5.
  • Isik, A. G., Aslanoğlu, S. Y., & Güllü, G. (2024). Long-term evaluation of aerosol optical properties in the Levantine region: A comparative analysis of AERONET and Aqua/MODIS. Remote Sensing, 16(14), 2651. https://doi.org/10.3390/rs16142651.
  • Jackson, J. M., Liu, H., Laszlo, I., Kondragunta, S., Remer, L. A., Huang, J., & Huang, H. C. (2013). Suomi‐NPP VIIRS aerosol algorithms and data products. Journal of Geophysical Research: Atmospheres, 118(22), 12-673. https://doi.org/10.1002/2013JD020449.
  • Jiadan, D., Liqiao, T., Fang, C., Xiaobin, C., Xiaoling, C., Qiangqiang, X., & Xinghui, X. (2023). Spatio-temporal variations of aerosol optical depth over Ukraine under the Russia-Ukraine war. Atmospheric Environment, 314, 120114. https://doi.org/10.1016/j.atmosenv.2023.120114.
  • Kocifaj, M., & Bará, S. (2020). Night-time monitoring of the aerosol content of the lower atmosphere by differential photometry of the anthropogenic skyglow. Monthly Notices of the Royal Astronomical Society: Letters, 500(1), L47–L51. https://doi.org/10.1093/mnrasl/slaa181.
  • Kooreman, M. L., Stammes, P., Trees, V., Sneep, M., Tilstra, L. G., de Graaf, M., ... & Veefkind, J. P. (2020). Effects of clouds on the UV Absorbing Aerosol Index from TROPOMI. Atmospheric Measurement Techniques Discussions, 2020, 1-31. https://doi.org/10.5194/amt-13-6407-2020.
  • Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13). https://doi.org/10.1029/2006JD007811.
  • Liu, J., Ding, J., Li, L., Li, X., Zhang, Z., Ran, S., Ge, X., Zhang, J., Wang, J., 2020. Characteristics of aerosol optical depth over land types in central Asia. Science of the Total Environment 727, 138676. https://doi.org/10.1016/j.scitotenv.2020.138676.
  • Mikhalev, A. V., Tashchilin, M. A., & Sakerin, S. M. (2019). Effect of atmospheric aerosol on ground-based airglow observations. Atmospheric and Oceanic Optics, 32, 410–415. https://doi.org/10.1134/S1024856019040109.
  • Osgouei, P. E., & Kaya, Ş. (2023). A comprehensıve analysıs of the spatıo-temporal varıatıon of satellıte-based aerosol optıcal depth ın marmara regıon of turkıye durıng 2000–2021. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 509-514. https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-509-2023.
  • Ozdemir, E., Tuygun, G. T., & Elbir, T. (2020). Application of aerosol classification methods based on AERONET version 3 product over eastern Mediterranean and Black Sea. Atmospheric Pollution Research, 11(12), 2226-2243. https://doi.org/10.1016/j.apr.2020.06.008.
  • Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., ... & Holben, B. N. (2005). The MODIS aerosol algorithm, products, and validation. Journal of the atmospheric sciences, 62(4), 947-973. https://doi.org/10.1175/JAS3385.1.
  • Sánchez, S. F., Aceituno, J., Thiele, U., Pérez‐Ramírez, D., & Alves, J. (2007). The night sky at the Calar Alto Observatory. Publications of the Astronomical Society of the Pacific, 119(860), 1186–1198. https://doi.org/10.1086/522378.
  • Shaylor, M., Brindley, H., & Sellar, A. (2022). An evaluation of two decades of aerosol optical depth retrievals from MODIS over Australia. Remote Sensing, 14(11), 2664. https://doi.org/10.3390/rs14112664.
  • Tariq, S., Shahzad, H., Mehmood, U., & Haq, Z. U. (2023). Linear and wavelet analysis of aerosol optical depth (AOD) and prevailing meteorological factors during summer (2003–2016) over Turkey using Remote Sensing. Air Quality, Atmosphere & Health, 16(12), 2509-2528. https://doi.org/10.1007/s11869-023-01422-0.
  • Tilstra, L. G., Tuinder, O. N., & Stammes, P. (2010, September). GOME-2 absorbing aerosol index: Statistical analysis, comparison to GOME-1 and impact of instrument degradation. In Proceedings of the 2010 EUMETSAT Meteorological Satellite Conference (p. 57). Retrieved from https://www-cdn.eumetsat.int/files/2020-04/pdf_conf_p57_s4_12_tilstra_p.pdf.
  • Tutsak, E., & Koçak, M. (2020). Optical and microphysical properties of the columnar Aerosol burden over the Eastern Mediterranean: Discrimination of Aerosol types. Atmospheric Environment, 229, 117463. https://doi.org/10.1016/j.atmosenv.2020.117463.
  • Tuygun, G. T., & Elbir, T. (2020). Long-term temporal analysis of the columnar and surface aerosol relationship with planetary boundary layer height at a southern coastal site of Turkey. Atmospheric Pollution Research, 11(12), 2259-2269. https://doi.org/10.1016/j.apr.2020.09.008.
  • Tuygun, G. T., & Elbir, T. (2023). Long-term spatiotemporal variation in atmospheric aerosol properties over Türkiye based on MERRA-2 reanalysis data: aerosol classification based on city type. Environmental Science and Pollution Research, 31(28), 40655-40668. https://doi.org/10.1007/s11356-023-27920-3.
  • Tuygun, G. T., & Elbir, T. (2024). Comparative analysis of CAMS aerosol optical depth data and AERONET observations in the Eastern Mediterranean over 19 years. Environmental Science and Pollution Research, 31(18), 27069-27084. https://doi.org/10.1007/s11356-024-32950-6.
  • Verma, S., Prakash, D., Soni, M., & Ram, K. (2019). Atmospheric aerosols monitoring: Ground and satellite-based instruments. In Advances in environmental monitoring and assessment. IntechOpen. https://doi.org/10.5772/intechopen.80489.
  • Yoshioka, M., Mahowald, N., Dufresne, J. L., & Luo, C. (2005). Simulation of absorbing aerosol indices for African dust. Journal of Geophysical Research: Atmospheres, 110(D18). https://doi.org/10.1029/2004JD005276.
  • Zhang, H. H., Liu, X. W., Yuan, H. B., Zhao, H. B., Yao, J. S., Zhang, H. W., & Xiang, M. S. (2013). Atmospheric extinction coefficients and night sky brightness at the Xuyi Observation Station. Research in Astronomy and Astrophysics, 13(4), 490–502. https://doi.org/10.1088/1674-4527/13/4/010.

Analysis of Absorbing Aerosols for Ground-Based Astronomical Observatories in Türkiye

Year 2025, Volume: 4 Issue: 1, 38 - 50, 27.06.2025
https://doi.org/10.5281/zenodo.15739554

Abstract

In this study, the impact of aerosols on ground-based astronomical observations in Türkiye was examined, and their spatial and temporal variations were assessed. Satellite data was used in the study due to its advantage of wide area coverage. The absorbing aerosol index (AAI) product, derived from multi-sensor observations, was utilized in the research.
Positive AAI (PAAI) is a measurement of the concentration of absorbing aerosols (such as dust, smoke, volcanic ash, etc.) in the atmosphere. High PAAI values are often indicative of significant weather events, such as dust storms, forest fires, and volcanic eruptions. Therefore, PAAI values serve as an important indicator for atmospheric conditions affecting astronomical observations.
The study revealed the current aerosol characteristics of the observatories in detail. The global average PAAI value for 2024 is calculated to be 0.34, which is lower than the 45-year long-term global average of 0.38. However, the average PAAI value for Türkiye in 2024 is 0.38, which is consistent with the long-term global average.
These findings indicate that the observatories in Türkiye are closely aligned with the global average aerosol conditions. The results provide significant insights into the evaluation of astronomical observation data accuracy, the planning of observation programs, and the selection of suitable observation sites. Understanding the impact of atmospheric aerosols on photometric and spectroscopic data is critical for improving the success of future high-precision astronomical observations.

References

  • Aslanoğlu, S. Y., Proestakis, E., Gkikas, A., Güllü, G., & Amiridis, V. (2022). Dust climatology of Turkey as a part of the Eastern Mediterranean Basin via 9-year CALIPSO-derived product. Atmosphere, 13(5), 733. https://doi.org/10.3390/atmos13050733.
  • Balarabe, M., Abdullah, K., Nawawi, M., & Khalil, A. E. (2016). Monthly temporal-spatial variability and estimation of absorbing aerosol index using ground-based meteorological data in Nigeria. Atmospheric and Climate Sciences, 6(03), 425. https://doi.org/10.4236/acs.2016.63035.
  • Cavazzani, S., Ortolani, S., Bertolo, A., Binotto, R., Fiorentin, P., Carraro, G., & Zitelli, V. (2020). Satellite measurements of artificial light at night: Aerosol effects. Monthly Notices of the Royal Astronomical Society, 499(4), 5075–5089. https://doi.org/10.1093/mnras/staa3157.
  • Gan, Y., Zhang, Z., Liu, F., Chen, Z., Guo, Q., Zhu, Z., & Ren, Y. (2024). Analysis of characteristics and changes in three-dimensional spatial and temporal distribution of aerosol types in Central Asia. Science of The Total Environment, 927, 172196. https://doi.org/10.1016/j.scitotenv.2024.172196.
  • Holben, B. N., Eck, T. F., Slutsker, I. A., Tanre, D., Buis, J. P., Setzer, A., ... & Smirnov, A. (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote sensing of environment, 66(1), 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5.
  • Isik, A. G., Aslanoğlu, S. Y., & Güllü, G. (2024). Long-term evaluation of aerosol optical properties in the Levantine region: A comparative analysis of AERONET and Aqua/MODIS. Remote Sensing, 16(14), 2651. https://doi.org/10.3390/rs16142651.
  • Jackson, J. M., Liu, H., Laszlo, I., Kondragunta, S., Remer, L. A., Huang, J., & Huang, H. C. (2013). Suomi‐NPP VIIRS aerosol algorithms and data products. Journal of Geophysical Research: Atmospheres, 118(22), 12-673. https://doi.org/10.1002/2013JD020449.
  • Jiadan, D., Liqiao, T., Fang, C., Xiaobin, C., Xiaoling, C., Qiangqiang, X., & Xinghui, X. (2023). Spatio-temporal variations of aerosol optical depth over Ukraine under the Russia-Ukraine war. Atmospheric Environment, 314, 120114. https://doi.org/10.1016/j.atmosenv.2023.120114.
  • Kocifaj, M., & Bará, S. (2020). Night-time monitoring of the aerosol content of the lower atmosphere by differential photometry of the anthropogenic skyglow. Monthly Notices of the Royal Astronomical Society: Letters, 500(1), L47–L51. https://doi.org/10.1093/mnrasl/slaa181.
  • Kooreman, M. L., Stammes, P., Trees, V., Sneep, M., Tilstra, L. G., de Graaf, M., ... & Veefkind, J. P. (2020). Effects of clouds on the UV Absorbing Aerosol Index from TROPOMI. Atmospheric Measurement Techniques Discussions, 2020, 1-31. https://doi.org/10.5194/amt-13-6407-2020.
  • Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13). https://doi.org/10.1029/2006JD007811.
  • Liu, J., Ding, J., Li, L., Li, X., Zhang, Z., Ran, S., Ge, X., Zhang, J., Wang, J., 2020. Characteristics of aerosol optical depth over land types in central Asia. Science of the Total Environment 727, 138676. https://doi.org/10.1016/j.scitotenv.2020.138676.
  • Mikhalev, A. V., Tashchilin, M. A., & Sakerin, S. M. (2019). Effect of atmospheric aerosol on ground-based airglow observations. Atmospheric and Oceanic Optics, 32, 410–415. https://doi.org/10.1134/S1024856019040109.
  • Osgouei, P. E., & Kaya, Ş. (2023). A comprehensıve analysıs of the spatıo-temporal varıatıon of satellıte-based aerosol optıcal depth ın marmara regıon of turkıye durıng 2000–2021. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 509-514. https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-509-2023.
  • Ozdemir, E., Tuygun, G. T., & Elbir, T. (2020). Application of aerosol classification methods based on AERONET version 3 product over eastern Mediterranean and Black Sea. Atmospheric Pollution Research, 11(12), 2226-2243. https://doi.org/10.1016/j.apr.2020.06.008.
  • Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., ... & Holben, B. N. (2005). The MODIS aerosol algorithm, products, and validation. Journal of the atmospheric sciences, 62(4), 947-973. https://doi.org/10.1175/JAS3385.1.
  • Sánchez, S. F., Aceituno, J., Thiele, U., Pérez‐Ramírez, D., & Alves, J. (2007). The night sky at the Calar Alto Observatory. Publications of the Astronomical Society of the Pacific, 119(860), 1186–1198. https://doi.org/10.1086/522378.
  • Shaylor, M., Brindley, H., & Sellar, A. (2022). An evaluation of two decades of aerosol optical depth retrievals from MODIS over Australia. Remote Sensing, 14(11), 2664. https://doi.org/10.3390/rs14112664.
  • Tariq, S., Shahzad, H., Mehmood, U., & Haq, Z. U. (2023). Linear and wavelet analysis of aerosol optical depth (AOD) and prevailing meteorological factors during summer (2003–2016) over Turkey using Remote Sensing. Air Quality, Atmosphere & Health, 16(12), 2509-2528. https://doi.org/10.1007/s11869-023-01422-0.
  • Tilstra, L. G., Tuinder, O. N., & Stammes, P. (2010, September). GOME-2 absorbing aerosol index: Statistical analysis, comparison to GOME-1 and impact of instrument degradation. In Proceedings of the 2010 EUMETSAT Meteorological Satellite Conference (p. 57). Retrieved from https://www-cdn.eumetsat.int/files/2020-04/pdf_conf_p57_s4_12_tilstra_p.pdf.
  • Tutsak, E., & Koçak, M. (2020). Optical and microphysical properties of the columnar Aerosol burden over the Eastern Mediterranean: Discrimination of Aerosol types. Atmospheric Environment, 229, 117463. https://doi.org/10.1016/j.atmosenv.2020.117463.
  • Tuygun, G. T., & Elbir, T. (2020). Long-term temporal analysis of the columnar and surface aerosol relationship with planetary boundary layer height at a southern coastal site of Turkey. Atmospheric Pollution Research, 11(12), 2259-2269. https://doi.org/10.1016/j.apr.2020.09.008.
  • Tuygun, G. T., & Elbir, T. (2023). Long-term spatiotemporal variation in atmospheric aerosol properties over Türkiye based on MERRA-2 reanalysis data: aerosol classification based on city type. Environmental Science and Pollution Research, 31(28), 40655-40668. https://doi.org/10.1007/s11356-023-27920-3.
  • Tuygun, G. T., & Elbir, T. (2024). Comparative analysis of CAMS aerosol optical depth data and AERONET observations in the Eastern Mediterranean over 19 years. Environmental Science and Pollution Research, 31(18), 27069-27084. https://doi.org/10.1007/s11356-024-32950-6.
  • Verma, S., Prakash, D., Soni, M., & Ram, K. (2019). Atmospheric aerosols monitoring: Ground and satellite-based instruments. In Advances in environmental monitoring and assessment. IntechOpen. https://doi.org/10.5772/intechopen.80489.
  • Yoshioka, M., Mahowald, N., Dufresne, J. L., & Luo, C. (2005). Simulation of absorbing aerosol indices for African dust. Journal of Geophysical Research: Atmospheres, 110(D18). https://doi.org/10.1029/2004JD005276.
  • Zhang, H. H., Liu, X. W., Yuan, H. B., Zhao, H. B., Yao, J. S., Zhang, H. W., & Xiang, M. S. (2013). Atmospheric extinction coefficients and night sky brightness at the Xuyi Observation Station. Research in Astronomy and Astrophysics, 13(4), 490–502. https://doi.org/10.1088/1674-4527/13/4/010.
There are 27 citations in total.

Details

Primary Language English
Subjects Astronomical Sciences (Other)
Journal Section Research Articles
Authors

Sima Aydın 0009-0004-5791-6711

Fethullah Polat 0009-0001-1190-465X

Kazım Kaba 0000-0001-8328-8123

Early Pub Date June 25, 2025
Publication Date June 27, 2025
Submission Date April 28, 2025
Acceptance Date June 19, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Aydın, S., Polat, F., & Kaba, K. (2025). Analysis of Absorbing Aerosols for Ground-Based Astronomical Observatories in Türkiye. Journal of Anatolian Physics and Astronomy, 4(1), 38-50. https://doi.org/10.5281/zenodo.15739554