Research Article
BibTex RIS Cite

TÜNEL YAPILARINDA KARŞILAŞILAN MÜHENDİSLİK PROBLEMLERİNİN JEOFİZİK YÖNTEMLERLE BELİRLENMESİ: BURSA İLİ DOĞANCI TÜNELİ ÖRNEĞİ

Year 2025, Volume: 13 Issue: 2, 632 - 648, 27.06.2025
https://doi.org/10.21923/jesd.1610170

Abstract

Tüm dünyada karayolu tünellerin yapımı sırasında ve sonrasında, jeolojik koşullardan kaynaklı pek çok mühendislik problemi ile karşılaşılmaktadır. Bu çalışmada, Bursa İli Osmangazi-Orhangazi ilçeleri bağlantı karayolundaki Doğancı Tüneli'nin yan ve tavan duvarlarından su sızıntılarının ve ilişkili oluşan deformasyonların belirlenmesinde, üç farklı jeofizik yöntemin sağladığı katkılar incelenmiştir. Bu kapsamda, tünelin iç duvarlarında Yer Radarı (YR), Elektrik Özdirenç Tomografi (EÖT) ve Çok Kanallı Yüzey Dalgası Analizi (ÇKYDA), tünelin girişinde üst kotta ve çıkışındaki palye üstünde sadece EÖT ölçümleri yapılmıştır. Özdirenç değerleri 4-1000 Ohm.m ve S-dalga hızı değerleri 280-800 m/s arasında elde edilmiştir. Birbirine paralel YR profillerinden tünelin duvarlarının ve dış cephesinin üç boyutlu görüntüleri oluşturulmuştur. Tüm bulgular birlikte değerlendirildiğinde, genel olarak özdirencin ve S-dalga hızının düşük, YR genliklerinin ise görece yüksek olduğu tünel bölümleri su sızıntılarından kaynaklı deformasyonlarla ilişkilendirilmiştir. Sonuç olarak, birkaç jeofizik yöntemin birlikte kullanılmasının tünellerde gözlenen deformasyonların kaynağının belirlenmesinde son derece yararlı olduğu görülmüştür.

References

  • Aksu, T. F., 2006. Jeofizik elektrik yöntemlerinde 2 boyutlu tomografi ve arazi uygulamaları. Yeraltı suyu Araştırmalarında Uygulanan Yöntemler ve Saha Uygulamaları Seminer Notları, Jeofizik Mühendisleri Odası.
  • Aktürk, Ö., 2010. Tünel Çevresindeki Deformasyon Alanının 3-Boyutlu Sayısal Modeller ile Değerlendirilmesi (Necatibey Metro İstasyonu, Ankara, Türkiye). ODTÜ, Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara.
  • Alemdağ, H., Köroğlu, F., Aydın, Z.Ö., Şeren, A., Babacan, A.E., Fırat Ersoy, A., 2024. Deciphering of karst geomorphology and sinkhole (doline) structures using multiple geophysical and geological methods (Trabzon, NE Türkiye). Bulletin of Engineering Geology and Environment, 83, 286.
  • Annan, P. ,2003. Ground penetrating radar principles, procedures and applications. Sensors and software, 278. Anbazhagan, P., Sitharam, T.G., 2008. Site characterization and site response studies using shear wave velocity. J. Seismol. Earthq. Eng. 10 (2), 53–67.
  • Arifin, M.H., Kayode, J.S., Izwan, M.K., Hasan Said, H.A., Hussin, H., 2019. Data for the potential gold mineralization mapping with the applications of electrical resistivity imaging and induces polarization geophysical surveys. Data Brief 2019 (22), 830–835.
  • Aytas Z., Alpaslan N., Ozcep F. ,2023. Evaluation of liquefaction potential by standard penetration test and shear wave velocity methods: a case study. Natural Hazards, 118(3),2377-2417.
  • Babacan, A.E., Ceylan, S., 2021. Evaluation of soil liquefaction potential with a holistic approach: a case study from Arakli (Trabzon, Turkey). Bollettino di Geofisica Teorica ed Applicata, 62(1), 173-198.
  • Barbieri, A., Regala, F. T., Cascalheira, J., Bicho, N., 2023. The sediment at the end of the tunnel: Geophysical research to locate the Pleistocene entrance of Gruta da Companheira (Algarve, Southern Portugal). Archaeological Prospection, 30(2), 117-134.
  • Bauman, P., 2005. 2-D resistivity surveying for hydrocarbons–a primer. CSEG Recorder 30 (04), 1–15. Benyassine, E.M., Lachhab, A., Dekayir, A., Parisot, J.C., Rouai, M., 2017. An application of electrical resistivity tomography to investigate heavy metals pathways. J. Environ. Eng. Geophys. 22 (4), 315–324.
  • Bingöl, E., Akyürek, B., Korkmazer, B., 1973. Geology of the Biga Peninsula and some characteristics of the Karakaya Formation. Geological Congress, 50th Anniversary of Turkish Republic, pp. 71-77, MTA Ankara.
  • Capizzi, P., Cosentino, P. L., Fiandaca, G., Martorana, R., Messina, P., 2005. 2D GPR and Geoelectrical Modelling–Tests on Man–Made Tunnels and Cavities. Near Surface 2005-11th European Meeting of Environmental and Engineering Geophysics, s. cp-13). European Association of Geoscientists & Engineers.
  • Cardarelli, E., Marrone, C., Orlando, L., 2003. Evaluation of tunnel stability using integrated geophysical methods. Journal of Applied Geophysics, 52 (2-3), 93-102.
  • Cardarelli, E., Di Filippo, G., Tuccinardi, E., 2006. Electrical resistivity tomography to detect buried cavities in Rome: a case study, Near Surface Geophysics, Vol. 4, 387-392.
  • Chambers, J.E., Kuras, O., Meldrum, P.I., Ogilvy, R.D., Hollands, J., 2006. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71 (6), B231–B239.
  • Chen, L., Wang, H., Xu, X., Zhang, Y., Wang, C., Song, J., Han, L., 2020. Geological exploration using integrated geophysical methods in tunnel: a case. Geotechnical and Geological Engineering, 38, 1111-1119.
  • Dahlin, T., 2001. The development of DC resistivity imaging techniques. Computers & Geosciences, 27(9), 1019-1029.
  • Davis, J. L., Annan, A. P., 1989. Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy Geophysical prospecting, 37(5), 531-551.
  • Dey, A., Morrison, H. F., 1979. Resistivity modelling for arbitrarily shaped two‐dimensional structures. Geophysical prospecting, 27(1), 106-136.
  • Ding, Y., Yang, B., Xu, G., Wang, X., 2022. Improved Dempster–Shafer evidence theory for tunnel water inrush risk analysis based on fuzzy identification factors of multi-source geophysical data. Remote Sensing, 14(23), 6178.
  • Durdağ, D., 2018. Çok Kanallı Yüzey Dalgaları Analizi (Masw) ve Jeoteknik Uygulamaları. DEÜ, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir.
  • Ergüven, K., 2015. Tünel İmalatında Yer Radarı Yöntemiyle Tahribatsız Test Uygulaması. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • Feng, S. J., Zhao, Y., Zhang, X. L., Bai, Z. B., 2020. Leachate leakage investigation, assessment and engineering counter measures for tunneling underneath a MSW landfill. Engineering Geology, 265, 105447.
  • Fores, B., Champollion, C., Lesparre, N., Pasquet, S., Martin, A., Nguyen, F., 2021. Variability of the water stock dynamics in karst: insights from surface-to-tunnel geophysics. Hydrogeology Journal, 29(6), 2077-2089.
  • Foti, S., Parolai, S., Albarello, D., Picozzi, M., 2011. Application of surface-wave methods for seismic site characterization. Surv. Geophys. 32 (6), 777–825.
  • Funk, B., Flores-Orozco, A., Steiner, M., 2024. Possibilities and limitations of cave detection with ERT, Geomorphology, 462, 109332, 1-10.
  • Geraldine C, . Anukwu, Amin E, . Khalil, Mohd, Nawawi, Khiruddin, Abdullah, Fathi M, . Abdullah, 2018. Multi-channel analysis of surface waves (MASW) using CMP analysis to identify soil problems threat on the heritage site at Georgetown, Malaysia. SEG Glob. Meet. Abstr. 1640–1643. https://doi.org/10.1190/IGC2018-404.
  • Ghezzi, A., Schettino, A., Pierantoni, PP., Conyers, L., Tassi, L., Vigliotti, L., Schettino, E., Melfi, M., Gorrini, ME., Boila, P., 2019. Reconstruction of a Segment of the UNESCO World Heritage Hadrian’s Villa Tunnel Network by Integrated GPR, Magnetic–Paleomagnetic, and Electric Resistivity Prospections. Remote Sensing, 11(15), 1739.
  • Griffiths, D. H., Barker, R. D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of applied Geophysics, 29(3-4), 211-226.
  • Gündogdu, N.Y., Candansayar, M.E., Genç, E., 2017. Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods. J. Environ. Eng. Geophys. 22 (2), 177–189.
  • Irawan, D., Sumintadireja, P., Saepuloh, A., 2013. 2-D Subsurface imaging tecniques for deep ore mineral mapping using geoelectrical and induced polarization (IP) methods. Proc. Earth Planet. Sci. 6, 139–144.
  • Izumotani, S., Takeuchi, M., Murayama, H., Okazaki, K., 2021. Estimating rock properties using seismic refraction survey data: a case study in an abandoned road tunnel. Exploration Geophysics, 52(4), 409-418.
  • Jol, H. M., Smith, D. G., 1991. Ground penetrating radar of northern lacustrine deltas. Canadian Journal of Earth Sciences, 28(12), 1939-1947.
  • Kadıoğlu, S., 2003. 3D Ground Penetrating Radar-Data Acquisition, Processing, and Interpretation. 14th International Petroleum Congress and Natural Gas Congress and Exhibition, Bildiriler Kitabı, s. 485-486. Ankara.
  • Kadioglu S., Ulugergerli E. U., 2012. Imaging karstic cavities in transparent 3D volume of the GPR data set in Akkopru dam, Mugla, Turkey. Nondestructive Testing and Evaluation, 27(3), 263-271.
  • Karslı, H., 2018. Jeofizik-Jeoteknik İşbirliği Sürecinde Çok Kanallı Yüzey Dalgası Analiz (ÇKYDA) Yöntemi. Jeofizik Bülteni, 78, 14-48, JFMO, Ankara.
  • Karslı, H., Babacan, A.E., Sayıl, N., Çoban K.H., Akın, Ö., 2024a. An assessment of seismicity and near surface geophysical characteristics of potential solid waste landfill sites in the Eastern Black Sea Region of Türkiye. Environ Sci Pollut Res 31, 14156–14177.
  • Karslı H., Babacan A. E., Akın Ö., 2024b. Subsurface characterization by active and passive source geophysical methods after the 06 February 2023 earthquakes in Turkey. Natural Hazards, 120 (6), 5257-5286.
  • Kaya, M.A., Özürlan, G., Balkaya, Ç., 2015. Geoelectrical Investigation of Seawater Intrusion in the Coastal Urban Area of Çanakkale, NW Turkey, Environ Earth Sci, 73, 1151–1160.
  • KGM, 2019. Geoteknik Proje Raporu. Bursa. Karayolları 14. Bölge Müdürlüğü. Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2), 164-168.
  • Lin, C., Wang, X., Nie, L., Sun, H., Xu, Z., Du, Y., Liu, L., 2020. Comprehensive geophysical investigation and analysis of lining leakage for water-rich rock tunnels: A case study of Kaiyuan Tunnel, Jinan, China. Geotechnical and Geological Engineering, 38, 3449-3468.
  • Liu, R., Sun, H., Liu, D., Wang, X., Zhou, X., Zhao, Y., Sun, H., 2023. A joint application of semi-airborne and in-tunnel geophysical survey in complex limestone geology. Bulletin of Engineering Geology and the Environment, 82(6), 1-17.
  • Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O., Wilkinson, P.B., 2013. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 95, 135–156.
  • Lowry, T., Allen, M. B., Shive, P. N., 1989. Singularity removal: A refinement of resistivity modeling techniques. Geophysics, 54(6), 766-774.
  • Lyu, Y. Z., Wang, H. H., Gong, J. B., 2020. GPR detection of tunnel lining cavities and reverse-time migration imaging. Applied Geophysics, 1-7.
  • Marquardt, D. W. , 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441.
  • Miller, R. D., Xia, J., Park, C. B., Ivanov, J. M., 1999. Multichannel analysis of surface waves to map bedrock. The Leading Edge, 18(12), 1392-1396.
  • Nie, L., Wang, C., Liu, Z., Xu, Z., Sun, X., Du, Y., Wei, W., 2023. An integrated geological and geophysical approach to identify water-rich weathered granite areas during twin tunnels construction: A case study. Tunnelling and Underground Space Technology, 135, 105025.
  • Okay, A. İ., Siyako, M., Bürkan, K. A., 1990. Biga Yarımadası’nın jeolojisi ve tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 2(1), 83-121.
  • Page, L.M., 1968. Use of the electrical resistivity method for investigating geologic and hydrologic conditions in Santa Clara County, California. Groundwater 6 (5), 31–40.
  • Pamuk E., Özdağ Ö. C., Özyalın Ş., Akgün M., 2017. Soil characterization of Tınaztepe region (İzmir/Turkey) using surface wave methods and nakamura (HVSR) technique. Earthquake Engıneerıng And Engıneerıng Vıbratıon,16(2), 447-458.
  • Park, C. B., Miller, R. D., Xia, J., 1999. Multichannel analysis of surface waves. Geophysics, 64(3), 800-808.
  • Park, C., Miller, R., Laflen, D., Bennett, B., Ivanov, J., Neb, C., Huggins, R. , 2004. Imaging dispersion curves of passive surface waves. In SEG International Exposition and Annual Meeting (pp. SEG-2004). Houston.
  • Park, C., Richter, J., Rodrigues, R., Cirone, A., 2018. MASW applications for road construction and maintenance. Lead. Edge 37 (10), 724–730.
  • Pasierb, B., Nawrocki, W., 2020. Not only the ‘Gold Train'–the ‘Underground Town'of Riese (Poland)–the ambiguity of interpretation ERT and GPR methods. Archaeological Prospection, 27(4), 361-375.
  • Radinger, A., Hofmann, T., Holzer, R., Fasching, F., Kusnirak, D., 2021. Highly specialized geophysical methods for undergroud construction works–Semmering Base Tunnel, a practice report. Geomechanics and Tunnelling, 14(5), 654-660.
  • Rucker, D.F., Loke, M.H., Levitt, M.T., Noonan, G.E., 2010. Electrical-resistivity characterization of an industrial site using long electrodes. Geophysics 75 (4), WA95–WA104.
  • Sabbağ, N., Uyanık O., 2017. Prediction of Reinforced Concrete Strength by Ultrasonic Velocities. Journal of Applied Geophysics, 141, 13-23.
  • Sabbağ N., Uyanık O., 2018. Determination of the reinforced concrete strength by apparent resistivity depending on the curing conditions. Journal of Applied Geophysics, 155, 13- 25.
  • Sezer, H., 2010. Yer Radarı Yöntemi ile Zonguldak Demiryolu Tünelinin Duraylılığının ve Çevresel Etkilerinin Araştırılması. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • Sharma, S., Thakur, S., Sharma, T., 2021. Applications of Geophysical Methods in Tunnel and Oil Exploration. In IOP Conference Series: Earth and Environmental Science (Vol. 889, No. 1, p. 012015). IOP Publishing.
  • Socco, L.V., Strobbia, C., 2004. Surface-wave method for near-surface characterization: a tutorial. Near Surf. Geophys. 2 (4), 165–185.
  • Su, M., Zhao, Y., Xue, Y., Wang, P., Xia, T., Zhang, K., Li, C., 2021. Progressive fine integrated geophysical method for karst detection during subway construction. Pure and Applied Geophysics, 178, 91-106.
  • Tsokas, G.N., Tsourlos, P.I., Vargemezis, G., Novack, M., 2008. Non-destructive electrical resistivity tomography for indoor investigation: the case of Kapnikarea Church in Athens. Archaeol. Prospect. 15 (1), 47–61.
  • Uyanık O., Ekinci B, Uyanık NA, 2013. Liquefaction Analysis from Seismic Velocities and Determination of Lagoon Limits Kumluca /Antalya Example. Journal of Applied Geophysics, 95, 90-103.
  • Uyanık O, 2020. Soil liquefaction analysis based on soil and earthquake parameters. Journal of Applied Geophysics, 176, 104004.
  • Uyanık, O., Öncü, Z., Uyanık, N. A., & Ekin, N., 2024. Seismic microzonation and geotechnical modeling studies considering local site effects for İnegöl Plain (Bursa‐Turkey). Earth and Space Science, 11, e2023EA003460.
  • Wilson, S.R., Ingham, M., McConchie, J.A., 2006. The applicability of earth resistivity methods for saline interface definition. J. Hydrol. 316 (1–4), 301–312.
  • Xia, J., Miller, R. D., Park, C. B., 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3), 691-700.
  • Xia, J., Miller, R.D., Park, C.B., Hunter, J.A., Harris, J.B., Ivanov, J., 2002a. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dyn. Earthq. Eng. 22 (3), 181–190.
  • Xia, J., Miller, R.D., Park, C.B., Wightman, E., Nigbor, R., 2002b. A pitfall in shallow shear-wave refraction surveying. J. Appl. Geophysics. 51 (1), 1–9.
  • Yılmaz, S., Oksum, E., Cakmak, O., Dogan, O., Tekelioğlu, E. 2018. Preliminary results of an integrated archaeo‐geophysical survey on the basis of ancient finds unearthed by an illegal excavation at Kılıç Ören site (Isparta, Turkey). Archaeological Prospection, 25(3), 197-207.
  • Yılmaz, S., Balkaya, Ç., Cakmak, O., Oksum, E. 2019. GPR and ERT explorations at the archaeological site of Kılıç village (Isparta, SW Turkey). Journal of Applied Geophysics, 170, 103859.
  • Yılmaz, S. Yıldırım E., 2021. Emirdağ-Karaağaç yeraltı suyu potansiyelinin elektrik özdirenç yöntemler ile araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi 9(4), 1267-1275.
  • URL-1. (2023, Aralık 24). https://www.gpr-survey.com/
  • URL-2. (2023, Aralık 24). https://geodevice.co/product/zondres2d/
  • URL-3. (2023, Ekim 17). https://www.geometrics.com/software

DETERMINATION OF ENGINEERING PROBLEMS ENCOUNTERED IN TUNNEL STRUCTURES USING GEOPHYSICAL METHODS: THE CASE OF DOĞANCI TUNNEL IN BURSA PROVINCE

Year 2025, Volume: 13 Issue: 2, 632 - 648, 27.06.2025
https://doi.org/10.21923/jesd.1610170

Abstract

During and after the construction of highway tunnels all over the world, many engineering problems originating from geological conditions are encountered. In this study, the contributions of three different geophysical methods were investigated in determining the water leakages and related deformations from the side and ceiling walls of the Doğancı Tunnel on the Osmangazi-Orhangazi districts connection highway of Bursa Province. In this context, Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Multi-Channel Surface Wave Analysis (MASW) were measured on the inner walls of the tunnel, and only the ERT measurements were made on the upper level at the entrance and on the berm at the exit of the tunnel. Resistivity values were obtained between 4-1000 Ohm.m and S-wave velocity values were between 280-800 m/s. Three-dimensional images of the tunnel walls and exterior facade were created from parallel ER profiles. When all the findings are evaluated together, the tunnel sections where the resistivity and S-wave velocity are generally low and the YR amplitudes are relatively high are associated with deformations caused by water leaks. As a result, it has been seen that the use of several geophysical methods together is extremely useful in determining the source of the deformations observed in the tunnels.

References

  • Aksu, T. F., 2006. Jeofizik elektrik yöntemlerinde 2 boyutlu tomografi ve arazi uygulamaları. Yeraltı suyu Araştırmalarında Uygulanan Yöntemler ve Saha Uygulamaları Seminer Notları, Jeofizik Mühendisleri Odası.
  • Aktürk, Ö., 2010. Tünel Çevresindeki Deformasyon Alanının 3-Boyutlu Sayısal Modeller ile Değerlendirilmesi (Necatibey Metro İstasyonu, Ankara, Türkiye). ODTÜ, Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara.
  • Alemdağ, H., Köroğlu, F., Aydın, Z.Ö., Şeren, A., Babacan, A.E., Fırat Ersoy, A., 2024. Deciphering of karst geomorphology and sinkhole (doline) structures using multiple geophysical and geological methods (Trabzon, NE Türkiye). Bulletin of Engineering Geology and Environment, 83, 286.
  • Annan, P. ,2003. Ground penetrating radar principles, procedures and applications. Sensors and software, 278. Anbazhagan, P., Sitharam, T.G., 2008. Site characterization and site response studies using shear wave velocity. J. Seismol. Earthq. Eng. 10 (2), 53–67.
  • Arifin, M.H., Kayode, J.S., Izwan, M.K., Hasan Said, H.A., Hussin, H., 2019. Data for the potential gold mineralization mapping with the applications of electrical resistivity imaging and induces polarization geophysical surveys. Data Brief 2019 (22), 830–835.
  • Aytas Z., Alpaslan N., Ozcep F. ,2023. Evaluation of liquefaction potential by standard penetration test and shear wave velocity methods: a case study. Natural Hazards, 118(3),2377-2417.
  • Babacan, A.E., Ceylan, S., 2021. Evaluation of soil liquefaction potential with a holistic approach: a case study from Arakli (Trabzon, Turkey). Bollettino di Geofisica Teorica ed Applicata, 62(1), 173-198.
  • Barbieri, A., Regala, F. T., Cascalheira, J., Bicho, N., 2023. The sediment at the end of the tunnel: Geophysical research to locate the Pleistocene entrance of Gruta da Companheira (Algarve, Southern Portugal). Archaeological Prospection, 30(2), 117-134.
  • Bauman, P., 2005. 2-D resistivity surveying for hydrocarbons–a primer. CSEG Recorder 30 (04), 1–15. Benyassine, E.M., Lachhab, A., Dekayir, A., Parisot, J.C., Rouai, M., 2017. An application of electrical resistivity tomography to investigate heavy metals pathways. J. Environ. Eng. Geophys. 22 (4), 315–324.
  • Bingöl, E., Akyürek, B., Korkmazer, B., 1973. Geology of the Biga Peninsula and some characteristics of the Karakaya Formation. Geological Congress, 50th Anniversary of Turkish Republic, pp. 71-77, MTA Ankara.
  • Capizzi, P., Cosentino, P. L., Fiandaca, G., Martorana, R., Messina, P., 2005. 2D GPR and Geoelectrical Modelling–Tests on Man–Made Tunnels and Cavities. Near Surface 2005-11th European Meeting of Environmental and Engineering Geophysics, s. cp-13). European Association of Geoscientists & Engineers.
  • Cardarelli, E., Marrone, C., Orlando, L., 2003. Evaluation of tunnel stability using integrated geophysical methods. Journal of Applied Geophysics, 52 (2-3), 93-102.
  • Cardarelli, E., Di Filippo, G., Tuccinardi, E., 2006. Electrical resistivity tomography to detect buried cavities in Rome: a case study, Near Surface Geophysics, Vol. 4, 387-392.
  • Chambers, J.E., Kuras, O., Meldrum, P.I., Ogilvy, R.D., Hollands, J., 2006. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71 (6), B231–B239.
  • Chen, L., Wang, H., Xu, X., Zhang, Y., Wang, C., Song, J., Han, L., 2020. Geological exploration using integrated geophysical methods in tunnel: a case. Geotechnical and Geological Engineering, 38, 1111-1119.
  • Dahlin, T., 2001. The development of DC resistivity imaging techniques. Computers & Geosciences, 27(9), 1019-1029.
  • Davis, J. L., Annan, A. P., 1989. Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy Geophysical prospecting, 37(5), 531-551.
  • Dey, A., Morrison, H. F., 1979. Resistivity modelling for arbitrarily shaped two‐dimensional structures. Geophysical prospecting, 27(1), 106-136.
  • Ding, Y., Yang, B., Xu, G., Wang, X., 2022. Improved Dempster–Shafer evidence theory for tunnel water inrush risk analysis based on fuzzy identification factors of multi-source geophysical data. Remote Sensing, 14(23), 6178.
  • Durdağ, D., 2018. Çok Kanallı Yüzey Dalgaları Analizi (Masw) ve Jeoteknik Uygulamaları. DEÜ, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir.
  • Ergüven, K., 2015. Tünel İmalatında Yer Radarı Yöntemiyle Tahribatsız Test Uygulaması. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
  • Feng, S. J., Zhao, Y., Zhang, X. L., Bai, Z. B., 2020. Leachate leakage investigation, assessment and engineering counter measures for tunneling underneath a MSW landfill. Engineering Geology, 265, 105447.
  • Fores, B., Champollion, C., Lesparre, N., Pasquet, S., Martin, A., Nguyen, F., 2021. Variability of the water stock dynamics in karst: insights from surface-to-tunnel geophysics. Hydrogeology Journal, 29(6), 2077-2089.
  • Foti, S., Parolai, S., Albarello, D., Picozzi, M., 2011. Application of surface-wave methods for seismic site characterization. Surv. Geophys. 32 (6), 777–825.
  • Funk, B., Flores-Orozco, A., Steiner, M., 2024. Possibilities and limitations of cave detection with ERT, Geomorphology, 462, 109332, 1-10.
  • Geraldine C, . Anukwu, Amin E, . Khalil, Mohd, Nawawi, Khiruddin, Abdullah, Fathi M, . Abdullah, 2018. Multi-channel analysis of surface waves (MASW) using CMP analysis to identify soil problems threat on the heritage site at Georgetown, Malaysia. SEG Glob. Meet. Abstr. 1640–1643. https://doi.org/10.1190/IGC2018-404.
  • Ghezzi, A., Schettino, A., Pierantoni, PP., Conyers, L., Tassi, L., Vigliotti, L., Schettino, E., Melfi, M., Gorrini, ME., Boila, P., 2019. Reconstruction of a Segment of the UNESCO World Heritage Hadrian’s Villa Tunnel Network by Integrated GPR, Magnetic–Paleomagnetic, and Electric Resistivity Prospections. Remote Sensing, 11(15), 1739.
  • Griffiths, D. H., Barker, R. D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of applied Geophysics, 29(3-4), 211-226.
  • Gündogdu, N.Y., Candansayar, M.E., Genç, E., 2017. Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods. J. Environ. Eng. Geophys. 22 (2), 177–189.
  • Irawan, D., Sumintadireja, P., Saepuloh, A., 2013. 2-D Subsurface imaging tecniques for deep ore mineral mapping using geoelectrical and induced polarization (IP) methods. Proc. Earth Planet. Sci. 6, 139–144.
  • Izumotani, S., Takeuchi, M., Murayama, H., Okazaki, K., 2021. Estimating rock properties using seismic refraction survey data: a case study in an abandoned road tunnel. Exploration Geophysics, 52(4), 409-418.
  • Jol, H. M., Smith, D. G., 1991. Ground penetrating radar of northern lacustrine deltas. Canadian Journal of Earth Sciences, 28(12), 1939-1947.
  • Kadıoğlu, S., 2003. 3D Ground Penetrating Radar-Data Acquisition, Processing, and Interpretation. 14th International Petroleum Congress and Natural Gas Congress and Exhibition, Bildiriler Kitabı, s. 485-486. Ankara.
  • Kadioglu S., Ulugergerli E. U., 2012. Imaging karstic cavities in transparent 3D volume of the GPR data set in Akkopru dam, Mugla, Turkey. Nondestructive Testing and Evaluation, 27(3), 263-271.
  • Karslı, H., 2018. Jeofizik-Jeoteknik İşbirliği Sürecinde Çok Kanallı Yüzey Dalgası Analiz (ÇKYDA) Yöntemi. Jeofizik Bülteni, 78, 14-48, JFMO, Ankara.
  • Karslı, H., Babacan, A.E., Sayıl, N., Çoban K.H., Akın, Ö., 2024a. An assessment of seismicity and near surface geophysical characteristics of potential solid waste landfill sites in the Eastern Black Sea Region of Türkiye. Environ Sci Pollut Res 31, 14156–14177.
  • Karslı H., Babacan A. E., Akın Ö., 2024b. Subsurface characterization by active and passive source geophysical methods after the 06 February 2023 earthquakes in Turkey. Natural Hazards, 120 (6), 5257-5286.
  • Kaya, M.A., Özürlan, G., Balkaya, Ç., 2015. Geoelectrical Investigation of Seawater Intrusion in the Coastal Urban Area of Çanakkale, NW Turkey, Environ Earth Sci, 73, 1151–1160.
  • KGM, 2019. Geoteknik Proje Raporu. Bursa. Karayolları 14. Bölge Müdürlüğü. Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2), 164-168.
  • Lin, C., Wang, X., Nie, L., Sun, H., Xu, Z., Du, Y., Liu, L., 2020. Comprehensive geophysical investigation and analysis of lining leakage for water-rich rock tunnels: A case study of Kaiyuan Tunnel, Jinan, China. Geotechnical and Geological Engineering, 38, 3449-3468.
  • Liu, R., Sun, H., Liu, D., Wang, X., Zhou, X., Zhao, Y., Sun, H., 2023. A joint application of semi-airborne and in-tunnel geophysical survey in complex limestone geology. Bulletin of Engineering Geology and the Environment, 82(6), 1-17.
  • Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O., Wilkinson, P.B., 2013. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 95, 135–156.
  • Lowry, T., Allen, M. B., Shive, P. N., 1989. Singularity removal: A refinement of resistivity modeling techniques. Geophysics, 54(6), 766-774.
  • Lyu, Y. Z., Wang, H. H., Gong, J. B., 2020. GPR detection of tunnel lining cavities and reverse-time migration imaging. Applied Geophysics, 1-7.
  • Marquardt, D. W. , 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441.
  • Miller, R. D., Xia, J., Park, C. B., Ivanov, J. M., 1999. Multichannel analysis of surface waves to map bedrock. The Leading Edge, 18(12), 1392-1396.
  • Nie, L., Wang, C., Liu, Z., Xu, Z., Sun, X., Du, Y., Wei, W., 2023. An integrated geological and geophysical approach to identify water-rich weathered granite areas during twin tunnels construction: A case study. Tunnelling and Underground Space Technology, 135, 105025.
  • Okay, A. İ., Siyako, M., Bürkan, K. A., 1990. Biga Yarımadası’nın jeolojisi ve tektonik evrimi. Türkiye Petrol Jeologları Derneği Bülteni, 2(1), 83-121.
  • Page, L.M., 1968. Use of the electrical resistivity method for investigating geologic and hydrologic conditions in Santa Clara County, California. Groundwater 6 (5), 31–40.
  • Pamuk E., Özdağ Ö. C., Özyalın Ş., Akgün M., 2017. Soil characterization of Tınaztepe region (İzmir/Turkey) using surface wave methods and nakamura (HVSR) technique. Earthquake Engıneerıng And Engıneerıng Vıbratıon,16(2), 447-458.
  • Park, C. B., Miller, R. D., Xia, J., 1999. Multichannel analysis of surface waves. Geophysics, 64(3), 800-808.
  • Park, C., Miller, R., Laflen, D., Bennett, B., Ivanov, J., Neb, C., Huggins, R. , 2004. Imaging dispersion curves of passive surface waves. In SEG International Exposition and Annual Meeting (pp. SEG-2004). Houston.
  • Park, C., Richter, J., Rodrigues, R., Cirone, A., 2018. MASW applications for road construction and maintenance. Lead. Edge 37 (10), 724–730.
  • Pasierb, B., Nawrocki, W., 2020. Not only the ‘Gold Train'–the ‘Underground Town'of Riese (Poland)–the ambiguity of interpretation ERT and GPR methods. Archaeological Prospection, 27(4), 361-375.
  • Radinger, A., Hofmann, T., Holzer, R., Fasching, F., Kusnirak, D., 2021. Highly specialized geophysical methods for undergroud construction works–Semmering Base Tunnel, a practice report. Geomechanics and Tunnelling, 14(5), 654-660.
  • Rucker, D.F., Loke, M.H., Levitt, M.T., Noonan, G.E., 2010. Electrical-resistivity characterization of an industrial site using long electrodes. Geophysics 75 (4), WA95–WA104.
  • Sabbağ, N., Uyanık O., 2017. Prediction of Reinforced Concrete Strength by Ultrasonic Velocities. Journal of Applied Geophysics, 141, 13-23.
  • Sabbağ N., Uyanık O., 2018. Determination of the reinforced concrete strength by apparent resistivity depending on the curing conditions. Journal of Applied Geophysics, 155, 13- 25.
  • Sezer, H., 2010. Yer Radarı Yöntemi ile Zonguldak Demiryolu Tünelinin Duraylılığının ve Çevresel Etkilerinin Araştırılması. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • Sharma, S., Thakur, S., Sharma, T., 2021. Applications of Geophysical Methods in Tunnel and Oil Exploration. In IOP Conference Series: Earth and Environmental Science (Vol. 889, No. 1, p. 012015). IOP Publishing.
  • Socco, L.V., Strobbia, C., 2004. Surface-wave method for near-surface characterization: a tutorial. Near Surf. Geophys. 2 (4), 165–185.
  • Su, M., Zhao, Y., Xue, Y., Wang, P., Xia, T., Zhang, K., Li, C., 2021. Progressive fine integrated geophysical method for karst detection during subway construction. Pure and Applied Geophysics, 178, 91-106.
  • Tsokas, G.N., Tsourlos, P.I., Vargemezis, G., Novack, M., 2008. Non-destructive electrical resistivity tomography for indoor investigation: the case of Kapnikarea Church in Athens. Archaeol. Prospect. 15 (1), 47–61.
  • Uyanık O., Ekinci B, Uyanık NA, 2013. Liquefaction Analysis from Seismic Velocities and Determination of Lagoon Limits Kumluca /Antalya Example. Journal of Applied Geophysics, 95, 90-103.
  • Uyanık O, 2020. Soil liquefaction analysis based on soil and earthquake parameters. Journal of Applied Geophysics, 176, 104004.
  • Uyanık, O., Öncü, Z., Uyanık, N. A., & Ekin, N., 2024. Seismic microzonation and geotechnical modeling studies considering local site effects for İnegöl Plain (Bursa‐Turkey). Earth and Space Science, 11, e2023EA003460.
  • Wilson, S.R., Ingham, M., McConchie, J.A., 2006. The applicability of earth resistivity methods for saline interface definition. J. Hydrol. 316 (1–4), 301–312.
  • Xia, J., Miller, R. D., Park, C. B., 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3), 691-700.
  • Xia, J., Miller, R.D., Park, C.B., Hunter, J.A., Harris, J.B., Ivanov, J., 2002a. Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dyn. Earthq. Eng. 22 (3), 181–190.
  • Xia, J., Miller, R.D., Park, C.B., Wightman, E., Nigbor, R., 2002b. A pitfall in shallow shear-wave refraction surveying. J. Appl. Geophysics. 51 (1), 1–9.
  • Yılmaz, S., Oksum, E., Cakmak, O., Dogan, O., Tekelioğlu, E. 2018. Preliminary results of an integrated archaeo‐geophysical survey on the basis of ancient finds unearthed by an illegal excavation at Kılıç Ören site (Isparta, Turkey). Archaeological Prospection, 25(3), 197-207.
  • Yılmaz, S., Balkaya, Ç., Cakmak, O., Oksum, E. 2019. GPR and ERT explorations at the archaeological site of Kılıç village (Isparta, SW Turkey). Journal of Applied Geophysics, 170, 103859.
  • Yılmaz, S. Yıldırım E., 2021. Emirdağ-Karaağaç yeraltı suyu potansiyelinin elektrik özdirenç yöntemler ile araştırılması. Mühendislik Bilimleri ve Tasarım Dergisi 9(4), 1267-1275.
  • URL-1. (2023, Aralık 24). https://www.gpr-survey.com/
  • URL-2. (2023, Aralık 24). https://geodevice.co/product/zondres2d/
  • URL-3. (2023, Ekim 17). https://www.geometrics.com/software
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Geophysical and Environmental Fluid Flows
Journal Section Research Articles
Authors

Mustafa Kirici 0009-0003-2563-1415

Hakan Karslı 0000-0002-7758-1363

Publication Date June 27, 2025
Submission Date December 31, 2024
Acceptance Date March 24, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Kirici, M., & Karslı, H. (2025). TÜNEL YAPILARINDA KARŞILAŞILAN MÜHENDİSLİK PROBLEMLERİNİN JEOFİZİK YÖNTEMLERLE BELİRLENMESİ: BURSA İLİ DOĞANCI TÜNELİ ÖRNEĞİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(2), 632-648. https://doi.org/10.21923/jesd.1610170