Research Article
BibTex RIS Cite

BİYOMİMİKRİ YÖNTEMİYLE TERMAL ENERJİ DEPOLAMA UYGULAMASI

Year 2025, Volume: 13 Issue: 2, 440 - 453, 27.06.2025
https://doi.org/10.21923/jesd.1643282

Abstract

Çalışmada karbon esaslı malzemeler (KEM)(Grafit(GR) ve Grafit Oksit(GO)) kullanılarak etkili ısı enerjisi depolaması için uygun maliyetli çok işlevli faz değişim malzemelerin (FDM) tasarlanması, geliştirilmesi ve biyomimikri bilimine bağlı olarak kullanılması amaçlanmıştır.
Çalışmada ilk olarak FDM üretilmiş, daha sonra üretilen FDM’nin analizi yapılmış ve son olarak biyomimikri bilimine göre prototip soğutucu şişe torbası tasarlanarak suyu soğuk tutma performans çalışmaları gerçekleştirilmiştir. Grafit ve grafit oksit kullanılarak üretilen FDM’lerin ısı enerji depolama kapasiteleri, fonksiyonel yapıları, termal özellikleri incelenmiştir. Aynı zamanda termal döngü sonrası (100-300-500 döngü) FDM’nin ısı depolama kapasiteleri ve termal-kimyasal özellikleri belirlenmiştir. Grafit kullanılarak üretilen FDM, GO kullanılarak üretilen FDM’den daha fazla ısı enerjisi depoladığı gözlenmiştir. Biyomimikri bilimine bağlı olarak tasarlanan prototip soğutucu şişe torbasının piyasada satışı yapılan soğutucu şişe torbalarından hem en az 2 kat daha fazla performansa sahip olduğu hem de ürün başına 38,91TL – 216,44TL daha ucuz maliyetle üretilebileceği sonucuna ulaşılmıştır.

References

  • Aslfattahia, N., Saidur, R., Arifutzzaman, A., Sadri, R., Bimbo, N., Sabri, M. F. M., Maughan, P. A., Bouscarrat, L., Dawson, R. J., Said, S. M., Goh, B. T., Sidik, N. A. C. 2020. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites, J. of Ener. Stor.27, 101115. https://doi.org/10.1016/j.est.2019.101115
  • Çengel, Y., Boles, M., 2002, Mühendislik Yaklaşımıyla Termodinamik, Mc Graw Hill, 4. Baskı, Çeviren: Derbentli T.
  • Dong, Q., Wu, J., Su, Y., Zhang, H., Wang, J. 2025. Preparation and study of high-thermal conductivity phase-change energy-storage materials based on expanded graphite and pitch through high-temperature sintering, Journal of Energy Storage,114, Part A, https://doi.org/10.1016/j.est.2025.115748.
  • http://galeri.netfotograf.com/fotograf.asp?foto_id=398331 (Erişim Tarihi: 19.02.2025)
  • https://steemit.com/ay/@arabi01/en-guezel-cicekler-ve-mutlu-bir-son (Erişim Tarihi: 19.02.2025)
  • İşıker, Y., Yeşı̇lata, B., 2017, Development of a Novel Method for Determination of Heat Conduction Coefficients of Building Materials, Harran University Journal of Engineering, 01 (2017) p.14-21.
  • Kant, K., Shukla, A., Sharma, A., He. Biwole, P. 2017. Heat transfer study of phase change materials with graphene nano particle for thermal energy storage, Solar Energy. 146, 453–463. http://dx.doi.org/10.1016/j.solener.2017.03.013
  • Kee, S.Y., Munusamy, Y., Ong, K.S., Metselaar, H.S.C., Chee, S.Y., Lai, K.C., 2017, Thermal Performance Study of Composite Phase Change Material with Polyacrylicand Conformal Coating, Materials, 10, 873; doi:10.3390/ma10080873
  • Kumar, N., Pandey, C., Chakraborty, P.R. 2025. Influence of compression ratio in compressed extended graphite on thermo-physical properties of composite phase change material: An experimental investigation, Thermal Science and Engineering Progress, 57, https://doi.org/10.1016/j.tsep.2024.103104.
  • Li, M. 2013. A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Ener. 106, 25-30. http://dx.doi.org/10.1016/j.apenergy.2013.01.031
  • Liu, C., Zhang, X., Lv, P., Li, Y., Rao. Z. 2017. Experimental study on the phase change and thermal properties of paraffin/carbon materials based thermal energy storage materials, Phase Trans. 90:7, 717-731. DOI: 10.1080/01411594.2016.1277219
  • Liu, P., Tan, Z., Cui, X., Zhang, Z., Fang, H., Li, H., Bian, L., Gu, X. 2025. Comparative study of different typical organic form-stable phase change materials packaged by carbonized wheat straw-expanded graphite binary supporting material, Journal of Energy Storage, 108, https://doi.org/10.1016/j.est.2024.115088.
  • Liu, Y., Li, M., Ma, X., Zhang, Y., Wang, Y., Li, G., Tang, R., Zhang, S., Zhao, H., Zhu, Y. 2024. Surfactant hydrophilic modification of expanded graphite to fabricate water-based composite phase change material with high latent heat for cold energy storage, Chemical Engineering Journal, 498, https://doi.org/10.1016/j.cej.2024.155235.
  • Liu, Y., Lv, Z., Zhou, J., Cui, Z., Li, W., Yu, J., Chen, L., Wang, X., Wang, M., Liu, K., Wang, H., Ji, X., Hu, S., Li, J., Loh, X.J., Yang, H., Chen, X., Wang C. 2024. Muscle-inspired formable wood-based phase change materials, Adv. Mater., 36, 2406915, 10.1002/adma.202406915
  • Liu, Z., Chung, D.D.L. 2001. Calorimetric evaluation of phase change materials for use as thermal interface materials, Thermochimica Acta. 366, 135-147.
  • Magendran, S. S., Khan, F. S. A., Mubarak, N.M., Vaka, M., Walvekar, R., Khalid, M., Abdullah, E.C., Nizamuddin, S., Karri, R. R. 2019. Synthesis of organic phase change materials (PCM) for energy storage applications: A review, Nano-Struc. & Nano-Obj. 20, 100399. https://doi.org/10.1016/j.nanoso.2019.100399
  • Mordor Intelligence, Thermal Energy Storage Market Size & Share Analysis - Growth Trends & Forecasts (2025 - 2030), https://www.mordorintelligence.com/industry-reports/global-thermal-energy-storage-market-industry (Erişim Tarihi: 19.02.2025)
  • Muiruri, J.K., Bonillo, A.C., Zhang, M., Wang, P., Tomczak, N., Wu, W., Zhang, X., Wang, S., Thitsartarn, W., Ong, P.J., Yeo, J.C.C., Xu, J., Li, Z., Loh, X.J., Zhu, Q. 2024. Sustainable carbonized biomass-stabilized phase change materials for thermal energy storage, Journal of Energy Storage, 103, Part B, 114423, https://doi.org/10.1016/j.est.2024.114423.
  • Odoi-Yorke, F., Opoku, R., Davis, F., Obeng, G.Y. 2023. Optimisation of thermal energy storage systems incorporated with phase change materials for sustainable energy supply: A systematic review, Energy Rep., 10, 2496–2512.
  • Ribezzo, A., Bergamasco, L., Morciano, M., Fasano, M., Mongibello, L., Chiavazzo, E. 2023. Experimental analysis of carbon-based Phase Change Materials composites for a fast numerical design of cold energy storage systems, Applied Thermal Engineering, 231, 120907, https://doi.org/10.1016/j.applthermaleng.2023.120907
  • Singh, P., Sharma, R., Khalid, M., Goyal, R., Sarı, A., Tyagi, V. 2022. Evaluation of carbon based-supporting materials for developing form-stable organic phase change materials for thermal energy storage: A review, Sol. Energy Mater. Sol. Cells, 246, 111896.
  • Ţucureanu V, Matei A, Avram AM., 2016, FTIR spectroscopy for carbon family study. Crit Rev Anal Chem 46(6):502–520. https:// doi.org/10.1080/10408347.2016.1157013
  • Wang, J., Andriamitantso, R.S., Atinafu, D.G., Gao, H., Dong, W., Wang, G. 2018. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage, Chem. Phy. Lett., 695, 99-106. https://doi.org/10.1016/j.cplett.2017.12.004
  • Wang, J., Andriamitantso, R.S., Atinafu, D.G., Gao, H., Dong, W., Wang, G. 2018. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage, Chem. Phy. Lett. 695, 99-106. https://doi.org/10.1016/j.cplett.2017.12.004
  • Yazıcı, M., Tı̇yek, İ., Ersoy, M., Alma, S., Dönmez, M.H., Yıldırım, U., Salan, U., Karataş, T., Uruş, Ş., Karterı̇, İ., Yıldız, K. 2016. Modifiye Hummers Yöntemiyle Grafen Oksit (GO) Sentezi ve Karakterizasyonu, Gazi Univ. J.l of Sci. GU J Sci Part C. 4(2), 41-48.
  • Yu, C., Song, Y.S. 2023. Form stable phase change material supported by sensible and thermal controllable thermistor, Composites Communications, 40, 101600.
  • Zhao, J., Chen, Y., Chen, M. 2025. Battery thermal management with a modified metal alloy/expanded graphite/paraffin composite phase change material, Journal of Energy Storage, 113, https://doi.org/10.1016/j.est.2025.115652.
  • Zhong, Y., He, X., Wang, W., Xu, Y., Wang, Y., Shuai,Y. 2025. Performance enhancement of graphite-based flexible composite phase change materials and heat dissipation characteristics of electronic devices, Applied Thermal Engineering, 263, https://doi.org/10.1016/j.applthermaleng.2024.125393.

THERMAL ENERGY STORAGE APPLICATION WITH BIOMIMICRY METHOD

Year 2025, Volume: 13 Issue: 2, 440 - 453, 27.06.2025
https://doi.org/10.21923/jesd.1643282

Abstract

In this study, it was aimed be used as a bottle cooler bag designed accordance as biomimicry science, producing of cost effective multifunctional phase change materials (PCMs) to effective isolation using Graphite (GR) and Graphite oxide (GO). PCMs were first produced, then the produced PCMs were analyzed. Finally, designing a prototype cooler bottle bag according to biomimicry science was prepared and performance studies to keep the water cold were carried out. The temperature differences, functional structures and thermal properties of PCMs produced using graphite and graphite oxide were investigated. At the same time, temperature differences and thermal-chemical properties of PCMs were determined after the thermal cycle (100-300-500 cycles). PCM produced using graphite showed a good insulation material feature since it has lower enthalpy than PCM produced using GO. The prototype bottle cooler bag (BCB) designed based on the biomimicry science performed 2 times more than the cooler bottle bags sold in the market. Also, it was concluded that it can be produced at a lower cost of 38,91 – 216,44 TL (Turkish Lira) per product.

References

  • Aslfattahia, N., Saidur, R., Arifutzzaman, A., Sadri, R., Bimbo, N., Sabri, M. F. M., Maughan, P. A., Bouscarrat, L., Dawson, R. J., Said, S. M., Goh, B. T., Sidik, N. A. C. 2020. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites, J. of Ener. Stor.27, 101115. https://doi.org/10.1016/j.est.2019.101115
  • Çengel, Y., Boles, M., 2002, Mühendislik Yaklaşımıyla Termodinamik, Mc Graw Hill, 4. Baskı, Çeviren: Derbentli T.
  • Dong, Q., Wu, J., Su, Y., Zhang, H., Wang, J. 2025. Preparation and study of high-thermal conductivity phase-change energy-storage materials based on expanded graphite and pitch through high-temperature sintering, Journal of Energy Storage,114, Part A, https://doi.org/10.1016/j.est.2025.115748.
  • http://galeri.netfotograf.com/fotograf.asp?foto_id=398331 (Erişim Tarihi: 19.02.2025)
  • https://steemit.com/ay/@arabi01/en-guezel-cicekler-ve-mutlu-bir-son (Erişim Tarihi: 19.02.2025)
  • İşıker, Y., Yeşı̇lata, B., 2017, Development of a Novel Method for Determination of Heat Conduction Coefficients of Building Materials, Harran University Journal of Engineering, 01 (2017) p.14-21.
  • Kant, K., Shukla, A., Sharma, A., He. Biwole, P. 2017. Heat transfer study of phase change materials with graphene nano particle for thermal energy storage, Solar Energy. 146, 453–463. http://dx.doi.org/10.1016/j.solener.2017.03.013
  • Kee, S.Y., Munusamy, Y., Ong, K.S., Metselaar, H.S.C., Chee, S.Y., Lai, K.C., 2017, Thermal Performance Study of Composite Phase Change Material with Polyacrylicand Conformal Coating, Materials, 10, 873; doi:10.3390/ma10080873
  • Kumar, N., Pandey, C., Chakraborty, P.R. 2025. Influence of compression ratio in compressed extended graphite on thermo-physical properties of composite phase change material: An experimental investigation, Thermal Science and Engineering Progress, 57, https://doi.org/10.1016/j.tsep.2024.103104.
  • Li, M. 2013. A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Ener. 106, 25-30. http://dx.doi.org/10.1016/j.apenergy.2013.01.031
  • Liu, C., Zhang, X., Lv, P., Li, Y., Rao. Z. 2017. Experimental study on the phase change and thermal properties of paraffin/carbon materials based thermal energy storage materials, Phase Trans. 90:7, 717-731. DOI: 10.1080/01411594.2016.1277219
  • Liu, P., Tan, Z., Cui, X., Zhang, Z., Fang, H., Li, H., Bian, L., Gu, X. 2025. Comparative study of different typical organic form-stable phase change materials packaged by carbonized wheat straw-expanded graphite binary supporting material, Journal of Energy Storage, 108, https://doi.org/10.1016/j.est.2024.115088.
  • Liu, Y., Li, M., Ma, X., Zhang, Y., Wang, Y., Li, G., Tang, R., Zhang, S., Zhao, H., Zhu, Y. 2024. Surfactant hydrophilic modification of expanded graphite to fabricate water-based composite phase change material with high latent heat for cold energy storage, Chemical Engineering Journal, 498, https://doi.org/10.1016/j.cej.2024.155235.
  • Liu, Y., Lv, Z., Zhou, J., Cui, Z., Li, W., Yu, J., Chen, L., Wang, X., Wang, M., Liu, K., Wang, H., Ji, X., Hu, S., Li, J., Loh, X.J., Yang, H., Chen, X., Wang C. 2024. Muscle-inspired formable wood-based phase change materials, Adv. Mater., 36, 2406915, 10.1002/adma.202406915
  • Liu, Z., Chung, D.D.L. 2001. Calorimetric evaluation of phase change materials for use as thermal interface materials, Thermochimica Acta. 366, 135-147.
  • Magendran, S. S., Khan, F. S. A., Mubarak, N.M., Vaka, M., Walvekar, R., Khalid, M., Abdullah, E.C., Nizamuddin, S., Karri, R. R. 2019. Synthesis of organic phase change materials (PCM) for energy storage applications: A review, Nano-Struc. & Nano-Obj. 20, 100399. https://doi.org/10.1016/j.nanoso.2019.100399
  • Mordor Intelligence, Thermal Energy Storage Market Size & Share Analysis - Growth Trends & Forecasts (2025 - 2030), https://www.mordorintelligence.com/industry-reports/global-thermal-energy-storage-market-industry (Erişim Tarihi: 19.02.2025)
  • Muiruri, J.K., Bonillo, A.C., Zhang, M., Wang, P., Tomczak, N., Wu, W., Zhang, X., Wang, S., Thitsartarn, W., Ong, P.J., Yeo, J.C.C., Xu, J., Li, Z., Loh, X.J., Zhu, Q. 2024. Sustainable carbonized biomass-stabilized phase change materials for thermal energy storage, Journal of Energy Storage, 103, Part B, 114423, https://doi.org/10.1016/j.est.2024.114423.
  • Odoi-Yorke, F., Opoku, R., Davis, F., Obeng, G.Y. 2023. Optimisation of thermal energy storage systems incorporated with phase change materials for sustainable energy supply: A systematic review, Energy Rep., 10, 2496–2512.
  • Ribezzo, A., Bergamasco, L., Morciano, M., Fasano, M., Mongibello, L., Chiavazzo, E. 2023. Experimental analysis of carbon-based Phase Change Materials composites for a fast numerical design of cold energy storage systems, Applied Thermal Engineering, 231, 120907, https://doi.org/10.1016/j.applthermaleng.2023.120907
  • Singh, P., Sharma, R., Khalid, M., Goyal, R., Sarı, A., Tyagi, V. 2022. Evaluation of carbon based-supporting materials for developing form-stable organic phase change materials for thermal energy storage: A review, Sol. Energy Mater. Sol. Cells, 246, 111896.
  • Ţucureanu V, Matei A, Avram AM., 2016, FTIR spectroscopy for carbon family study. Crit Rev Anal Chem 46(6):502–520. https:// doi.org/10.1080/10408347.2016.1157013
  • Wang, J., Andriamitantso, R.S., Atinafu, D.G., Gao, H., Dong, W., Wang, G. 2018. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage, Chem. Phy. Lett., 695, 99-106. https://doi.org/10.1016/j.cplett.2017.12.004
  • Wang, J., Andriamitantso, R.S., Atinafu, D.G., Gao, H., Dong, W., Wang, G. 2018. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage, Chem. Phy. Lett. 695, 99-106. https://doi.org/10.1016/j.cplett.2017.12.004
  • Yazıcı, M., Tı̇yek, İ., Ersoy, M., Alma, S., Dönmez, M.H., Yıldırım, U., Salan, U., Karataş, T., Uruş, Ş., Karterı̇, İ., Yıldız, K. 2016. Modifiye Hummers Yöntemiyle Grafen Oksit (GO) Sentezi ve Karakterizasyonu, Gazi Univ. J.l of Sci. GU J Sci Part C. 4(2), 41-48.
  • Yu, C., Song, Y.S. 2023. Form stable phase change material supported by sensible and thermal controllable thermistor, Composites Communications, 40, 101600.
  • Zhao, J., Chen, Y., Chen, M. 2025. Battery thermal management with a modified metal alloy/expanded graphite/paraffin composite phase change material, Journal of Energy Storage, 113, https://doi.org/10.1016/j.est.2025.115652.
  • Zhong, Y., He, X., Wang, W., Xu, Y., Wang, Y., Shuai,Y. 2025. Performance enhancement of graphite-based flexible composite phase change materials and heat dissipation characteristics of electronic devices, Applied Thermal Engineering, 263, https://doi.org/10.1016/j.applthermaleng.2024.125393.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Electrochemical Energy Storage and Conversion
Journal Section Research Articles
Authors

Şenay Balbay 0000-0002-0016-7973

Publication Date June 27, 2025
Submission Date February 19, 2025
Acceptance Date April 14, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Balbay, Ş. (2025). BİYOMİMİKRİ YÖNTEMİYLE TERMAL ENERJİ DEPOLAMA UYGULAMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(2), 440-453. https://doi.org/10.21923/jesd.1643282