Research Article
BibTex RIS Cite

EXTRACTION OF CELLULOSE FIBERS FROM APPLE JUICE, CHERRY JUICE, AND ROSE OIL PROCESSING WASTES AND ITS CHARACTERIZATION

Year 2025, Volume: 13 Issue: 2, 556 - 569, 27.06.2025
https://doi.org/10.21923/jesd.1651965

Abstract

In this study, the production of cellulose fiber from lignocellulosic structure contained in cherry and apple juice processing wastes and wastes obtained from rose oil production was investigated. In this context, the pulp was first diluted with water at a ratio of 1:10 and partially solubilized by processing at 121°C for 30 minutes. Then, it was filtered and separated into two parts as water-soluble and lignocellulosic structure. The obtained structure was subjected to alkali treatment with 1M NaOH at 121°C for 30 minutes and then cellulose fibers were obtained by acid hydrolysis with 45% H₂SO₄ at 50°C for 45 minutes. The obtained products were analyzed in terms of cellulose, lignin, pectin, sugar and phenolic content; in addition, the extracted cellulose was examined morphologically (SEM and FTIR) and thermally. According to the results, the highest cellulose ratio after pretreatment was determined as 50.20% in apple pomace, and the highest lignin ratio was determined as 50.63% in cherry pomace. FTIR analysis revealed that the fibers obtained from apple pomace had a more distinct cellulose structure. SEM images showed that the apple pomace fibers showed a more regular and distinct fiber structure; nevertheless, it presented various impurities in cherry and rose pomace fibers. TGA analysis showed that the thermal stability of the fibers obtained from apple pomace was higher. These findings indicate that the cellulose fibers obtained from apple pomace are a more suitable filler for biodegradable packaging materials compared to the other products examined.

Project Number

FAB-2021-8255

References

  • Alemdar, A., & Sain, M. 2008. Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource technology, 99(6), 1664-1671.
  • Anonim, 2020. https://www.tarimorman.gov.tr/TAGEM/Belgeler/SUNULAR/T%C3%BCrkiye%20Biyoat%C4%B1k%20Potansiyeli%20ve%20De%C4%9Ferlendirmesi_Mustafa%20ACAR.pptx?Mobile=1&Source=%2FTAGEM%2F%5Flayouts%2F15%2Fmobile%2Fviewa%2Easpx%3FList%3D613f7565%2De673%2D4542%2Db8bc%2Da6717ac5d036%26View%3D7f47e11b%2D9181%2D487e%2D9373%2D633de696841b%26RootFolder%3D%252FTAGEM%252FBelgeler%252FSUNULAR%26ViewMode%3DDetail%26wdFCCState%3D1%26PageFirstRow%
  • AOAC. 1999. Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington.
  • Arias, A., Arriola-Villaseñor, E., González, E., Guerrero, H., Hernández, J., Gutiérrez‐Pineda, E., … Villa, C. 2024. Enhanced cellulose extraction from banana pseudostem waste: a comparative analysis using chemical methods assisted by conventional and focused ultrasound. Polymers, 16(19), 2785. https://doi.org/10.3390/polym16192785
  • Asif, M., Ahmed, D., Ahmad, N., Qamar, M., Alruwaili, N., Bukhari, S. 2022. Extraction and characterization of microcrystalline cellulose from lagenaria siceraria fruit pedicles. Polymers, 14(9), 1867. https://doi.org/10.3390/polym14091867
  • Christwardana, M., Handayani, A., Savetlana, S., Lumingkewas, R., & Chalid, M. 2020. Micro-fibrillated cellulose fabrication from empty fruit bunches of oil palm. Materials Science Forum, 1000, 272-277. https://doi.org/10.4028/www.scientific.net/msf.1000.272
  • Cotes-Palomino MT, Martínez-García C, Iglesias-Godino FJ, Eliche-Quesada D, Corpas-Iglesias FA. 2016. Study of the wet pomace as an additive in ceramic material. Desalination Water Treat, 57, 2712–8.
  • Da Rosa, S. T., Trianoski, R., Michaud, F., Belloncle, C., Iwakiri, S. 2022. Efficiency of different acetylation methods applied to cellulose fibers waste from pulp and paper mill sludge. Journal of Natural Fibers, 19(1), 185-198.
  • Dai, H., Huang, H. 2017. Synthesis, characterization and properties of pineapple peel cellulose-G-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose, 24, 69–84.
  • Domínguez-Rodrígueza G., Marina M.L., Plaza M. 2019. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chemistry, 339, 128086.
  • Erbas¸ S., Baydar, H. 2016. Variation in scent compounds of oilbearing rose (Rosa damascena Mill.) produced by headspace solid phase microextraction, hydrodistillation and solvent extraction. Records of Natural Products, 10(5), 555–565
  • Fan, X., Gao, Y., He, W., Hu, H., Tian, M., Wang, K., et al. 2016. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers, 151, 1068–72.
  • Ficzek, G., Ladányi, M., Végvári, G., & Tóth, M. (2015). Mathematical modelling of the accumulation of carbohydrates and organic acids throughout the ripening process of Hungarian sour cherry cultivars. Trees, 29, 797-807.
  • Filho, P.F.S., Zamani, A., Ferreira, J.A. 2020. Valorization of Wheat Byproducts for the Co-Production of Packaging Material and Enzymes. Energies, 13, 1300; doi:10.3390/en13061300.
  • Fragal, E. H., Cellet, T. S. P., Fragal, V. H., Companhoni, M. V. P., Ueda-Nakamura, T., Muniz, E. C., et al. 2016. Hybrid materials for bone tissue engineering from biomimetic growth ofhydroxiapatite on cellulose nanowhiskers. Carbohydrate Polymers, 152, 734–746.
  • Galanakis, C., 2015. Food Waste Recovery. Academic Press-Elsevier Inc., London.
  • Gardner, D.J., Oporto, G.S., Mills, R., Samir, M.A.S.A. 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology, 22:545–67.
  • Golbaghi, L., Khamforoush, M., Hatami, T. 2017. Carboxymethyl cellulose production from sugarcane bagasse with steam explosion pulping: Experimental, modeling, and optimization. Carbohydrate Polymers, 174, 780-788.
  • Gómez-Cruz, I., del Mar Contreras, M., Romero, I., & Castro, E. (2021). A biorefinery approach to obtain antioxidants, lignin and sugars from exhausted olive pomace. Journal of Industrial and Engineering Chemistry, 96, 356-363.
  • Gómez-Cruz, I., del Mar Contreras, M., Romero, I., Castro, E. 2021. A biorefinery approach to obtain antioxidants, lignin and sugars from exhausted olive pomace. Journal of Industrial and Engineering Chemistry, 96, 356-363.
  • Gouw, V.P., Jung, J., Simonsen, J., Zhao, Y. 2017a. Fruit pomace as a source of alternative fibers and cellulose nanofiber as reinforcement agent to create molded pulp packaging boards. Composites: Part A, 99, 48–57.
  • Hachaichi, A., Kouini, B., Kian, L., Asim, M., Jawaid, M. 2021. Extraction and characterization of microcrystalline cellulose from date palm fibers using successive chemical treatments. Journal of Polymers and the Environment, 29(6), 1990-1999. https://doi.org/10.1007/s10924-020-02012-2
  • Halis, E., HICRAN, D., Selli, F. 2019. Recycling of cellulose from vegetable fiber waste for sustainable industrial applications. Industria Textila, 70(01), 37-41. https://doi.org/10.35530/it.070.01.1553
  • Hirn, U., Schennach, R. 2015. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Scientific Reports, 5, 10503.
  • Hosseini, S., Parastouei, K., Khodaiyan, F. 2020. Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. International Journal of Biological Macromolecules, 158, 911-921
  • Ingram, T., Wörmeyer, K., Lima, J. C. I., Bockemühl, V., Antranikian, G., Brunner, G., Smirnova, I. 2011. Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresource technology, 102(8), 5221-5228.
  • Jackson, J. K., Letchford, K., Wasserman, B. Z., Ye, L., Hamad, W. Y., Burt, H. M., et al. 2011. The use of nanocrystalline cellulose for the binding and controlled release of drugs. International Journal of Nanomedicine, 6, 321–330.
  • Jonoobi, M., Harun, J., Mishra, M., Oksman, K. 2009. Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber. BioResources, 4(2), 626-639.
  • Jung, J. 2020. Value-added utilization of fruit and vegetable pomace in food packaging. In: FOOD PACKAGING Innovations and Shelf-Life, Ed. R.M.S. Cruz, CRC Press, Boca Raton, pp: 87-107.
  • Keskin, O. Y., Koktas, S., Seki, Y., Dalmis, R., Kilic, G. B., & Albayrak, D. (2022). Natural cellulosic fiber from Carex panicea stem for polymer composites: extraction and characterization. Biomass Convers Biorefin.
  • Kim, D., Seo, J. 2018. A review: Breathable films for packaging applications. Trends in Food Science and Technology, 76, 15–27.
  • Köktaş, S., Keskin, Ö. Y., Dalmiş, R., Seki, Y., & Balci Kiliç, G. (2022). Extraction and characterization of natural cellulosic fiber from Taraxacum sect. ruderalia. Journal of Natural Fibers, 19(16), 14328-14336.
  • Kovacheva, N., Rusanov, K., Atanassov, I. 2010. Industrial cultivation of oil bearingrose and rose oil production in bulgaria during 21st century, directions and challenges. Biotechnology and Biotechnological Equipment, 24, 1793–1798, http://dx.doi.org/10.2478/V10133-010-0032-4.
  • Li, Q., Zhou, J., Zhang, L. 2009. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science Part B: Polymer Physics, 47(11), 1069–1077.
  • Liang, J., Lu, Q., Lerner, R., Sun, X., Zeng, H., Liu, Y. 2011. Agricultural wastes. Water Environment Research, 83, 1439–1466.
  • Lyu, F., Luiz, S. F., Azeredo, D. R. P., Cruz, A. G., Ajlouni, S., & Ranadheera, C. S. (2020). Apple pomace as a functional and healthy ingredient in food products: A review. Processes, 8(3), 319.
  • Maheswari, C.U., Reddy, K.O., Muzenda, E., Rajulu, A.V. 2012. Tensile and thermal Properties of polycarbonate-coated tamarind fruit fibers. International Journal of Polymer Analysis and Characterization, 17: 578–589.
  • Mannai, F., Elhleli, H., Dufresne, A., Elaloui, E., Moussaoui, Y. 2020. Opuntia (Cactaceae) fibrous network-reinforced composites: Thermal, viscoelastic, interfacial adhesion and biodegradation behavior. Fibers and Polymers, 21(10), 2353-2363.
  • Manzanares, P., Ballesteros, I., Negro, M.J., Gonzalez, A., Oliva, J.M., Ballesteros, M. 2020. Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renewable Energy, 145, 1235-1245.
  • Mazlan, D., Krishnan, S., Din, M., Tokoro, C., Khalid, N., Ibrahim, I., … Komori, D. 2020. Effect of cellulose nanocrystals extracted from oil palm empty fruit bunch as green admixture for mortar. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63575-7
  • Melikoğlu, A.Y., Bilek, S.E., Cesur, S. 2019. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydrate Polymers, 215, 330–337.
  • Michelin, M., & Teixeira, J. A. (2016). Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresource technology, 216, 862-869.
  • Michelin, M., Liebentritt, S., Vicente, A. A., & Teixeira, J. A. (2018). Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. International journal of biological macromolecules, 120, 159-169.
  • Miranda, I., Simões, R., Medeiros, B., Nampoothiri, K.M., Sukumaran, R.K., Rajan, D., Pereira, H., Ferreira-Dias, S. 2019. Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresource Technology, 292, 121936.
  • Mollov, P., Mihalev, K., Shikov, V., Yoncheva, N., Karagyozov, V. 2007. Colourstability improvement of strawberry beverage by fortification withpolyphenolic copigments naturally occurring in rose petals. Innovative Food Science & Emerging Technologies, 8, 318–321, http://dx.doi.org/10.1016/j.ifset.2007.03.004.
  • Nunes, M.A., Costa, A.S., Bessada, S., Santos, J., Puga, H., Alves, R.C., ... Oliveira, M.B.P. 2018. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid-and water-soluble components. Science of the total environment, 644, 229-236.
  • Núñez-Decap, M., Wechsler-Pizarro, A., Vidal-Vega, M. 2021. Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones. Sustainable Materials and Technologies, 29, e00300.
  • Okur, İ., Baltacıoğlu, C., Ağçam, E. et al. 2019. Evaluation of the Effect of Different Extraction Techniques on Sour Cherry Pomace Phenolic Content and Antioxidant Activity and Determination of Phenolic Compounds by FTIR and HPLC. Waste and Biomass Valorization, 10, 3545–3555. https://doi.org/10.1007/s12649-019-00771-1
  • Olofsson, J., Börjesson, P. 2018. Residual biomass as resource–Life-cycle environmental impact of wastes in circular resource systems. Journal of Cleaner Production, 196, 997–1006.
  • Owonubi, S., Agwuncha, S., Malima, N., Shombe, G., Makhatha, M., Revaprasadu, N. 2021. Non-woody biomass as sources of nanocellulose particles: a review of extraction procedures. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.608825
  • Paiva, M.C., Ammar, I., Campos, A.R., Cheikh, R.B., Cunha, A.M. 2007. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 67(6), 1132-1138.
  • Park, S.I., Zhao, Y. 2006. Development and characterization of edible films from cranberry pomace extracts. Journal of Food Science, 71, E95–E101.
  • Pham, V., Kim, J., Shim, J., Chang, S., Chung, W. 2022. Coconut mesocarp-based lignocellulosic waste as a substrate for cellulase production from high promising multienzyme-producing bacillus amyloliquefaciens fw2 without pretreatments. Microorganisms, 10(2), 327. https://doi.org/10.3390/microorganisms10020327
  • Prithivirajan, R., Narayanasamy, P., Al-Dhabi, N. A., Balasundar, P., Shyam Kumar, R., Ponmurugan, K., ... Senthil, S. 2020. Characterization of Musa paradisiaca L. cellulosic natural fibers from agro-discarded blossom petal waste. Journal of Natural Fibers, 17(11), 1640-1653.
  • Reddy, K.O., Guduri, B.R., Rajulu, A.V. 2009. Structural characterization and tensile properties of borassus fruit fibers. Journal of Applied polymer science, 114(1), 603-611.
  • Reddy, K.O., Maheswari, C.U., Shukla, M. 2013. Physico-chemical characterization of cellulose extracted from ficus leaves. Journal of Biobased Materials and Bioenergy, 7(4), 496-499.
  • Reddy, K.O., Maheswari, C.U., Shukla, M., Rajulu, A.V. 2012. Chemical composition and structural characterization of Napier grass fibers. Materials letters, 67(1), 35-38.
  • Reddy, K.O., Uma Maheswari, C., Muzenda, E., Shukla, M., Rajulu, A.V. 2016. Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibers. Journal of Natural Fibers, 13(1), 54-64.
  • Reis, S.F., Rai, D.K., Abu-Ghannam, N. 2012. Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chemistry, 135(3), 1991-1998.
  • Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., Lobo, M.G. 2018 Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17, 512–531.
  • Sain, M., Panthapulakkal, S. 2006. Bioprocess preparation of wheat straw fibers and their characterization. Industrial crops and products, 23(1), 1-8.
  • Salem, K., Naithani, V., Jameel, H., Lucia, L., Pal, L. 2020. Lignocellulosic fibers from renewable resources using green chemistry for a circular economy. Global Challenges, 5(2). https://doi.org/10.1002/gch2.202000065
  • Santana-Meridas, O., Gonzalez-Coloma, A., Sanchez-Vioque, R. 2012. Agricultural residues as a source of bioactive natural products. Phytochemistry Reviews, 11, 447–466.
  • Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P., Baskaran, R. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate polymers, 92(2), 1928-1933.
  • Seki, Y., Selli, F., Erdoğan, Ü. H., Atagür, M., & Seydibeyoğlu, M. Ö. (2022). A review on alternative raw materials for sustainable production: novel plant fibers. Cellulose, 29(9), 4877-4918.
  • Sgriccia, N., Hawley, M., Misra, M. 2008. Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39, 1632–1637.
  • Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299,152–178.
  • Slavov, A., Denev, P., Panchev, I., Shikov, V., Nenov, N., Yantcheva, N., Vasilev, I. 2017. Combined recovery of polysaccharides and polyphenols from Rosadamascena wastes. Industrial Crops and Products, 100, 85–94
  • Slavov, A., Kiyohara, H., Yamada, H., Immunomodulating pecticpolysaccharides from waste rose petals of Rosa damascena Mill. 2013. International Journal of Biological Macromolecules, 59, 192–200, http://dx.doi.org/10.1016/j.ijbiomac.2013.04.054.
  • Slavov, A., Panchev, I., Kovacheva, D., Vasileva, I. 2016. Physico-chemicalcharacterization of water-soluble pectic extracts from Rosa damascena,Calendula officinalis and Matricaria chamomilla wastes. Food Hydrocolloids, 61, 469–476, http://dx.doi.org/10.1016/j.foodhyd.2016.06.006.
  • Struck, S., Plaza, M., Turner, C., Rohm, H. 2016. Berry pomace – a review of processing and chemical analysis of its polyphenols. International Journal of Food Science and Technology, 51, 1305–18.
  • Sun, X.F., Xu, F., Sun, R.C., Fowler, P., Baird, M.S. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate research, 340(1), 97-106.
  • Torgbo, S., Sukyai, P., Khantayanuwong, S., Puangsin, B., Srichola, P., Sukatta, U., … Rosenau, T. 2022. Assessment of electrothermal pretreatment of rambutan (nephelium lappaceum l.) peels for producing cellulose fibers. Acs Omega, 7(44), 39975-39984. https://doi.org/10.1021/acsomega.2c04551
  • Valdés, A., A.C. Mellinas, M. Ramos, M.C. Garrigós A. Jiménez. 2014. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry, 2.
  • Vallejo, M., Cordeiro, R., Dias, P., Moura, C., Henriques, M., Seabra, I., … Morouço, P. 2021. Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00377-3
  • Vasileva, I., Krastev, L., Petkova, N., Yantcheva, N., Nenov, N., Krachmarov, A., Atanasova, A., Slavov, A. 2019. Valorization of cacao and rose waste for preparation of liqueurs. Food Science and Applied Biotechnology, 2(1), 8-17.
  • Verlinde, P. H., Oey, I., Lemmens, L., Deborggraeve, W. M., Hendrickx, M. E., & Van Loey, A. M. (2010). Influence of reducing carbohydrates on (6 S)-5-methyltetrahydrofolic acid degradation during thermal treatments. Journal of agricultural and food chemistry, 58(10), 6190-6199.
  • Wang, C.Y., Fuentes-Hernandez, C., Liu, J.C., Dindar, A., Choi, S., Youngblood, J.P., et al. 2015. Stable low-voltage operation top-gate organic field-effect transistors on cellulose nanocrystal substrates. ACS Applied Materials & Interfaces, (2015), 7, 4804–4808.
  • Wilson, C.T., Harte, J., Almenar, E. 2018. Effects of sachet presence on consumer product perception and active packaging acceptability—A study of fresh-cut cantaloupe, LWT –Food Science and Technology, 92, 531–539.
  • Xiong, R., Hu, K., Grant, A. M., Ma, R., Xu, W., Lu, C., et al. 2016. Ultrarobust transparent cellulosenanocrystal-graphene membranes with high electrical conductivity. Advanced Materials, 28, 1501–1509.
  • Xu, K., Liu, C., Kang, K., Zheng, Z., Wang, S., Tang, Z., et al. 2018. Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility. Composite Science and Technology, 154, 8–17.
  • Yang, H., Yan, R., Chen, H., Lee, D. H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788.
  • Yasemin, Seki. (2025). Isolation and characterization of cellulose from spent ground coffee (Coffea Arabica L.): A comparative study. Waste Management, 193, 54-61.
  • Zetzl, C., Gairola, K., Kirsch, C., Perez‐Cantu, L., Smirnova, I. 2011. High pressure processes in biorefineries. Chemie Ingenieur Technik, 83(7), 1016-1025.
  • Zhou, L., He, H., Jiang, C., Ma, L., Yu, P. 2014. Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellulose Chemistry and Technology, 51(1–2), 109–119.

ELMA SUYU, VİŞNE SUYU VE GÜL YAĞI İŞLEME ATIKLARINDAN SELÜLOZ LİFİ ÜRETİMİ VE ÖZELLİKLERİNİN BELİRLENMESİ

Year 2025, Volume: 13 Issue: 2, 556 - 569, 27.06.2025
https://doi.org/10.21923/jesd.1651965

Abstract

Bu çalışmada, vişne ve elma suyu işleme atıkları ile gül yağı üretiminden elde edilen atıkların içerdiği lignoselülozik yapıdan selüloz lifi eldesi incelenmiştir. Bu kapsamda, posa önce 1:10 oranında su ile seyreltilmiş, 121°C’de 30 dakika işleme tabi tutularak kısmi çözünürlüğü sağlanmıştır. Daha sonra, filtre edilerek suda çözünen kısım ve lignoselülozik yapı olarak iki kısma ayrılmıştır. Elde edilen yapı, 121°C’de 30 dakika boyunca 1M NaOH ile alkali işleme tabi tutulmuş ve ardından %45 H₂SO₄ ile 50°C’de 45 dakika asit hidrolizi uygulanarak selüloz lifleri elde edilmiştir. Elde edilen ürünler, selüloz, lignin, pektin, şeker ve fenolik içerik bakımından analiz edilmiş; ayrıca ekstrakte edilen selüloz, morfolojik (SEM ve FTIR) ve termal olarak incelenmiştir. Sonuçlara göre, ön işlem sonrasında en yüksek selüloz oranı %50.20 ile elma posasında, en yüksek lignin oranı ise %50.63 ile vişne posasında tespit edilmiştir. FTIR analizi, elma posasından elde edilen liflerin daha belirgin bir selüloz yapısına sahip olduğunu ortaya koymuştur. SEM görüntüleri ise, elma posası liflerinin daha düzenli ve belirgin lif yapısı gösterdiğini; buna karşın vişne ve gül posası liflerinde çeşitli safsızlıkların bulunduğunu göstermiştir. TGA analizi elma posasından elde edilen liflerin termal kararlılığının daha yüksek olduğunu göstermiştir. Bu bulgular, elma posasından elde edilen selüloz liflerinin biyobozunur ambalaj malzemeleri için incelenen diğer ürünlere göre daha uygun bir dolgu maddesi olduğunu göstermektedir.

Supporting Institution

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FAB-2021-8255

References

  • Alemdar, A., & Sain, M. 2008. Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource technology, 99(6), 1664-1671.
  • Anonim, 2020. https://www.tarimorman.gov.tr/TAGEM/Belgeler/SUNULAR/T%C3%BCrkiye%20Biyoat%C4%B1k%20Potansiyeli%20ve%20De%C4%9Ferlendirmesi_Mustafa%20ACAR.pptx?Mobile=1&Source=%2FTAGEM%2F%5Flayouts%2F15%2Fmobile%2Fviewa%2Easpx%3FList%3D613f7565%2De673%2D4542%2Db8bc%2Da6717ac5d036%26View%3D7f47e11b%2D9181%2D487e%2D9373%2D633de696841b%26RootFolder%3D%252FTAGEM%252FBelgeler%252FSUNULAR%26ViewMode%3DDetail%26wdFCCState%3D1%26PageFirstRow%
  • AOAC. 1999. Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington.
  • Arias, A., Arriola-Villaseñor, E., González, E., Guerrero, H., Hernández, J., Gutiérrez‐Pineda, E., … Villa, C. 2024. Enhanced cellulose extraction from banana pseudostem waste: a comparative analysis using chemical methods assisted by conventional and focused ultrasound. Polymers, 16(19), 2785. https://doi.org/10.3390/polym16192785
  • Asif, M., Ahmed, D., Ahmad, N., Qamar, M., Alruwaili, N., Bukhari, S. 2022. Extraction and characterization of microcrystalline cellulose from lagenaria siceraria fruit pedicles. Polymers, 14(9), 1867. https://doi.org/10.3390/polym14091867
  • Christwardana, M., Handayani, A., Savetlana, S., Lumingkewas, R., & Chalid, M. 2020. Micro-fibrillated cellulose fabrication from empty fruit bunches of oil palm. Materials Science Forum, 1000, 272-277. https://doi.org/10.4028/www.scientific.net/msf.1000.272
  • Cotes-Palomino MT, Martínez-García C, Iglesias-Godino FJ, Eliche-Quesada D, Corpas-Iglesias FA. 2016. Study of the wet pomace as an additive in ceramic material. Desalination Water Treat, 57, 2712–8.
  • Da Rosa, S. T., Trianoski, R., Michaud, F., Belloncle, C., Iwakiri, S. 2022. Efficiency of different acetylation methods applied to cellulose fibers waste from pulp and paper mill sludge. Journal of Natural Fibers, 19(1), 185-198.
  • Dai, H., Huang, H. 2017. Synthesis, characterization and properties of pineapple peel cellulose-G-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose, 24, 69–84.
  • Domínguez-Rodrígueza G., Marina M.L., Plaza M. 2019. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chemistry, 339, 128086.
  • Erbas¸ S., Baydar, H. 2016. Variation in scent compounds of oilbearing rose (Rosa damascena Mill.) produced by headspace solid phase microextraction, hydrodistillation and solvent extraction. Records of Natural Products, 10(5), 555–565
  • Fan, X., Gao, Y., He, W., Hu, H., Tian, M., Wang, K., et al. 2016. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydrate Polymers, 151, 1068–72.
  • Ficzek, G., Ladányi, M., Végvári, G., & Tóth, M. (2015). Mathematical modelling of the accumulation of carbohydrates and organic acids throughout the ripening process of Hungarian sour cherry cultivars. Trees, 29, 797-807.
  • Filho, P.F.S., Zamani, A., Ferreira, J.A. 2020. Valorization of Wheat Byproducts for the Co-Production of Packaging Material and Enzymes. Energies, 13, 1300; doi:10.3390/en13061300.
  • Fragal, E. H., Cellet, T. S. P., Fragal, V. H., Companhoni, M. V. P., Ueda-Nakamura, T., Muniz, E. C., et al. 2016. Hybrid materials for bone tissue engineering from biomimetic growth ofhydroxiapatite on cellulose nanowhiskers. Carbohydrate Polymers, 152, 734–746.
  • Galanakis, C., 2015. Food Waste Recovery. Academic Press-Elsevier Inc., London.
  • Gardner, D.J., Oporto, G.S., Mills, R., Samir, M.A.S.A. 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology, 22:545–67.
  • Golbaghi, L., Khamforoush, M., Hatami, T. 2017. Carboxymethyl cellulose production from sugarcane bagasse with steam explosion pulping: Experimental, modeling, and optimization. Carbohydrate Polymers, 174, 780-788.
  • Gómez-Cruz, I., del Mar Contreras, M., Romero, I., & Castro, E. (2021). A biorefinery approach to obtain antioxidants, lignin and sugars from exhausted olive pomace. Journal of Industrial and Engineering Chemistry, 96, 356-363.
  • Gómez-Cruz, I., del Mar Contreras, M., Romero, I., Castro, E. 2021. A biorefinery approach to obtain antioxidants, lignin and sugars from exhausted olive pomace. Journal of Industrial and Engineering Chemistry, 96, 356-363.
  • Gouw, V.P., Jung, J., Simonsen, J., Zhao, Y. 2017a. Fruit pomace as a source of alternative fibers and cellulose nanofiber as reinforcement agent to create molded pulp packaging boards. Composites: Part A, 99, 48–57.
  • Hachaichi, A., Kouini, B., Kian, L., Asim, M., Jawaid, M. 2021. Extraction and characterization of microcrystalline cellulose from date palm fibers using successive chemical treatments. Journal of Polymers and the Environment, 29(6), 1990-1999. https://doi.org/10.1007/s10924-020-02012-2
  • Halis, E., HICRAN, D., Selli, F. 2019. Recycling of cellulose from vegetable fiber waste for sustainable industrial applications. Industria Textila, 70(01), 37-41. https://doi.org/10.35530/it.070.01.1553
  • Hirn, U., Schennach, R. 2015. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Scientific Reports, 5, 10503.
  • Hosseini, S., Parastouei, K., Khodaiyan, F. 2020. Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. International Journal of Biological Macromolecules, 158, 911-921
  • Ingram, T., Wörmeyer, K., Lima, J. C. I., Bockemühl, V., Antranikian, G., Brunner, G., Smirnova, I. 2011. Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresource technology, 102(8), 5221-5228.
  • Jackson, J. K., Letchford, K., Wasserman, B. Z., Ye, L., Hamad, W. Y., Burt, H. M., et al. 2011. The use of nanocrystalline cellulose for the binding and controlled release of drugs. International Journal of Nanomedicine, 6, 321–330.
  • Jonoobi, M., Harun, J., Mishra, M., Oksman, K. 2009. Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber. BioResources, 4(2), 626-639.
  • Jung, J. 2020. Value-added utilization of fruit and vegetable pomace in food packaging. In: FOOD PACKAGING Innovations and Shelf-Life, Ed. R.M.S. Cruz, CRC Press, Boca Raton, pp: 87-107.
  • Keskin, O. Y., Koktas, S., Seki, Y., Dalmis, R., Kilic, G. B., & Albayrak, D. (2022). Natural cellulosic fiber from Carex panicea stem for polymer composites: extraction and characterization. Biomass Convers Biorefin.
  • Kim, D., Seo, J. 2018. A review: Breathable films for packaging applications. Trends in Food Science and Technology, 76, 15–27.
  • Köktaş, S., Keskin, Ö. Y., Dalmiş, R., Seki, Y., & Balci Kiliç, G. (2022). Extraction and characterization of natural cellulosic fiber from Taraxacum sect. ruderalia. Journal of Natural Fibers, 19(16), 14328-14336.
  • Kovacheva, N., Rusanov, K., Atanassov, I. 2010. Industrial cultivation of oil bearingrose and rose oil production in bulgaria during 21st century, directions and challenges. Biotechnology and Biotechnological Equipment, 24, 1793–1798, http://dx.doi.org/10.2478/V10133-010-0032-4.
  • Li, Q., Zhou, J., Zhang, L. 2009. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science Part B: Polymer Physics, 47(11), 1069–1077.
  • Liang, J., Lu, Q., Lerner, R., Sun, X., Zeng, H., Liu, Y. 2011. Agricultural wastes. Water Environment Research, 83, 1439–1466.
  • Lyu, F., Luiz, S. F., Azeredo, D. R. P., Cruz, A. G., Ajlouni, S., & Ranadheera, C. S. (2020). Apple pomace as a functional and healthy ingredient in food products: A review. Processes, 8(3), 319.
  • Maheswari, C.U., Reddy, K.O., Muzenda, E., Rajulu, A.V. 2012. Tensile and thermal Properties of polycarbonate-coated tamarind fruit fibers. International Journal of Polymer Analysis and Characterization, 17: 578–589.
  • Mannai, F., Elhleli, H., Dufresne, A., Elaloui, E., Moussaoui, Y. 2020. Opuntia (Cactaceae) fibrous network-reinforced composites: Thermal, viscoelastic, interfacial adhesion and biodegradation behavior. Fibers and Polymers, 21(10), 2353-2363.
  • Manzanares, P., Ballesteros, I., Negro, M.J., Gonzalez, A., Oliva, J.M., Ballesteros, M. 2020. Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renewable Energy, 145, 1235-1245.
  • Mazlan, D., Krishnan, S., Din, M., Tokoro, C., Khalid, N., Ibrahim, I., … Komori, D. 2020. Effect of cellulose nanocrystals extracted from oil palm empty fruit bunch as green admixture for mortar. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63575-7
  • Melikoğlu, A.Y., Bilek, S.E., Cesur, S. 2019. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydrate Polymers, 215, 330–337.
  • Michelin, M., & Teixeira, J. A. (2016). Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresource technology, 216, 862-869.
  • Michelin, M., Liebentritt, S., Vicente, A. A., & Teixeira, J. A. (2018). Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. International journal of biological macromolecules, 120, 159-169.
  • Miranda, I., Simões, R., Medeiros, B., Nampoothiri, K.M., Sukumaran, R.K., Rajan, D., Pereira, H., Ferreira-Dias, S. 2019. Valorization of lignocellulosic residues from the olive oil industry by production of lignin, glucose and functional sugars. Bioresource Technology, 292, 121936.
  • Mollov, P., Mihalev, K., Shikov, V., Yoncheva, N., Karagyozov, V. 2007. Colourstability improvement of strawberry beverage by fortification withpolyphenolic copigments naturally occurring in rose petals. Innovative Food Science & Emerging Technologies, 8, 318–321, http://dx.doi.org/10.1016/j.ifset.2007.03.004.
  • Nunes, M.A., Costa, A.S., Bessada, S., Santos, J., Puga, H., Alves, R.C., ... Oliveira, M.B.P. 2018. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid-and water-soluble components. Science of the total environment, 644, 229-236.
  • Núñez-Decap, M., Wechsler-Pizarro, A., Vidal-Vega, M. 2021. Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones. Sustainable Materials and Technologies, 29, e00300.
  • Okur, İ., Baltacıoğlu, C., Ağçam, E. et al. 2019. Evaluation of the Effect of Different Extraction Techniques on Sour Cherry Pomace Phenolic Content and Antioxidant Activity and Determination of Phenolic Compounds by FTIR and HPLC. Waste and Biomass Valorization, 10, 3545–3555. https://doi.org/10.1007/s12649-019-00771-1
  • Olofsson, J., Börjesson, P. 2018. Residual biomass as resource–Life-cycle environmental impact of wastes in circular resource systems. Journal of Cleaner Production, 196, 997–1006.
  • Owonubi, S., Agwuncha, S., Malima, N., Shombe, G., Makhatha, M., Revaprasadu, N. 2021. Non-woody biomass as sources of nanocellulose particles: a review of extraction procedures. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.608825
  • Paiva, M.C., Ammar, I., Campos, A.R., Cheikh, R.B., Cunha, A.M. 2007. Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 67(6), 1132-1138.
  • Park, S.I., Zhao, Y. 2006. Development and characterization of edible films from cranberry pomace extracts. Journal of Food Science, 71, E95–E101.
  • Pham, V., Kim, J., Shim, J., Chang, S., Chung, W. 2022. Coconut mesocarp-based lignocellulosic waste as a substrate for cellulase production from high promising multienzyme-producing bacillus amyloliquefaciens fw2 without pretreatments. Microorganisms, 10(2), 327. https://doi.org/10.3390/microorganisms10020327
  • Prithivirajan, R., Narayanasamy, P., Al-Dhabi, N. A., Balasundar, P., Shyam Kumar, R., Ponmurugan, K., ... Senthil, S. 2020. Characterization of Musa paradisiaca L. cellulosic natural fibers from agro-discarded blossom petal waste. Journal of Natural Fibers, 17(11), 1640-1653.
  • Reddy, K.O., Guduri, B.R., Rajulu, A.V. 2009. Structural characterization and tensile properties of borassus fruit fibers. Journal of Applied polymer science, 114(1), 603-611.
  • Reddy, K.O., Maheswari, C.U., Shukla, M. 2013. Physico-chemical characterization of cellulose extracted from ficus leaves. Journal of Biobased Materials and Bioenergy, 7(4), 496-499.
  • Reddy, K.O., Maheswari, C.U., Shukla, M., Rajulu, A.V. 2012. Chemical composition and structural characterization of Napier grass fibers. Materials letters, 67(1), 35-38.
  • Reddy, K.O., Uma Maheswari, C., Muzenda, E., Shukla, M., Rajulu, A.V. 2016. Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibers. Journal of Natural Fibers, 13(1), 54-64.
  • Reis, S.F., Rai, D.K., Abu-Ghannam, N. 2012. Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chemistry, 135(3), 1991-1998.
  • Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., Lobo, M.G. 2018 Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17, 512–531.
  • Sain, M., Panthapulakkal, S. 2006. Bioprocess preparation of wheat straw fibers and their characterization. Industrial crops and products, 23(1), 1-8.
  • Salem, K., Naithani, V., Jameel, H., Lucia, L., Pal, L. 2020. Lignocellulosic fibers from renewable resources using green chemistry for a circular economy. Global Challenges, 5(2). https://doi.org/10.1002/gch2.202000065
  • Santana-Meridas, O., Gonzalez-Coloma, A., Sanchez-Vioque, R. 2012. Agricultural residues as a source of bioactive natural products. Phytochemistry Reviews, 11, 447–466.
  • Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P., Baskaran, R. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate polymers, 92(2), 1928-1933.
  • Seki, Y., Selli, F., Erdoğan, Ü. H., Atagür, M., & Seydibeyoğlu, M. Ö. (2022). A review on alternative raw materials for sustainable production: novel plant fibers. Cellulose, 29(9), 4877-4918.
  • Sgriccia, N., Hawley, M., Misra, M. 2008. Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39, 1632–1637.
  • Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299,152–178.
  • Slavov, A., Denev, P., Panchev, I., Shikov, V., Nenov, N., Yantcheva, N., Vasilev, I. 2017. Combined recovery of polysaccharides and polyphenols from Rosadamascena wastes. Industrial Crops and Products, 100, 85–94
  • Slavov, A., Kiyohara, H., Yamada, H., Immunomodulating pecticpolysaccharides from waste rose petals of Rosa damascena Mill. 2013. International Journal of Biological Macromolecules, 59, 192–200, http://dx.doi.org/10.1016/j.ijbiomac.2013.04.054.
  • Slavov, A., Panchev, I., Kovacheva, D., Vasileva, I. 2016. Physico-chemicalcharacterization of water-soluble pectic extracts from Rosa damascena,Calendula officinalis and Matricaria chamomilla wastes. Food Hydrocolloids, 61, 469–476, http://dx.doi.org/10.1016/j.foodhyd.2016.06.006.
  • Struck, S., Plaza, M., Turner, C., Rohm, H. 2016. Berry pomace – a review of processing and chemical analysis of its polyphenols. International Journal of Food Science and Technology, 51, 1305–18.
  • Sun, X.F., Xu, F., Sun, R.C., Fowler, P., Baird, M.S. 2005. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate research, 340(1), 97-106.
  • Torgbo, S., Sukyai, P., Khantayanuwong, S., Puangsin, B., Srichola, P., Sukatta, U., … Rosenau, T. 2022. Assessment of electrothermal pretreatment of rambutan (nephelium lappaceum l.) peels for producing cellulose fibers. Acs Omega, 7(44), 39975-39984. https://doi.org/10.1021/acsomega.2c04551
  • Valdés, A., A.C. Mellinas, M. Ramos, M.C. Garrigós A. Jiménez. 2014. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry, 2.
  • Vallejo, M., Cordeiro, R., Dias, P., Moura, C., Henriques, M., Seabra, I., … Morouço, P. 2021. Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00377-3
  • Vasileva, I., Krastev, L., Petkova, N., Yantcheva, N., Nenov, N., Krachmarov, A., Atanasova, A., Slavov, A. 2019. Valorization of cacao and rose waste for preparation of liqueurs. Food Science and Applied Biotechnology, 2(1), 8-17.
  • Verlinde, P. H., Oey, I., Lemmens, L., Deborggraeve, W. M., Hendrickx, M. E., & Van Loey, A. M. (2010). Influence of reducing carbohydrates on (6 S)-5-methyltetrahydrofolic acid degradation during thermal treatments. Journal of agricultural and food chemistry, 58(10), 6190-6199.
  • Wang, C.Y., Fuentes-Hernandez, C., Liu, J.C., Dindar, A., Choi, S., Youngblood, J.P., et al. 2015. Stable low-voltage operation top-gate organic field-effect transistors on cellulose nanocrystal substrates. ACS Applied Materials & Interfaces, (2015), 7, 4804–4808.
  • Wilson, C.T., Harte, J., Almenar, E. 2018. Effects of sachet presence on consumer product perception and active packaging acceptability—A study of fresh-cut cantaloupe, LWT –Food Science and Technology, 92, 531–539.
  • Xiong, R., Hu, K., Grant, A. M., Ma, R., Xu, W., Lu, C., et al. 2016. Ultrarobust transparent cellulosenanocrystal-graphene membranes with high electrical conductivity. Advanced Materials, 28, 1501–1509.
  • Xu, K., Liu, C., Kang, K., Zheng, Z., Wang, S., Tang, Z., et al. 2018. Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility. Composite Science and Technology, 154, 8–17.
  • Yang, H., Yan, R., Chen, H., Lee, D. H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788.
  • Yasemin, Seki. (2025). Isolation and characterization of cellulose from spent ground coffee (Coffea Arabica L.): A comparative study. Waste Management, 193, 54-61.
  • Zetzl, C., Gairola, K., Kirsch, C., Perez‐Cantu, L., Smirnova, I. 2011. High pressure processes in biorefineries. Chemie Ingenieur Technik, 83(7), 1016-1025.
  • Zhou, L., He, H., Jiang, C., Ma, L., Yu, P. 2014. Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellulose Chemistry and Technology, 51(1–2), 109–119.
There are 85 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Articles
Authors

Ece Söğüt 0000-0003-4052-993X

Project Number FAB-2021-8255
Publication Date June 27, 2025
Submission Date March 5, 2025
Acceptance Date May 20, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Söğüt, E. (2025). ELMA SUYU, VİŞNE SUYU VE GÜL YAĞI İŞLEME ATIKLARINDAN SELÜLOZ LİFİ ÜRETİMİ VE ÖZELLİKLERİNİN BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(2), 556-569. https://doi.org/10.21923/jesd.1651965