PHOLIOTA AURIVELLA (BATSCH) P. KUMM.’NİN KİMYASAL BİLEŞİMİ VE BİYOLOJİK AKTİVİTELERİ
Year 2025,
Volume: 49 Issue: 2, 10 - 10
Cenker Yaman
,
Gizem Gül
,
Atakan Benek
,
Dilay Turu
,
Selime Deniz Bozkurt
,
Ilgaz Akata
,
Kerem Canlı
Abstract
Amaç: Bu çalışma, Pholiota aurivella mantarının antimikrobiyal, antibiyofilm ve antioksidan aktivitelerini araştırarak kimyasal kompozisyonunu belirlemeyi amaçlamaktadır. Çalışmada, mantarın etanol ekstraktının, çoklu ilaç direncine sahip suşlar da dahil olmak üzere toplam 27 farklı mikroorganizma üzerindeki potansiyel etkisi incelenmiştir. Ayrıca, mantar ekstraktının biyofilm inhibisyon kapasitesi ve serbest radikal süpürme aktiviteleri test edilmiştir.
Gereç ve Yöntem: P. aurivella örneğinden etanol ile elde edilen ekstrakt, biyolojik aktivitelerini değerlendirmek amacıyla çeşitli testlere tabi tutulmuştur. Antimikrobiyal etkinlik, disk difüzyon ve Minimum İnhibitör Konsantrasyon (MİK) testleri ile analiz edilmiştir. Antibiyofilm aktivitesi, biyofilm oluşumunu inhibe etme kapasitesiyle değerlendirilirken, antioksidan aktivite DPPH yöntemi ile test edilmiştir. Kimyasal kompozisyon ise Gaz Kromatografisi-Kütle Spektrometrisi (GC-MS) analiziyle belirlenmiştir.
Sonuç ve Tartışma: Çalışmamız, P. aurivella'nın özellikle antimikrobiyal ve antibiyofilm aktiviteleri açısından umut verici bir doğal ajan olduğunu ortaya koymaktadır. Ekstrakt, 16 farklı Gram-pozitif ve Gram-negatif mikroorganizmaya karşı antimikrobiyal etkinlik gösterirken, çoklu ilaç direnci (MDR) gösteren Klebsiella pneumoniae ve Enterobacter aerogenes gibi suşlarda da artan ekstrakt miktarı ile genişleyen inhibisyon alanları gözlemlenmiştir. Biyofilm inhibisyonu testlerinde de en güçlü etkiler, Listeria innocua ve Bacillus subtilis DSMZ 1971 suşlarında gözlemlenmiştir. Öte yandan, DPPH yöntemiyle test edilen antioksidan aktivite oldukça düşüktür; bu durum, ekstraktın kimyasal bileşiminde fenolik bileşiklerin bulunmamasıyla açıklanabilir. GC-MS analizinde, majör bileşenlerin linoleik asit (%59.20) ve etil linoleat (%17.13) olduğu tespit edilmiştir. Bu bulgular, P. aurivella'nın antibiyofilm ve antimikrobiyal özellikleriyle farmasötik uygulamalar açısından potansiyele sahip olduğunu ve MDR patojenlere karşı dahi tedavi seçenekleri geliştirilmesinde önemli bir doğal kaynak sunabileceğini göstermektedir.
Thanks
Bu makale, Kerem Canlı, Ilgaz Akata, Ali Yetgin, Özcan Şimşek ve Ergin Murat Altuner tarafından "In Vitro Antimicrobial Activity Screening of Pholiota aurivella and Determination of the Ethanol Extract Composition by Gas Chromatography/Mass Spectrometry" başlığıyla 2017 yılında Trabzon'da düzenlenen The Second Japan – Turkey International Symposium on Pharmaceutical and Biomedical Sciences adlı sempozyumda bildiri olarak sunulan çalışmaya dayanmaktadır.
References
- 1. Archer, G. L., Climo, M.W. (2001). Staphylococcus aureus bacteremia-consider the source. New England Journal of Medicine, 344(1), 55-56.
- 2. Rammelkamp, C.H., Maxon, T. (1942). Resistance of Staphylococcus aureus to the Action of Penicillin. Proceedings of the Society for Experimental Biology and Medicine, 51(3), 386-389.
- 3. Chambers, H.F. (2001). The changing epidemiology of Staphylococcus aureus. Emerging Infectious Diseases, 7(2), 178. [CrossRef]
- 4. World Health Organization Web site. (1996). Antimicrobial resistance. Retrieved December 24, 2024, from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Erişim tarihi: 24.12.2024.
- 5. Jim O'Neill (2016). Tackling drug-resistant infections globally: Final report and recommendations. Analysis & Policy Observatory. Retrieved August 12, 2005, from ttp://www.bmj.com/cgi/content/full/317/7150/. Erişim tarihi: 24.12.2024.
- 6. Newman, D.J., Cragg, G.M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311-335. [CrossRef]
- 7. Wasser, S.P., Weis, A.L. (1999). Medicinal properties of substances occurring in higher basidiomycetes mushrooms: Current perspectives. International Journal of Medicinal Mushrooms, 1(1), 31-62. [CrossRef]
- 8. Imtiaj, A., Lee, T.S. (2007). Screening of antibacterial and antifungal activities from Korean wild mushrooms. World Journal of Agricultural Sciences, 3(3), 316-321.
- 9. Altuner, E.M., Akata, I. (2000). Antimicrobial activity of some macrofungi extracts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14, 1(2010).
- 10. Martinez-Medina, G.A., Chávez-González, M.L., Verma, D.K., Prado-Barragán, L.A., Martínez-Hernández, J.L., Flores-Gallegos, A.C., Aguilar, C.N. (2021). Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. Journal of Functional Foods, 77, 104326. [CrossRef]
- 11. Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mehranian, M. (2006). Empirical modeling of olive oil mill wastewater treatment using loofa-immobilized Phanerochaete chrysosporium. Process Biochemistry, 41(5), 1148-1154. [CrossRef]
- 12. Pazarlıoǧlu, N. K., Sariişik, M., Telefoncu, A. (2005). Laccase: Production by Trametes versicolor and application to denim washing. Process Biochemistry, 40(5), 1673-1678. [CrossRef]
- 13. Hyde, K., Hyde, K., Bahkali, A., Moslem, M. (2010). Fungi-an unusual source for cosmetics. Fungal Diversity, 43, 1-9. [CrossRef]
- 14. Dyakov, M.Y., Kamzolkina, O.V., Shtaer, O.V., Bis’ko, N.A., Poedinok, N.L., Mikhailova, O.B., Efremenkova, O.V. (2011). Morphological characteristics of natural strains of certain species of basidiomycetes and biological analysis of antimicrobial activity under submerged cultural conditions. Microbiology, 80(2), 274-285. [CrossRef]
- 15. Doğan, A. (2018). CCI4 İle oksidatif stres oluşturulan sıçanlarda Pholiota aurivella liyofilize ekstrenin bazı biyokimyasal ve hematolojik parametrelere etkisi. Mantar Dergisi, 9 (1), 58-66. [CrossRef]
- 16. Lee, J., Park, M., Park, J., Cho, Y., Kim, C., Kim, C., Jo, J., Lim, Y. (2020). Taxonomic study of the Genus pholiota (Strophariaceae, Basidiomycota) in Korea. Mycobiology, 48, 476-483. [CrossRef]
- 17. Solak M.H., Gücin F. (1992). New records of macrofungi for Turkey from Bursa District and other macrofungi found in the district. Turkish Journal of Botany, 16 (1): 335-346.
- 18. Canlı, K., Akata, I., Altuner, E. (2016). In vitro antimicrobial activity screening of Xylaria hypoxylon. African Journal of Traditional, Complementary, and Alternative Medicines. 13, 42-46. [CrossRef]
- 19. Canlı, K., Altuner, E., Akata, I. (2015). Antimicrobial screening of Mnium stellare. Bangladesh Journal of Pharmacology, 10, 321-325. [CrossRef]
- 20. Andrews, J.M. (2003). BSAC standardized disk susceptibility testing method (version 6). Journal of Antimicrobial Chemotherapy, 60, 20-41.
- 21. Benek, A., Canlı, K., Altuner, E.M. (2022). Antimicrobial and antioxidant activities of some mosses. Anatolian Bryology, 9(1), 42-49.
- 22. Baldas, B., Altuner, E.M. (2018). The antimicrobial activity of apple cider vinegar and grape vinegar, which are used as a traditional surface disinfectant for fruits and vegetables. Communications Faculty of Sciences University of Ankara Series C Biology, 27(1), 1-10. [CrossRef]
- 23. Tunca-Pinarli, Y., Benek, A., Turu, D., Bozyel, M.E., Canli, K., Altuner, E.M. (2023). Biological activities and biochemical composition of endemic Achillea fraasii. Microorganisms, 11(4), 978.
- 24. Benek, A., Turu, D., Canli, K. (2024). Determination of biological activity and biochemical content of ethanol extract from fruiting body of Tricholoma bufonium (Pers.) Gillet. Journal of Fungi, 10(11), 761. [CrossRef]
- 25. Turu, D., Bozkurt, S.D., Yaman, C., Gül, G., Benek, A., Canlı, K. (2024). Determination of biochemical content and antioxidant activity of Calliergonella cuspidata (Hedw.) Loeske. Anatolian Bryology, 10(1), 25-33. [CrossRef]
- 26. Silge, J., Robinson, D. (2016). Tidytext: Text mining and analysis using tidy data principles in R. Journal of OpenSource Software, 1(3), 37. [CrossRef]
- 27. Dyakov, M.Y., Kamzolkina, O.V., Shtaer, O.V., Bis’ ko, N.A., Poedinok, N.L., Mikhailova, O.B., Efremenkova, O.V. (2011). Morphological characteristics of natural strains of certain species of basidiomycetes and biological analysis of antimicrobial activity under submerged cultural conditions. Microbiology, 80, 274-285. [CrossRef]
- 28. Linz, M.S., Mattappallil, A., Finkel, D., Parker, D. (2023). Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics, 12(3), 557. [CrossRef]
- 29. Sheu, C.W., Freese, E. (1973). Lipopolysaccharide layer protection of gram-negative bacteria against inhibition by long-chain fatty acids. Journal of Bacteriology, 115(3), 869-875. [CrossRef]
- 30. Borucki, M.K., Reynolds, J., Wiedmann, M., Boor, K.J. (2003). Tracking and source attribution of Listeria monocytogenes in ready-to-eat products and processing environment. Emerging Infectious Diseases, 9(3), 267-274.
- 31. Oliver, S.P., Jayarao, B.M., Almeida, R.A. (2005). Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease, 2(2), 115-129. [CrossRef]
- 32. Buchanan, R.L., Klawitter, L.A. (1992). Effect of temperature and salinity on the survival of Listeria monocytogenes in marine species. Journal of Food Protection, 55(8), 668-672.
- 33. Skalicka‐Woźniak, K., Los, R., Głowniak, K., Malm, A. (2010). Antimicrobial activity of fatty acids from fruits of Peucedanum cervaria and P. alsaticum. Chemistry & Biodiversity, 7(11), 2748-2754. [CrossRef]
- 34. Islek, C., Saridogan, B.G.O., Sevindik, M., Akata, I. (2021). Biological activities and heavy metal contents of some Pholiota species. Fresenius Environmental Bulletin, 30(6), 6109-6114.
- 35. Van Vuuren, S.F. (2008). Antimicrobial activity of South African medicinal plants. Journal of Ethnopharmacology, 119(3), 462-472. [CrossRef]
- 36. Fagali, N., Catala, Á. (2008). Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophysical Chemistry, 137 1, 56-62. [CrossRef]
- 37. Regeda, L., Bisko, N., Gurinovych, N. (2021). The antioxidant activity of extracts of the mycelium and the culture fluid of medicinal macromycetes of Pholiota (Fr.) P. Kumm. genus. Journal of Organic and Pharmaceutical Chemistry. [CrossRef]
- 38. Wood, W., Kubo, A., Shaffer, T. (2010). Antimicrobial activity of long-chain (E)-3-alken-2-ones. Bioorganic & Medicinal Chemistry letters, 20(6), 1819-1820. [CrossRef]
- 39. Ulitzur, S., Hastings, J.W. (1979). Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proceedings of the National Academy of Sciences, 76(1), 265-267.
- 40. Sokmen, B., Hasdemir, B., Yusufoglu, A., Yanardag, R. (2014). Some monohydroxy tetradecanoic acid isomers as novel urease and elastase inhibitors and as new antioxidants. Applied Biochemistry and Biotechnology, 172, 1358-1364. [CrossRef]
- 41. Sivakumar, R., Jebanesan, A., Govindarajan, M., Rajasekar, P. (2011). Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera:Culicidae). Asian Pacific Journal of Tropical Medicine, 4(9), 706-710. [CrossRef]
- 42. Javid, S., Purohit, M., Kumar, Y., Ramya, K., Mithuna, N., Salahuddin, M., Kumar, B. (2020). Semisynthesis of myristic acid derivatives and their biological activities: A critical insight. Journal of Biologically Active Products from Nature, 10, 455-472. [CrossRef]
- 43. Tyagi, T., Agarwal, M. (2017). Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. Journal of Pharmacognosy and Phytochemistry, 6(1), 195-206.
- 44. Masuda, T., Yamada, K., Maekawa, T., Takeda, Y., Yamaguchi, H. (2006). Antioxidant mechanism studies on ferulic acid: Identification of oxidative coupling products from methyl ferulate and linoleate. Journal of Agricultural and Food Chemistry, 54(16), 6069-6074.
- 45. Zhu, Y.P., Su, Z.W., Li, C.H. (1989). Growth-inhibition effects of oleic acid, linoleic acid, and their methyl esters on transplanted tumors in mice. JNCI: Journal of the National Cancer Institute, 81(17), 1302-1306.
- 46. Park, S., Seetharaman, R., Ko, M., Kim, D., Kim, T., Yoon, M., Kwak, J., Lee, S., Bae, Y., Choi, Y. (2014). Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. International Immunopharmacology, 19(2), 253-261. [CrossRef]
- 47. Gorkum, R., Bouwman, E., Reedijk, J. (2004). Fast autoxidation of ethyl linoleate catalyzed by [Mn(acac)3] and bipyridine: A possible drying catalyst for alkyd paints. Inorganic chemistry, 43(8), 2456-2458. [CrossRef]
- 48. Devery, R., Miller, A., Stanton, C. (2001). Conjugated linoleic acid and oxidative behaviour in cancer cells. Biochemical Society Transactions, 29(2), 341-344. [CrossRef]
- 49. Basiricò, L., Morera, P., Dipasquale, D., Tröscher, A., Bernabucci, U. (2017). Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells. Journal of Dairy Science, 100(3), 2299-2309. [CrossRef]
- 50. Vangaveti, V., Jansen, H., Kennedy, R., Malabu, U. (2016). Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer. European Journal of Pharmacology, 785, 70-76. [CrossRef]
- 51. Sande, D., de Oliveira, G.P., Moura, M.A.F., de Almeida Martins, B., Lima, M.T.N.S., Takahashi, J.A. (2019). Edible mushrooms as a ubiquitous source of essential fatty acids. Food Research International, 108524. [CrossRef]
- 52. DeMars, Z.R., Krute, C.N., Ridder, M.J., Gilchrist, A.K., Menjivar, C., Bose, J.L. (2021). Fatty acids can inhibit Staphylococcus aureus SaeS activity at the membrane independent of alterations in respiration. Molecular Microbiology, 116(5), 1378-1391. [CrossRef]
- 53. Kabara, J.J., Swieczkowski, D.M., Conley, A.J., Truant, J.P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrobial Agents and Chemotherapy, 2(1), 23-28. [CrossRef]
- 54. Hartigh, L. (2019). Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients, 11. [CrossRef]
- 55. Takigawa, H., Nakagawa, H., Kuzukawa, M., Mori, H., Imokawa, G. (2005). Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by Staphylococcus aureus. Dermatology, 211(3), 240-248. [CrossRef]
- 56. Cartron, M.L., England, S.R., Chiriac, A.I., Josten, M., Turner, R., Rauter, Y., Foster, S.J. (2014). Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 58(7), 3599-3609. [CrossRef]
- 57. Neumann, Y., Ohlsen, K., Donat, S., Engelmann, S., Kusch, H., Albrecht, D., Foster, S.J. (2015). The effect of skin fatty acids on Staphylococcus aureus. Archives of Microbiology, 197, 245-267. [CrossRef]
- 58. Neumann, Y., Ohlsen, K., Donat, S., Engelmann, S., Kusch, H., Albrecht, D., Foster, S.J. (2015). The effect of skin fatty acids on Staphylococcus aureus. Archives of Microbiology, 197, 245-267. [CrossRef]
- 59. Alav, I., Sutton, J., Rahman, K. (2018). Role of bacterial efflux pumps in biofilm formation. Journal of Antimicrobial Chemotherapy, 73, 2003-2020. [CrossRef]
- 60. Kim, H.S., Ham, S.Y., Jang, Y., Sun, P.F., Park, J.H., Lee, J.H., Park, H.D. (2019). Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel, 253, 754-761. [CrossRef]
- 61. Liu, Y., Wu, L., Han, J., Dong, P., Luo, X., Zhang, Y., Zhu, L. (2021). Inhibition of biofilm formation and related gene expression of Listeria monocytogenes in response to four natural antimicrobial compounds and sodium hypochlorite. Frontiers in Microbiology, 11, 617473. [CrossRef]
- 62. Da Silva, E. P., De Martinis, E.C.P. (2013). Current knowledge and perspectives on biofilm formation: The case of Listeria monocytogenes. Applied Microbiology and Biotechnology, 97, 957-968. [CrossRef]
CHEMICAL COMPOSITION AND BIOLOGICAL ACTIVITY OF PHOLIOTA AURIVELLA (BATSCH) P. KUMM.
Year 2025,
Volume: 49 Issue: 2, 10 - 10
Cenker Yaman
,
Gizem Gül
,
Atakan Benek
,
Dilay Turu
,
Selime Deniz Bozkurt
,
Ilgaz Akata
,
Kerem Canlı
Abstract
Objective: This study aims to determine the chemical composition of the mushroom Pholiota aurivella by investigating its antimicrobial, antibiofilm, and antioxidant activities. The potential effects of the ethanol extract of the mushroom on a total of 27 different microorganisms, including strains with multidrug resistance (MDR), were examined. Additionally, the biofilm inhibition capacity and free radical scavenging activities of the mushroom extract were tested.
Material and Method: The ethanol extract obtained from the P. aurivella sample was subjected to various tests to evaluate its biological activities. Antimicrobial activity was analyzed using disk diffusion and Minimum Inhibitory Concentration (MIC) tests. Antibiofilm activity was assessed based on its capacity to inhibit biofilm formation, while antioxidant activity was tested using the DPPH method. The chemical composition was determined by Gas Chromatography-Mass Spectrometry (GC-MS) analysis.
Result and Discussion: Our study reveals that P. aurivella is a promising natural agent, especially in terms of its antimicrobial and antibiofilm activities. The extract exhibited antimicrobial activity against 16 different Gram-positive and Gram-negative microorganisms. Expanding zones of inhibition were observed with increasing extract amounts in strains such as Klebsiella pneumoniae and Enterobacter aerogenes, which show multidrug resistance (MDR). In biofilm inhibition tests, the strongest effects were observed in strains of Listeria innocua and Bacillus subtilis DSMZ 1971. On the other hand, the antioxidant activity tested by the DPPH method was quite low; this can be explained by the absence of phenolic compounds in the chemical composition of the extract. GC-MS analysis identified the major components as linoleic acid (59.20%) and ethyl linoleate (17.13%). These findings indicate that P. aurivella, with its antibiofilm and antimicrobial properties, has potential for pharmaceutical applications and may offer an important natural resource for developing treatment options even against MDR pathogens.
Thanks
This manuscript is based on the study previously presented as a conference abstract under the title "In Vitro Antimicrobial Activity Screening of Pholiota aurivella and Determination of the Ethanol Extract Composition by Gas Chromatography/Mass Spectrometry" by Kerem Canlı, Ilgaz Akata, Ali Yetgin, Özcan Şimşek, and Ergin Murat Altuner at The Second Japan – Turkey International Symposium on Pharmaceutical and Biomedical Sciences, held in 2017 in Trabzon.
References
- 1. Archer, G. L., Climo, M.W. (2001). Staphylococcus aureus bacteremia-consider the source. New England Journal of Medicine, 344(1), 55-56.
- 2. Rammelkamp, C.H., Maxon, T. (1942). Resistance of Staphylococcus aureus to the Action of Penicillin. Proceedings of the Society for Experimental Biology and Medicine, 51(3), 386-389.
- 3. Chambers, H.F. (2001). The changing epidemiology of Staphylococcus aureus. Emerging Infectious Diseases, 7(2), 178. [CrossRef]
- 4. World Health Organization Web site. (1996). Antimicrobial resistance. Retrieved December 24, 2024, from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Erişim tarihi: 24.12.2024.
- 5. Jim O'Neill (2016). Tackling drug-resistant infections globally: Final report and recommendations. Analysis & Policy Observatory. Retrieved August 12, 2005, from ttp://www.bmj.com/cgi/content/full/317/7150/. Erişim tarihi: 24.12.2024.
- 6. Newman, D.J., Cragg, G.M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311-335. [CrossRef]
- 7. Wasser, S.P., Weis, A.L. (1999). Medicinal properties of substances occurring in higher basidiomycetes mushrooms: Current perspectives. International Journal of Medicinal Mushrooms, 1(1), 31-62. [CrossRef]
- 8. Imtiaj, A., Lee, T.S. (2007). Screening of antibacterial and antifungal activities from Korean wild mushrooms. World Journal of Agricultural Sciences, 3(3), 316-321.
- 9. Altuner, E.M., Akata, I. (2000). Antimicrobial activity of some macrofungi extracts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14, 1(2010).
- 10. Martinez-Medina, G.A., Chávez-González, M.L., Verma, D.K., Prado-Barragán, L.A., Martínez-Hernández, J.L., Flores-Gallegos, A.C., Aguilar, C.N. (2021). Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. Journal of Functional Foods, 77, 104326. [CrossRef]
- 11. Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mehranian, M. (2006). Empirical modeling of olive oil mill wastewater treatment using loofa-immobilized Phanerochaete chrysosporium. Process Biochemistry, 41(5), 1148-1154. [CrossRef]
- 12. Pazarlıoǧlu, N. K., Sariişik, M., Telefoncu, A. (2005). Laccase: Production by Trametes versicolor and application to denim washing. Process Biochemistry, 40(5), 1673-1678. [CrossRef]
- 13. Hyde, K., Hyde, K., Bahkali, A., Moslem, M. (2010). Fungi-an unusual source for cosmetics. Fungal Diversity, 43, 1-9. [CrossRef]
- 14. Dyakov, M.Y., Kamzolkina, O.V., Shtaer, O.V., Bis’ko, N.A., Poedinok, N.L., Mikhailova, O.B., Efremenkova, O.V. (2011). Morphological characteristics of natural strains of certain species of basidiomycetes and biological analysis of antimicrobial activity under submerged cultural conditions. Microbiology, 80(2), 274-285. [CrossRef]
- 15. Doğan, A. (2018). CCI4 İle oksidatif stres oluşturulan sıçanlarda Pholiota aurivella liyofilize ekstrenin bazı biyokimyasal ve hematolojik parametrelere etkisi. Mantar Dergisi, 9 (1), 58-66. [CrossRef]
- 16. Lee, J., Park, M., Park, J., Cho, Y., Kim, C., Kim, C., Jo, J., Lim, Y. (2020). Taxonomic study of the Genus pholiota (Strophariaceae, Basidiomycota) in Korea. Mycobiology, 48, 476-483. [CrossRef]
- 17. Solak M.H., Gücin F. (1992). New records of macrofungi for Turkey from Bursa District and other macrofungi found in the district. Turkish Journal of Botany, 16 (1): 335-346.
- 18. Canlı, K., Akata, I., Altuner, E. (2016). In vitro antimicrobial activity screening of Xylaria hypoxylon. African Journal of Traditional, Complementary, and Alternative Medicines. 13, 42-46. [CrossRef]
- 19. Canlı, K., Altuner, E., Akata, I. (2015). Antimicrobial screening of Mnium stellare. Bangladesh Journal of Pharmacology, 10, 321-325. [CrossRef]
- 20. Andrews, J.M. (2003). BSAC standardized disk susceptibility testing method (version 6). Journal of Antimicrobial Chemotherapy, 60, 20-41.
- 21. Benek, A., Canlı, K., Altuner, E.M. (2022). Antimicrobial and antioxidant activities of some mosses. Anatolian Bryology, 9(1), 42-49.
- 22. Baldas, B., Altuner, E.M. (2018). The antimicrobial activity of apple cider vinegar and grape vinegar, which are used as a traditional surface disinfectant for fruits and vegetables. Communications Faculty of Sciences University of Ankara Series C Biology, 27(1), 1-10. [CrossRef]
- 23. Tunca-Pinarli, Y., Benek, A., Turu, D., Bozyel, M.E., Canli, K., Altuner, E.M. (2023). Biological activities and biochemical composition of endemic Achillea fraasii. Microorganisms, 11(4), 978.
- 24. Benek, A., Turu, D., Canli, K. (2024). Determination of biological activity and biochemical content of ethanol extract from fruiting body of Tricholoma bufonium (Pers.) Gillet. Journal of Fungi, 10(11), 761. [CrossRef]
- 25. Turu, D., Bozkurt, S.D., Yaman, C., Gül, G., Benek, A., Canlı, K. (2024). Determination of biochemical content and antioxidant activity of Calliergonella cuspidata (Hedw.) Loeske. Anatolian Bryology, 10(1), 25-33. [CrossRef]
- 26. Silge, J., Robinson, D. (2016). Tidytext: Text mining and analysis using tidy data principles in R. Journal of OpenSource Software, 1(3), 37. [CrossRef]
- 27. Dyakov, M.Y., Kamzolkina, O.V., Shtaer, O.V., Bis’ ko, N.A., Poedinok, N.L., Mikhailova, O.B., Efremenkova, O.V. (2011). Morphological characteristics of natural strains of certain species of basidiomycetes and biological analysis of antimicrobial activity under submerged cultural conditions. Microbiology, 80, 274-285. [CrossRef]
- 28. Linz, M.S., Mattappallil, A., Finkel, D., Parker, D. (2023). Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics, 12(3), 557. [CrossRef]
- 29. Sheu, C.W., Freese, E. (1973). Lipopolysaccharide layer protection of gram-negative bacteria against inhibition by long-chain fatty acids. Journal of Bacteriology, 115(3), 869-875. [CrossRef]
- 30. Borucki, M.K., Reynolds, J., Wiedmann, M., Boor, K.J. (2003). Tracking and source attribution of Listeria monocytogenes in ready-to-eat products and processing environment. Emerging Infectious Diseases, 9(3), 267-274.
- 31. Oliver, S.P., Jayarao, B.M., Almeida, R.A. (2005). Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease, 2(2), 115-129. [CrossRef]
- 32. Buchanan, R.L., Klawitter, L.A. (1992). Effect of temperature and salinity on the survival of Listeria monocytogenes in marine species. Journal of Food Protection, 55(8), 668-672.
- 33. Skalicka‐Woźniak, K., Los, R., Głowniak, K., Malm, A. (2010). Antimicrobial activity of fatty acids from fruits of Peucedanum cervaria and P. alsaticum. Chemistry & Biodiversity, 7(11), 2748-2754. [CrossRef]
- 34. Islek, C., Saridogan, B.G.O., Sevindik, M., Akata, I. (2021). Biological activities and heavy metal contents of some Pholiota species. Fresenius Environmental Bulletin, 30(6), 6109-6114.
- 35. Van Vuuren, S.F. (2008). Antimicrobial activity of South African medicinal plants. Journal of Ethnopharmacology, 119(3), 462-472. [CrossRef]
- 36. Fagali, N., Catala, Á. (2008). Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophysical Chemistry, 137 1, 56-62. [CrossRef]
- 37. Regeda, L., Bisko, N., Gurinovych, N. (2021). The antioxidant activity of extracts of the mycelium and the culture fluid of medicinal macromycetes of Pholiota (Fr.) P. Kumm. genus. Journal of Organic and Pharmaceutical Chemistry. [CrossRef]
- 38. Wood, W., Kubo, A., Shaffer, T. (2010). Antimicrobial activity of long-chain (E)-3-alken-2-ones. Bioorganic & Medicinal Chemistry letters, 20(6), 1819-1820. [CrossRef]
- 39. Ulitzur, S., Hastings, J.W. (1979). Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proceedings of the National Academy of Sciences, 76(1), 265-267.
- 40. Sokmen, B., Hasdemir, B., Yusufoglu, A., Yanardag, R. (2014). Some monohydroxy tetradecanoic acid isomers as novel urease and elastase inhibitors and as new antioxidants. Applied Biochemistry and Biotechnology, 172, 1358-1364. [CrossRef]
- 41. Sivakumar, R., Jebanesan, A., Govindarajan, M., Rajasekar, P. (2011). Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera:Culicidae). Asian Pacific Journal of Tropical Medicine, 4(9), 706-710. [CrossRef]
- 42. Javid, S., Purohit, M., Kumar, Y., Ramya, K., Mithuna, N., Salahuddin, M., Kumar, B. (2020). Semisynthesis of myristic acid derivatives and their biological activities: A critical insight. Journal of Biologically Active Products from Nature, 10, 455-472. [CrossRef]
- 43. Tyagi, T., Agarwal, M. (2017). Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. Journal of Pharmacognosy and Phytochemistry, 6(1), 195-206.
- 44. Masuda, T., Yamada, K., Maekawa, T., Takeda, Y., Yamaguchi, H. (2006). Antioxidant mechanism studies on ferulic acid: Identification of oxidative coupling products from methyl ferulate and linoleate. Journal of Agricultural and Food Chemistry, 54(16), 6069-6074.
- 45. Zhu, Y.P., Su, Z.W., Li, C.H. (1989). Growth-inhibition effects of oleic acid, linoleic acid, and their methyl esters on transplanted tumors in mice. JNCI: Journal of the National Cancer Institute, 81(17), 1302-1306.
- 46. Park, S., Seetharaman, R., Ko, M., Kim, D., Kim, T., Yoon, M., Kwak, J., Lee, S., Bae, Y., Choi, Y. (2014). Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. International Immunopharmacology, 19(2), 253-261. [CrossRef]
- 47. Gorkum, R., Bouwman, E., Reedijk, J. (2004). Fast autoxidation of ethyl linoleate catalyzed by [Mn(acac)3] and bipyridine: A possible drying catalyst for alkyd paints. Inorganic chemistry, 43(8), 2456-2458. [CrossRef]
- 48. Devery, R., Miller, A., Stanton, C. (2001). Conjugated linoleic acid and oxidative behaviour in cancer cells. Biochemical Society Transactions, 29(2), 341-344. [CrossRef]
- 49. Basiricò, L., Morera, P., Dipasquale, D., Tröscher, A., Bernabucci, U. (2017). Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells. Journal of Dairy Science, 100(3), 2299-2309. [CrossRef]
- 50. Vangaveti, V., Jansen, H., Kennedy, R., Malabu, U. (2016). Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer. European Journal of Pharmacology, 785, 70-76. [CrossRef]
- 51. Sande, D., de Oliveira, G.P., Moura, M.A.F., de Almeida Martins, B., Lima, M.T.N.S., Takahashi, J.A. (2019). Edible mushrooms as a ubiquitous source of essential fatty acids. Food Research International, 108524. [CrossRef]
- 52. DeMars, Z.R., Krute, C.N., Ridder, M.J., Gilchrist, A.K., Menjivar, C., Bose, J.L. (2021). Fatty acids can inhibit Staphylococcus aureus SaeS activity at the membrane independent of alterations in respiration. Molecular Microbiology, 116(5), 1378-1391. [CrossRef]
- 53. Kabara, J.J., Swieczkowski, D.M., Conley, A.J., Truant, J.P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrobial Agents and Chemotherapy, 2(1), 23-28. [CrossRef]
- 54. Hartigh, L. (2019). Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients, 11. [CrossRef]
- 55. Takigawa, H., Nakagawa, H., Kuzukawa, M., Mori, H., Imokawa, G. (2005). Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by Staphylococcus aureus. Dermatology, 211(3), 240-248. [CrossRef]
- 56. Cartron, M.L., England, S.R., Chiriac, A.I., Josten, M., Turner, R., Rauter, Y., Foster, S.J. (2014). Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 58(7), 3599-3609. [CrossRef]
- 57. Neumann, Y., Ohlsen, K., Donat, S., Engelmann, S., Kusch, H., Albrecht, D., Foster, S.J. (2015). The effect of skin fatty acids on Staphylococcus aureus. Archives of Microbiology, 197, 245-267. [CrossRef]
- 58. Neumann, Y., Ohlsen, K., Donat, S., Engelmann, S., Kusch, H., Albrecht, D., Foster, S.J. (2015). The effect of skin fatty acids on Staphylococcus aureus. Archives of Microbiology, 197, 245-267. [CrossRef]
- 59. Alav, I., Sutton, J., Rahman, K. (2018). Role of bacterial efflux pumps in biofilm formation. Journal of Antimicrobial Chemotherapy, 73, 2003-2020. [CrossRef]
- 60. Kim, H.S., Ham, S.Y., Jang, Y., Sun, P.F., Park, J.H., Lee, J.H., Park, H.D. (2019). Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel, 253, 754-761. [CrossRef]
- 61. Liu, Y., Wu, L., Han, J., Dong, P., Luo, X., Zhang, Y., Zhu, L. (2021). Inhibition of biofilm formation and related gene expression of Listeria monocytogenes in response to four natural antimicrobial compounds and sodium hypochlorite. Frontiers in Microbiology, 11, 617473. [CrossRef]
- 62. Da Silva, E. P., De Martinis, E.C.P. (2013). Current knowledge and perspectives on biofilm formation: The case of Listeria monocytogenes. Applied Microbiology and Biotechnology, 97, 957-968. [CrossRef]