Review
BibTex RIS Cite

Kardiyokinlerin Obezite ve Beslenme İle İlişkisi

Year 2025, Volume: 4 Issue: 1, 45 - 56, 30.04.2025
https://doi.org/10.63695/jhscr.1601578

Abstract

Kalp, vücutta dolaşım sistemini düzenleyen temel organ olarak görev almaktadır. Son yıllarda yapılan çalışmalar, kalbin aynı zamanda vücuttaki organlar arası çapraz iletişimde rol oynadığını ortaya koymuştur. Bu iletişim, "kardiyokinler" adı verilen protein yapılı moleküller aracılığıyla sağlanmaktadır. Kalpteki çeşitli hücre tipleri tarafından salgılanan bu proteinler, kan dolaşımı yoluyla diğer organlara taşınarak kalp homeostazının ve stres tepkisinin düzenlenmesinde rol oynamaktadır. Bununla birlikte kardiyokinler; lipid yıkımı, yağ hücresi oluşumu, enerji harcaması ve termojenez gibi metabolik süreçleri de etkilemekte ve böylece obezite gibi metabolik durumlarla da ilişkilendirilmektedir. Vücuttaki kardiyokinlerin düzenlenmesi, kalp fonksiyonunun ve metabolik dengenin korunması için önemlidir. Beslenme ve egzersiz gibi yaşam tarzı müdahaleleri çeşitli mekanizmalar yoluyla kardiyokinlerin homeostazı ve obezite etkileşimini olumlu ya da olumsuz yönde etkileyebilmektedir. Bu çalışmada, metabolik fonksiyonları bulunan başlıca kardiyokinlerin obezite ve beslenme ilişkilerinin incelenmesi amaçlanmıştır.

References

  • Wu YS, Zhu B, Luo AL, Yang L, Yang C. The role of cardiokines in heart diseases: beneficial or detrimental?. BioMed Research International. 2018; 2018:8207058. https://doi.org/10.1155/2018/8207058
  • Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From beats to metabolism: the heart at the core of interorgan metabolic cross talk. Physiology. 2024; 39(2); 98-125. https://doi.org/10.1152/physiol.00018.2023.
  • Ferrero KM, Koch WJ. Metabolic crosstalk between the heart and fat. Korean Circulation Journal. 2020; 50(5); 379-394. https://doi.org/10.4070/kcj.2019.0400
  • Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. Journal of Cellular Physiology. 2021; 236(4); 2393-2412. https://doi.org/10.1002/jcp.30033
  • Tang S, Li R, Ma W, Lian L, Gao J, Cao Y et al. Cardiac-to-adipose axis in metabolic homeostasis and diseases: special instructions from the heart. Cell & Bioscience. 2023; 13(1); 161. https://doi.org/10.1186/s13578-023-01097-1
  • Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Hormone Molecular Biology and Clinical Investigation. 2017; 30(1); 20160016. https://doi.org/10.1515/hmbci-2016-0016
  • Ma Y, Kuang Y, Bo W, Liang Q, Zhu W, Cai M et al. Exercise training alleviates cardiac fibrosis through increasing fibroblast growth factor 21 and regulating TGF-β1-Smad2/3-MMP2/9 signaling in mice with myocardial infarction. International Journal of Molecular Sciences. 2021; 22(22); 12341. https://doi.org/10.3390/ijms222212341
  • Fernandes T, Barretti DL, Phillips MI, Oliveira EM. Exercise training prevents obesity-associated disorders: Role of miRNA-208a and MED13. Molecular and Cellular Endocrinology. 2018; 476; 148-154. https://doi.org/10.1016/j.mce.2018.05.004
  • Assmann TS, Riezu‐Boj JI, Milagro FI, Martínez JA. Circulating adiposity‐related microRNAs as predictors of the response to a low‐fat diet in subjects with obesity. Journal of Cellular and Molecular Medicine. 2020; 24(5); 2956-2967. https://doi.org/10.1111/jcmm.14920
  • Doroudgar S, Glembotski CC. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends in Molecular Medicine. 2011; 17(4); 207-214. https://doi.org/10.1016/j.molmed.2010.12.003
  • Xu MY, Ye ZS, Song XT, Huang RC. Differences in the cargos and functions of exosomes derived from six cardiac cell types: A systematic review. Stem Cell Research & Therapy.2019; 10(1); 194. https://doi.org/10.1186/s13287-019-1297-7
  • Gan L, Liu D, Xie D, Bond Lau W, Liu J, Christopher TA et al. Ischemic heart-derived small extracellular vesicles impair adipocyte function. Circulation Research. 2022; 130(1); 48-66. https://doi.org/10.1161/CIRCRESAHA.121.320157
  • Katsi V, Marketou M, Antonopoulos AS, Vrachatis D, Parthenakis F, Tousoulis, D. B-type natriuretic peptide levels and benign adiposity in obese heart failure patients. Heart Failure Reviews. 2019; 24 (2); 219-226. https://doi.org/10.1007/s10741-018-9739-3
  • Baars T, Gieseler RK, Patsalis PC, Canbay A. Towards harnessing the value of organokine crosstalk to predict the risk for cardiovascular disease in non-alcoholic fatty liver disease. Metabolism. 2022; 130; 155179. https://doi.org/10.1016/j.metabol.2022.155179
  • Wu HK, Zhang Y, Cao CM, Hu X, Fang M, Yao Y et al. Glucose-sensitive myokine/cardiokine MG53 regulates systemic insulin response and metabolic homeostasis. Circulation. 2019; 139(7); 901-914. https://doi.org/10.1161/CIRCULATIONAHA.118.037216
  • Senesi P, Luzi L, Terruzzi I. Adipokines, myokines, and cardiokines: The role of nutritional interventions. International Journal of Molecular Sciences. 2020; 21(21); 8372. https://doi.org/10.3390/ijms21218372
  • Öztürk NK. Beslenme Ve Sağlık İlişkisi. İçinde: Özenoğlu A, editör. Temel Beslenme İlkeleri ve Laboratuvar Uygulamaları. Eğitim Yayınevi, 2024, s. 27-34.
  • Collado A, Jin H, Pernow J, Zhou, Z. MicroRNA: A mediator of diet-induced cardiovascular protection. Current Opinion in Pharmacology. 2021; 60; 183-192. https://doi.org/10.1016/j.coph.2021.07.022
  • Nani A, Murtaza B, Sayed Khan A, Khan NA, Hichami A. Antioxidant and anti-inflammatory potential of polyphenols contained in mediterranean diet in obesity: Molecular mechanisms. Molecules. 2021; 26(4); 985. https://doi.org/10.3390/molecules26040985
  • Ferreira-Santos P, Aparicio R, Carrón R, Sevilla MÁ, Monroy-Ruiz J, Montero M J. Lycopenesupplemented diet ameliorates cardiovascular remodeling and oxidative stress in rats with hypertension induced by Angiotensin II. Journal of Functional Foods. 2018. 47; 279-287. https://doi.org/10.1016/j.jff.2020.104098
  • Eldourghamy A, Hossam T, Hussein MA, Abdel-Aziz A, El-Masry SA. Naringenin suppresses NLRP3 inflammasome activation via the mRNA-208a signaling pathway in isoproterenol-induced myocardial infarction. Asian Pacific Journal of Tropical Biomedicine. 2023; 13(10); 443-450. https://doi.org/10.4103/2221-1691.387750
  • Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites. 2023; 13(9); 979. https://doi.org/10.3390/metabo13090979
  • Jafari Salim S, Alizadeh S, Djalali M, Nematipour E, Hassan Javanbakht M. Effect of omega-3 polyunsaturated fatty acids supplementation on body composition and circulating levels of follistatin-like 1 in males with coronary artery disease: A randomized double-blind clinical trial. American Journal of Men's Health. 2017; 11(6); 1758-1764. https://doi.org/10.1177/1557988317720581
  • Shoaei Makanet S, Gholami M, Soheili S, Ghazalian F. The effect of eight weeks aerobic training and omega3 ingestion on the levels of CTRP-9 and adiponectin in overweight and obese women. Razavi International Journal of Medicine. 2023; 11(1); 1-7. https://doi.org/10.30483/rijm.2022.254161.1015
  • Zhao Y, Zeng Y, Zeng D, Wang H, Zhou M, Sun N et al. Probiotics and MicroRNA: Their roles in the host–microbe interactions. Frontiers in Microbiology. 2021; 11; 604462. https://doi.org/10.3389/fmicb.2020.604462
  • Kopczyńska J & Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Frontiers in Immunology. 2024; 15, 1380476. https://doi.org/10.3389/fimmu.2024.1380476
  • Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nature Communications. 2020; 11(1); 60. https://doi.org/10.1038/s41467-019-13603-6
  • Geidl-Flueck B, Hochuli M, Spinas GA, Gerber PA. Do sugar-sweetened beverages increase fasting FGF21 irrespective of the type of added sugar? A secondary exploratory analysis of a randomized controlled trial. Nutrients. 2022; 14(19); 4169. https://doi.org/10.3390/nu14194169
  • Lu JF, Zhu MQ, Xia B, Zhang NN, Liu XP, Liu H et al. GDF15 is a major determinant of ketogenic dietinduced weight loss. Cell Metabolism. 2023; 35(12); 2165-2182. https://doi.org/10.1016/j.cmet.2023.11.003
  • Rodríguez-López CP, González-Torres MC, Aguilar-Salinas CA, Nájera-Medina O. Dash diet as a proposal for improvement in cellular immunity and its association with metabolic parameters in persons with overweight and obesity. Nutrients. 2021; 13(10); 3540. https://doi.org/10.3390/nu13103540
  • Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant‐based diets on obesity‐ related inflammatory profiles: A systematic review and meta‐analysis of intervention trials. Obesity Reviews. 2016; 17(11); 1067-1079. https://doi.org/10.1111/obr.12439
  • Luisi MLE, Lucarini L, Biffi B, Rafanelli E, Pietramellara G, Durante M et al. Effect of Mediterranean diet enriched in high quality extra virgin olive oil on oxidative stress, inflammation and gut microbiota in obese and normal weight adult subjects. Frontiers in Pharmacology. 2019; 10; 1366. https://doi.org/10.3389/fphar.2019.01366
  • Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C et al. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. Journal of Cellular and Molecular Medicine. 2021; 25(20); 9837-9850. https://doi.org/10.1111/jcmm.16931
  • Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E. Fructose ingestion acutely stimulates FGF21 in humans. Molecular Metabolism. 2014; 4(1); 51-57. https://doi.org/10.1016/j.molmet.2014.09.008
  • Liu J, Ma H, Liu D, Cui Y, Parthasarathy S, Zhu H. Chronic high fat diet decreases CD34/CD133 cell population in bone marrow and peripheral circulation in association with decreased level of serum MG53. The FASEB Journal. 2015; 29, 801-806. https://doi.org/10.1096/fasebj.29.1_supplement.801.6
  • Pineda C, Rios R, Raya AI, Rodriguez M, Aguilera-Tejero E, Lopez I. Hypocaloric diet prevents the decrease in FGF21 elicited by high phosphorus intake. Nutrients. 2018; 10(10); 1496. https://doi.org/10.3390/nu10101496
  • Perry CA, Van Guilder GP, Butterick TA. Decreased myostatin in response to a controlled DASH diet is associated with improved body composition and cardiometabolic biomarkers in older adults: Results from a controlled-feeding diet intervention study. BMC Nutrition. 2022; 8(1); 24. https://doi.org/10.1186/s40795-022-00516-9.
  • Liu D, Ceddia RP, Collins S. Cardiac natriuretic peptides promote adipose ‘browning’ through mTOR complex-1. Molecular Metabolism. 2018; 9; 192–198. https://doi.org/10.1016/j.molmet.2017.12.017
  • Siddiqui JA, Pothuraju R, Khan P, Sharma G, Muniyan S, Seshacharyulu P et al. Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine & Growth Factor Reviews. 2022; 64; 71-83. https://doi.org/10.1016/j.cytogfr.2021.11.002
  • Yang S, Dai H, Hu W, Geng S, Li L, Li X et al. Association between circulating follistatin‐like‐1 and metabolic syndrome in middle‐aged and old population: A cross‐sectional study. Diabetes/Metabolism Research and Reviews. 2021; 37(2); e3373. https://doi.org/10.1002/dmrr.3373
  • Moreno-Santos I, Macías-González M, Porras-Martín C, Castellano-Castillo D, Sánchez-Espín G et al. Role of epicardial adipose tissue NPR-C in acute coronary syndrome. Atherosclerosis. 2019; 286; 79–87. https://doi.org/10.1016/j.atherosclerosis.2019.05.010
  • Goetze JP, Bruneau BG, Ramos HR, Ogawa T, de Bold MK, de Bold AJ. Cardiac natriuretic peptides. Nature Reviews Cardiology. 2020; 17(11); 698-717. https://doi.org/10.1038/s41569-020-0381-0 43. Singh S, Pandey A, Neeland IJ. Diagnostic and prognostic considerations for use of natriuretic peptides in obese patients with heart failure. Progress in Cardiovascular Diseases. 2020; 63(5); 649-655. https://doi.org/10.1016/j.pcad.2020.09.006
  • Arora P, Wu C, Hamid T, Arora G, Agha O, Allen K et al. Acute metabolic influences on the natriuretic peptide system in humans. Journal of the American College of Cardiology. 2016; 67(7); 804-812. https://doi.org/10.1016/j.jacc.2015.11.049
  • Parcha V, Patel N, Musunuru K, Margulies KB, Cappola TP, Halade G et al. Natriuretic peptide deficiency in obese individuals: mechanistic insights from healthy organ donor cohort. Journal of the American College of Cardiology. 2021; 77(24); 3138-3140. https://doi.org/10.1016/j.jacc.2021.04.055
  • Fujimoto W, Odajima S, Okamoto H, Iwasaki M, Nagao M, Konishi A et al. Importance of B-Type Natriuretic Peptide in the Detection of Patients With Structural Heart Disease in a Primary Care Setting. Circulation Journal. 2024; 88(5); 732-739. https://doi.org/10.1253/circj.CJ-23-0930
  • Pervin S, Reddy ST, Singh R. Novel roles of follistatin/myostatin in transforming growth factor-β signaling and adipose browning: Potential for therapeutic intervention in obesity related metabolic disorders. Frontiers in Endocrinology. 2021; 12; 653179. https://doi.org/10.3389/fendo.2021.653179
  • Perrone MA, Aimo A, Bernardini S, Clerico A. Inflammageing and cardiovascular system: Focus on cardiokines and cardiac-specific biomarkers. International Journal of Molecular Sciences. 2023; 24(1); 844. https://doi.org/10.3390/ijms24010844
  • Masoodian SM, Toolabi K, Omidifar A, Zabihi H, Rahimipour A, Shanaki M. Increased mRNA expression of CTRP3 and CTRP9 in adipose tissue from obese women: İs it linked to obesity-related parameters and mRNA expression of inflammatory cytokines?. Reports of Biochemistry & Molecular Biology. 2020; 9(1); 71-81. https://doi.org/10.29252/rbmb.9.1.71.
  • Baruch A, Wong C, Chinn LW, Vaze A, Sonoda J, Gelzleichter T et al. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proceedings of the National Academy of Sciences. 2020; 117(46); 28992-29000. https://doi.org/10.1073/pnas.2012073117
  • Horak M, Kuruczova D, Zlamal F, Tomandl J, Bienertova-Vasku J. Follistatin-like 1 is downregulated in morbidly and super obese Central-European population. Disease Markers. 2018; 4140815. https://doi.org/10.1155/2018/4140815
  • Zhou W, Cai H, Li J, Xu H, Wang X, Men H et al. Potential roles of mediator complex subunit 13 in cardiac diseases. International Journal of Biological Sciences. 2021; 17(1); 328-338. https://doi.org/10.7150/ijbs.52290
  • Kalupahana NS, Massiera F, Quignard‐Boulange A, Ailhaud G, Voy BH, Wasserman DH et al. Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity. 2012; 20(1); 48-56. https://doi.org/10.1038/oby.2011.299
Year 2025, Volume: 4 Issue: 1, 45 - 56, 30.04.2025
https://doi.org/10.63695/jhscr.1601578

Abstract

References

  • Wu YS, Zhu B, Luo AL, Yang L, Yang C. The role of cardiokines in heart diseases: beneficial or detrimental?. BioMed Research International. 2018; 2018:8207058. https://doi.org/10.1155/2018/8207058
  • Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From beats to metabolism: the heart at the core of interorgan metabolic cross talk. Physiology. 2024; 39(2); 98-125. https://doi.org/10.1152/physiol.00018.2023.
  • Ferrero KM, Koch WJ. Metabolic crosstalk between the heart and fat. Korean Circulation Journal. 2020; 50(5); 379-394. https://doi.org/10.4070/kcj.2019.0400
  • Chen W, Wang L, You W, Shan T. Myokines mediate the cross talk between skeletal muscle and other organs. Journal of Cellular Physiology. 2021; 236(4); 2393-2412. https://doi.org/10.1002/jcp.30033
  • Tang S, Li R, Ma W, Lian L, Gao J, Cao Y et al. Cardiac-to-adipose axis in metabolic homeostasis and diseases: special instructions from the heart. Cell & Bioscience. 2023; 13(1); 161. https://doi.org/10.1186/s13578-023-01097-1
  • Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Hormone Molecular Biology and Clinical Investigation. 2017; 30(1); 20160016. https://doi.org/10.1515/hmbci-2016-0016
  • Ma Y, Kuang Y, Bo W, Liang Q, Zhu W, Cai M et al. Exercise training alleviates cardiac fibrosis through increasing fibroblast growth factor 21 and regulating TGF-β1-Smad2/3-MMP2/9 signaling in mice with myocardial infarction. International Journal of Molecular Sciences. 2021; 22(22); 12341. https://doi.org/10.3390/ijms222212341
  • Fernandes T, Barretti DL, Phillips MI, Oliveira EM. Exercise training prevents obesity-associated disorders: Role of miRNA-208a and MED13. Molecular and Cellular Endocrinology. 2018; 476; 148-154. https://doi.org/10.1016/j.mce.2018.05.004
  • Assmann TS, Riezu‐Boj JI, Milagro FI, Martínez JA. Circulating adiposity‐related microRNAs as predictors of the response to a low‐fat diet in subjects with obesity. Journal of Cellular and Molecular Medicine. 2020; 24(5); 2956-2967. https://doi.org/10.1111/jcmm.14920
  • Doroudgar S, Glembotski CC. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends in Molecular Medicine. 2011; 17(4); 207-214. https://doi.org/10.1016/j.molmed.2010.12.003
  • Xu MY, Ye ZS, Song XT, Huang RC. Differences in the cargos and functions of exosomes derived from six cardiac cell types: A systematic review. Stem Cell Research & Therapy.2019; 10(1); 194. https://doi.org/10.1186/s13287-019-1297-7
  • Gan L, Liu D, Xie D, Bond Lau W, Liu J, Christopher TA et al. Ischemic heart-derived small extracellular vesicles impair adipocyte function. Circulation Research. 2022; 130(1); 48-66. https://doi.org/10.1161/CIRCRESAHA.121.320157
  • Katsi V, Marketou M, Antonopoulos AS, Vrachatis D, Parthenakis F, Tousoulis, D. B-type natriuretic peptide levels and benign adiposity in obese heart failure patients. Heart Failure Reviews. 2019; 24 (2); 219-226. https://doi.org/10.1007/s10741-018-9739-3
  • Baars T, Gieseler RK, Patsalis PC, Canbay A. Towards harnessing the value of organokine crosstalk to predict the risk for cardiovascular disease in non-alcoholic fatty liver disease. Metabolism. 2022; 130; 155179. https://doi.org/10.1016/j.metabol.2022.155179
  • Wu HK, Zhang Y, Cao CM, Hu X, Fang M, Yao Y et al. Glucose-sensitive myokine/cardiokine MG53 regulates systemic insulin response and metabolic homeostasis. Circulation. 2019; 139(7); 901-914. https://doi.org/10.1161/CIRCULATIONAHA.118.037216
  • Senesi P, Luzi L, Terruzzi I. Adipokines, myokines, and cardiokines: The role of nutritional interventions. International Journal of Molecular Sciences. 2020; 21(21); 8372. https://doi.org/10.3390/ijms21218372
  • Öztürk NK. Beslenme Ve Sağlık İlişkisi. İçinde: Özenoğlu A, editör. Temel Beslenme İlkeleri ve Laboratuvar Uygulamaları. Eğitim Yayınevi, 2024, s. 27-34.
  • Collado A, Jin H, Pernow J, Zhou, Z. MicroRNA: A mediator of diet-induced cardiovascular protection. Current Opinion in Pharmacology. 2021; 60; 183-192. https://doi.org/10.1016/j.coph.2021.07.022
  • Nani A, Murtaza B, Sayed Khan A, Khan NA, Hichami A. Antioxidant and anti-inflammatory potential of polyphenols contained in mediterranean diet in obesity: Molecular mechanisms. Molecules. 2021; 26(4); 985. https://doi.org/10.3390/molecules26040985
  • Ferreira-Santos P, Aparicio R, Carrón R, Sevilla MÁ, Monroy-Ruiz J, Montero M J. Lycopenesupplemented diet ameliorates cardiovascular remodeling and oxidative stress in rats with hypertension induced by Angiotensin II. Journal of Functional Foods. 2018. 47; 279-287. https://doi.org/10.1016/j.jff.2020.104098
  • Eldourghamy A, Hossam T, Hussein MA, Abdel-Aziz A, El-Masry SA. Naringenin suppresses NLRP3 inflammasome activation via the mRNA-208a signaling pathway in isoproterenol-induced myocardial infarction. Asian Pacific Journal of Tropical Biomedicine. 2023; 13(10); 443-450. https://doi.org/10.4103/2221-1691.387750
  • Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites. 2023; 13(9); 979. https://doi.org/10.3390/metabo13090979
  • Jafari Salim S, Alizadeh S, Djalali M, Nematipour E, Hassan Javanbakht M. Effect of omega-3 polyunsaturated fatty acids supplementation on body composition and circulating levels of follistatin-like 1 in males with coronary artery disease: A randomized double-blind clinical trial. American Journal of Men's Health. 2017; 11(6); 1758-1764. https://doi.org/10.1177/1557988317720581
  • Shoaei Makanet S, Gholami M, Soheili S, Ghazalian F. The effect of eight weeks aerobic training and omega3 ingestion on the levels of CTRP-9 and adiponectin in overweight and obese women. Razavi International Journal of Medicine. 2023; 11(1); 1-7. https://doi.org/10.30483/rijm.2022.254161.1015
  • Zhao Y, Zeng Y, Zeng D, Wang H, Zhou M, Sun N et al. Probiotics and MicroRNA: Their roles in the host–microbe interactions. Frontiers in Microbiology. 2021; 11; 604462. https://doi.org/10.3389/fmicb.2020.604462
  • Kopczyńska J & Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Frontiers in Immunology. 2024; 15, 1380476. https://doi.org/10.3389/fimmu.2024.1380476
  • Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nature Communications. 2020; 11(1); 60. https://doi.org/10.1038/s41467-019-13603-6
  • Geidl-Flueck B, Hochuli M, Spinas GA, Gerber PA. Do sugar-sweetened beverages increase fasting FGF21 irrespective of the type of added sugar? A secondary exploratory analysis of a randomized controlled trial. Nutrients. 2022; 14(19); 4169. https://doi.org/10.3390/nu14194169
  • Lu JF, Zhu MQ, Xia B, Zhang NN, Liu XP, Liu H et al. GDF15 is a major determinant of ketogenic dietinduced weight loss. Cell Metabolism. 2023; 35(12); 2165-2182. https://doi.org/10.1016/j.cmet.2023.11.003
  • Rodríguez-López CP, González-Torres MC, Aguilar-Salinas CA, Nájera-Medina O. Dash diet as a proposal for improvement in cellular immunity and its association with metabolic parameters in persons with overweight and obesity. Nutrients. 2021; 13(10); 3540. https://doi.org/10.3390/nu13103540
  • Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant‐based diets on obesity‐ related inflammatory profiles: A systematic review and meta‐analysis of intervention trials. Obesity Reviews. 2016; 17(11); 1067-1079. https://doi.org/10.1111/obr.12439
  • Luisi MLE, Lucarini L, Biffi B, Rafanelli E, Pietramellara G, Durante M et al. Effect of Mediterranean diet enriched in high quality extra virgin olive oil on oxidative stress, inflammation and gut microbiota in obese and normal weight adult subjects. Frontiers in Pharmacology. 2019; 10; 1366. https://doi.org/10.3389/fphar.2019.01366
  • Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C et al. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. Journal of Cellular and Molecular Medicine. 2021; 25(20); 9837-9850. https://doi.org/10.1111/jcmm.16931
  • Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E. Fructose ingestion acutely stimulates FGF21 in humans. Molecular Metabolism. 2014; 4(1); 51-57. https://doi.org/10.1016/j.molmet.2014.09.008
  • Liu J, Ma H, Liu D, Cui Y, Parthasarathy S, Zhu H. Chronic high fat diet decreases CD34/CD133 cell population in bone marrow and peripheral circulation in association with decreased level of serum MG53. The FASEB Journal. 2015; 29, 801-806. https://doi.org/10.1096/fasebj.29.1_supplement.801.6
  • Pineda C, Rios R, Raya AI, Rodriguez M, Aguilera-Tejero E, Lopez I. Hypocaloric diet prevents the decrease in FGF21 elicited by high phosphorus intake. Nutrients. 2018; 10(10); 1496. https://doi.org/10.3390/nu10101496
  • Perry CA, Van Guilder GP, Butterick TA. Decreased myostatin in response to a controlled DASH diet is associated with improved body composition and cardiometabolic biomarkers in older adults: Results from a controlled-feeding diet intervention study. BMC Nutrition. 2022; 8(1); 24. https://doi.org/10.1186/s40795-022-00516-9.
  • Liu D, Ceddia RP, Collins S. Cardiac natriuretic peptides promote adipose ‘browning’ through mTOR complex-1. Molecular Metabolism. 2018; 9; 192–198. https://doi.org/10.1016/j.molmet.2017.12.017
  • Siddiqui JA, Pothuraju R, Khan P, Sharma G, Muniyan S, Seshacharyulu P et al. Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine & Growth Factor Reviews. 2022; 64; 71-83. https://doi.org/10.1016/j.cytogfr.2021.11.002
  • Yang S, Dai H, Hu W, Geng S, Li L, Li X et al. Association between circulating follistatin‐like‐1 and metabolic syndrome in middle‐aged and old population: A cross‐sectional study. Diabetes/Metabolism Research and Reviews. 2021; 37(2); e3373. https://doi.org/10.1002/dmrr.3373
  • Moreno-Santos I, Macías-González M, Porras-Martín C, Castellano-Castillo D, Sánchez-Espín G et al. Role of epicardial adipose tissue NPR-C in acute coronary syndrome. Atherosclerosis. 2019; 286; 79–87. https://doi.org/10.1016/j.atherosclerosis.2019.05.010
  • Goetze JP, Bruneau BG, Ramos HR, Ogawa T, de Bold MK, de Bold AJ. Cardiac natriuretic peptides. Nature Reviews Cardiology. 2020; 17(11); 698-717. https://doi.org/10.1038/s41569-020-0381-0 43. Singh S, Pandey A, Neeland IJ. Diagnostic and prognostic considerations for use of natriuretic peptides in obese patients with heart failure. Progress in Cardiovascular Diseases. 2020; 63(5); 649-655. https://doi.org/10.1016/j.pcad.2020.09.006
  • Arora P, Wu C, Hamid T, Arora G, Agha O, Allen K et al. Acute metabolic influences on the natriuretic peptide system in humans. Journal of the American College of Cardiology. 2016; 67(7); 804-812. https://doi.org/10.1016/j.jacc.2015.11.049
  • Parcha V, Patel N, Musunuru K, Margulies KB, Cappola TP, Halade G et al. Natriuretic peptide deficiency in obese individuals: mechanistic insights from healthy organ donor cohort. Journal of the American College of Cardiology. 2021; 77(24); 3138-3140. https://doi.org/10.1016/j.jacc.2021.04.055
  • Fujimoto W, Odajima S, Okamoto H, Iwasaki M, Nagao M, Konishi A et al. Importance of B-Type Natriuretic Peptide in the Detection of Patients With Structural Heart Disease in a Primary Care Setting. Circulation Journal. 2024; 88(5); 732-739. https://doi.org/10.1253/circj.CJ-23-0930
  • Pervin S, Reddy ST, Singh R. Novel roles of follistatin/myostatin in transforming growth factor-β signaling and adipose browning: Potential for therapeutic intervention in obesity related metabolic disorders. Frontiers in Endocrinology. 2021; 12; 653179. https://doi.org/10.3389/fendo.2021.653179
  • Perrone MA, Aimo A, Bernardini S, Clerico A. Inflammageing and cardiovascular system: Focus on cardiokines and cardiac-specific biomarkers. International Journal of Molecular Sciences. 2023; 24(1); 844. https://doi.org/10.3390/ijms24010844
  • Masoodian SM, Toolabi K, Omidifar A, Zabihi H, Rahimipour A, Shanaki M. Increased mRNA expression of CTRP3 and CTRP9 in adipose tissue from obese women: İs it linked to obesity-related parameters and mRNA expression of inflammatory cytokines?. Reports of Biochemistry & Molecular Biology. 2020; 9(1); 71-81. https://doi.org/10.29252/rbmb.9.1.71.
  • Baruch A, Wong C, Chinn LW, Vaze A, Sonoda J, Gelzleichter T et al. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proceedings of the National Academy of Sciences. 2020; 117(46); 28992-29000. https://doi.org/10.1073/pnas.2012073117
  • Horak M, Kuruczova D, Zlamal F, Tomandl J, Bienertova-Vasku J. Follistatin-like 1 is downregulated in morbidly and super obese Central-European population. Disease Markers. 2018; 4140815. https://doi.org/10.1155/2018/4140815
  • Zhou W, Cai H, Li J, Xu H, Wang X, Men H et al. Potential roles of mediator complex subunit 13 in cardiac diseases. International Journal of Biological Sciences. 2021; 17(1); 328-338. https://doi.org/10.7150/ijbs.52290
  • Kalupahana NS, Massiera F, Quignard‐Boulange A, Ailhaud G, Voy BH, Wasserman DH et al. Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity. 2012; 20(1); 48-56. https://doi.org/10.1038/oby.2011.299
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Nutritional Science
Journal Section Reviews
Authors

Rümeysa Gerboğa 0000-0001-9885-3148

Hacı Ömer Yılmaz 0000-0003-4597-7758

Publication Date April 30, 2025
Submission Date December 14, 2024
Acceptance Date March 11, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

Vancouver Gerboğa R, Yılmaz HÖ. Kardiyokinlerin Obezite ve Beslenme İle İlişkisi. Sağlık Bilimleri ve Klinik Araştırmaları Dergisi. 2025;4(1):45-56.