Research Article
BibTex RIS Cite

ZrO2-HfO2-B2O3-Mg sisteminin SHS yöntemi ile redüksiyon şartlarının belirlenmesi ve termodinamik olarak modellenmesi

Year 2025, Volume: 5 Issue: 2, 545 - 555, 31.07.2025
https://doi.org/10.61112/jiens.1628822

Abstract

İleri seramikler üstün mekanik, elektriksel, manyetik kimyasal ve termal özellikleri nedeniyle önemli uygulama alanları bulmaktadır. Bu malzemelerin birleştirilmesiyle sert metal bileşiklerinin nanometre ölçeğindeki kompozitlerinin üretimi sonucunda bu önemli özellikler elde edilebilmektedir. Kendiliğinden ilerleyen yüksek sıcaklık sentezi (SHS), bu tür nanopartiküllerin üretimi için öne çıkan yöntemlerden biridir. SHS bir yanma sentez yöntemidir. Bu çalışmada, ZrB2-HfB2 nanokompozit tozları SHS yöntemi ile sentezlenmiştir. Termokimyasal simülasyon ve hesaplamalı stokiyometrik optimizasyon için FactSage yazılımı kullanılmıştır. Deneysel çalışmalarda kütlece HfO2-B2O3-Mg karışımı, ZrO2-Mg-B2O3 karışımına %10, 20, 30, 40 oranlarında ilave edilmiş, optimum redüksiyon koşulları belirlenmiştir. Deneylerde magnezyum tozu indirgeyici madde olarak kullanılmıştır. Daha sonra HCl liç işlemi gerçekleştirilmiş ve asit konsantrasyonu optimize edilmiştir. Ürünler XRD, SEM analizi ile karakterize edilmiştir. Oldukça yüksek yüzey alanına, ince parçacık boyutuna ve yüksek gözenekliliğe sahip HfB2-ZrB2 kompozit tozu makul saflıkta sentezlenebildi.

References

  • Bugdayci M, Turan A, Benzesik K, et al (2016) Production of nano B4C-ZrB2 composite powders via self-propagating high-temperature synthesis (SHS) and effects of functional additives on the SHS of monolithic ZrB2. Nano studies. 17-18: 5–16
  • Akkas B, Alkan M, Derin B, Onuralp Y (2010) Production of zirconium diboride powder by self propagating high temperature synthesis. In: 12th International Ceramics Congress Part B. Trans Tech Publications Ltd, pp 251–256.
  • Kavakeb K, Balak Z, Kafashan H (2019) Densification and flexural strength of ZrB2–30 vol% SiC with different amount of HfB2. Int J Refract Metals Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.104971
  • Bugdayci M, Baslayici S, Coban O, Kaya F (2024) Self-propagating high temperature synthesis (SHS) of ZrC-TiC nanocomposites: Comparison of Mg and Al reductant usage and process optimization. Journal of the Australian Ceramic Society. https://doi.org/10.1007/s41779-024-01062-2
  • Coban O, Bugdayci M, Acma ME (2022) Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis. Journal of the Australian Ceramic Society 58:777–791. https://doi.org/10.1007/s41779-022-00714-5
  • Turan A, Bugdayci M, Yucel O (2015) Self-propagating High Temperature Synthesis of TiB2. High Temperature Materials and Processes 34:185–193. https://doi.org/10.1515/htmp-2014-0021
  • Coban O, Bugdayci M, Ozer SÇ, et al (2025) Spark plasma sintering of B4C-TiB2 composite: Effect of combustion synthesized nanoparticle on sinterability and mechanical properties. Journal of the Australian Ceramic Society. https://doi.org/10.1007/s41779-024-01113-8
  • Hassan R, Omar S, Balani K (2019) Solid solutioning in ZrB2 with HfB2: Effect on densification and oxidation resistance. Int J Refract Metals Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105041
  • Bugdayci M, Turan A, Benzesik K, Yucel O (2018) Productıon of nano ZrB2-TiB2 composite powder mixtures via self-propagating high-temperature synthesis. Nano Studies. 13: 191-204
  • Wang Z, Gao J, Song J (2022) High-temperature oxidation behavior of TiB2-HfB2-Ni Cermet Material. Materials. https://doi.org/10.3390/ma15248860
  • Balak Z (2019) Shrinkage, hardness and fracture toughness of ternary ZrB2–SiC-HfB2 composite with different amount of HfB2. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.05.094
  • Bai Y, Shen W, Fang C, et al (2023) Preparation and properties of HfB2-HfC and HfB2-HfC-MoB composites by reactive spark plasma sintering. Journal of Asian Ceramic Societies. https://doi.org/10.1080/21870764.2023.2198860
  • Höhn M, Krug M, Matthey B (2024) Novel ZrB2 and HfB2 metaldiboride coatings by LPCVD. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2023.130298
  • Odabaş ÖC, Buğdaycı M, Kan S, et al (2021) Effects of reductant type on the combustion synthesis of NiB. Solid State Sci 111:106447. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2020.106447
  • Dodi E, Balak Z, Kafashan H (2021) HfB2-doped ZrB2-30 vol.% SiC composites: Oxidation resistance behavior. Mater Res Express. https://doi.org/10.1088/2053-1591/abdf1a
  • Xu J, Zou B, Zhao S, et al (2014) Fabrication and properties of ZrC-ZrB2/Ni cermet coatings on a magnesium alloy by atmospheric plasma spraying of SHS powders. Ceram Int. https://doi.org/10.1016/j.ceramint.2014.07.029
  • Xu J, Ma P, Zou B, Yang X (2023) Reaction behavior and formation mechanism of ZrB2 and ZrC from the Ni-Zr-B4C system during self-propagating high-temperature synthesis. Materials 16. https://doi.org/10.3390/ma16010354
  • Sabahi Namini A, Delbari SA, Shahedi Asl M, et al (2021) Characterization of reactive spark plasma sintered (Zr,Ti)B2–ZrC–SiC composites. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2021.02.020
  • Yeh CL, Liu KT (2022) Synthesis of TiB2/TiC/Al2O3 and ZrB2/ZrC/Al2O3 composites by low-exotherm thermitic combustion with PTFE activation. Journal of Composites Science. https://doi.org/10.3390/jcs6040111
  • Acicbe RB, Goller G (2013) Densification behavior and mechanical properties of spark plasma-sintered ZrC-TiC and ZrC-TiC-CNT composites. J Mater Sci. https://doi.org/10.1007/s10853-012-7024-8
  • Yeh CL, Wang YH (2021) Preparation of ZrB2–SiC–Al2O3 composites by SHS method with aluminothermic reduction. Ceram Int 47. https://doi.org/10.1016/j.ceramint.2020.12.245
  • Coban O, Bugdayci M, Baslayici S, Acma ME (2023) Combustion synthesis of B4C–TiB2 nanocomposite powder: effect of Mg particle size on SHS and optimization of acid leaching process. Journal of Superhard Materials. https://doi.org/10.3103/S1063457623010033
  • Coban O, Bugdayci M, Acma ME (2022) Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis. Journal of the Australian Ceramic Society. https://doi.org/10.1007/s41779-022-00714-5
  • Tan X, Su X, Yan Y, et al (2021) New criteria for the applicability of combustion synthesis: The investigation of thermodynamic and kinetic processes for binary chemical reactions. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.158465
  • Schuster B, Seeck O, Trautmann C, Fujara F (2011) Stabilization of high-pressure phase in HfO2 Materials Science, Physics. GSI Scientific Report. (Project No. FU 308/12) PNI-MR-02.

Determination of reduction conditions and thermodynamic modeling of ZrO2-HfO2-B2O3-Mg system by SHS method

Year 2025, Volume: 5 Issue: 2, 545 - 555, 31.07.2025
https://doi.org/10.61112/jiens.1628822

Abstract

Advanced ceramics are widely used in applications due to their superior mechanical, electrical, magnetic, chemical and thermal properties. By combining these materials, these important properties can be achieved as a result of the production of nanometer-scale composites of hard metal compounds. Self-propagating high temperature synthesis (SHS) is a combustion synthesis method which is one of the prominent methods for the production of such nanoparticles. In this study, ZrB2-HfB2 nanocomposite powders were synthesized by SHS method. FactSage software was used for thermochemical simulation and computational stoichiometric optimization. In experimental studies, HfO2-B2O3-Mg mixture was added to ZrO2-Mg-B2O3 mixture at 10, 20, 30, 40% by mass and optimum reduction conditions were determined. Magnesium powder was used as a reducing agent in the experiments. Then, HCl leaching process was carried out and acid concentration was optimized. The products were characterized by XRD, SEM analyses. HfB2-ZrB2 composite powder with extremely high surface area, fine particle size and high porosity could be synthesized with reasonable purity.

References

  • Bugdayci M, Turan A, Benzesik K, et al (2016) Production of nano B4C-ZrB2 composite powders via self-propagating high-temperature synthesis (SHS) and effects of functional additives on the SHS of monolithic ZrB2. Nano studies. 17-18: 5–16
  • Akkas B, Alkan M, Derin B, Onuralp Y (2010) Production of zirconium diboride powder by self propagating high temperature synthesis. In: 12th International Ceramics Congress Part B. Trans Tech Publications Ltd, pp 251–256.
  • Kavakeb K, Balak Z, Kafashan H (2019) Densification and flexural strength of ZrB2–30 vol% SiC with different amount of HfB2. Int J Refract Metals Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.104971
  • Bugdayci M, Baslayici S, Coban O, Kaya F (2024) Self-propagating high temperature synthesis (SHS) of ZrC-TiC nanocomposites: Comparison of Mg and Al reductant usage and process optimization. Journal of the Australian Ceramic Society. https://doi.org/10.1007/s41779-024-01062-2
  • Coban O, Bugdayci M, Acma ME (2022) Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis. Journal of the Australian Ceramic Society 58:777–791. https://doi.org/10.1007/s41779-022-00714-5
  • Turan A, Bugdayci M, Yucel O (2015) Self-propagating High Temperature Synthesis of TiB2. High Temperature Materials and Processes 34:185–193. https://doi.org/10.1515/htmp-2014-0021
  • Coban O, Bugdayci M, Ozer SÇ, et al (2025) Spark plasma sintering of B4C-TiB2 composite: Effect of combustion synthesized nanoparticle on sinterability and mechanical properties. Journal of the Australian Ceramic Society. https://doi.org/10.1007/s41779-024-01113-8
  • Hassan R, Omar S, Balani K (2019) Solid solutioning in ZrB2 with HfB2: Effect on densification and oxidation resistance. Int J Refract Metals Hard Mater. https://doi.org/10.1016/j.ijrmhm.2019.105041
  • Bugdayci M, Turan A, Benzesik K, Yucel O (2018) Productıon of nano ZrB2-TiB2 composite powder mixtures via self-propagating high-temperature synthesis. Nano Studies. 13: 191-204
  • Wang Z, Gao J, Song J (2022) High-temperature oxidation behavior of TiB2-HfB2-Ni Cermet Material. Materials. https://doi.org/10.3390/ma15248860
  • Balak Z (2019) Shrinkage, hardness and fracture toughness of ternary ZrB2–SiC-HfB2 composite with different amount of HfB2. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.05.094
  • Bai Y, Shen W, Fang C, et al (2023) Preparation and properties of HfB2-HfC and HfB2-HfC-MoB composites by reactive spark plasma sintering. Journal of Asian Ceramic Societies. https://doi.org/10.1080/21870764.2023.2198860
  • Höhn M, Krug M, Matthey B (2024) Novel ZrB2 and HfB2 metaldiboride coatings by LPCVD. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2023.130298
  • Odabaş ÖC, Buğdaycı M, Kan S, et al (2021) Effects of reductant type on the combustion synthesis of NiB. Solid State Sci 111:106447. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2020.106447
  • Dodi E, Balak Z, Kafashan H (2021) HfB2-doped ZrB2-30 vol.% SiC composites: Oxidation resistance behavior. Mater Res Express. https://doi.org/10.1088/2053-1591/abdf1a
  • Xu J, Zou B, Zhao S, et al (2014) Fabrication and properties of ZrC-ZrB2/Ni cermet coatings on a magnesium alloy by atmospheric plasma spraying of SHS powders. Ceram Int. https://doi.org/10.1016/j.ceramint.2014.07.029
  • Xu J, Ma P, Zou B, Yang X (2023) Reaction behavior and formation mechanism of ZrB2 and ZrC from the Ni-Zr-B4C system during self-propagating high-temperature synthesis. Materials 16. https://doi.org/10.3390/ma16010354
  • Sabahi Namini A, Delbari SA, Shahedi Asl M, et al (2021) Characterization of reactive spark plasma sintered (Zr,Ti)B2–ZrC–SiC composites. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2021.02.020
  • Yeh CL, Liu KT (2022) Synthesis of TiB2/TiC/Al2O3 and ZrB2/ZrC/Al2O3 composites by low-exotherm thermitic combustion with PTFE activation. Journal of Composites Science. https://doi.org/10.3390/jcs6040111
  • Acicbe RB, Goller G (2013) Densification behavior and mechanical properties of spark plasma-sintered ZrC-TiC and ZrC-TiC-CNT composites. J Mater Sci. https://doi.org/10.1007/s10853-012-7024-8
  • Yeh CL, Wang YH (2021) Preparation of ZrB2–SiC–Al2O3 composites by SHS method with aluminothermic reduction. Ceram Int 47. https://doi.org/10.1016/j.ceramint.2020.12.245
  • Coban O, Bugdayci M, Baslayici S, Acma ME (2023) Combustion synthesis of B4C–TiB2 nanocomposite powder: effect of Mg particle size on SHS and optimization of acid leaching process. Journal of Superhard Materials. https://doi.org/10.3103/S1063457623010033
  • Coban O, Bugdayci M, Acma ME (2022) Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis. Journal of the Australian Ceramic Society. https://doi.org/10.1007/s41779-022-00714-5
  • Tan X, Su X, Yan Y, et al (2021) New criteria for the applicability of combustion synthesis: The investigation of thermodynamic and kinetic processes for binary chemical reactions. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.158465
  • Schuster B, Seeck O, Trautmann C, Fujara F (2011) Stabilization of high-pressure phase in HfO2 Materials Science, Physics. GSI Scientific Report. (Project No. FU 308/12) PNI-MR-02.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing Metallurgy
Journal Section Research Articles
Authors

Serkan Başlayıcı 0000-0002-7933-5887

Publication Date July 31, 2025
Submission Date January 28, 2025
Acceptance Date March 27, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Başlayıcı, S. (2025). ZrO2-HfO2-B2O3-Mg sisteminin SHS yöntemi ile redüksiyon şartlarının belirlenmesi ve termodinamik olarak modellenmesi. Journal of Innovative Engineering and Natural Science, 5(2), 545-555. https://doi.org/10.61112/jiens.1628822


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0