Design and Analysis of A Wideband and Low-Cost Microstrip Slot Antenna at 24 GHz
Year 2025,
Volume: 15 Issue: 2, 459 - 469, 01.06.2025
Gürkan Kalınay
,
Fatih Kaburcuk
,
Mehmet Onur Kök
Abstract
In this study the design and numerical analysis of a low-cost microstrip patch antenna for fifth-generation (5G) mobile communication applications are focused. The main objective of this research is to investigate a microstrip patch antenna that operates in the 5G frequency band at 24 GHz. These frequency band is well within the range of 5G communication, which utilizes a variety of frequency band for high-speed wireless communication. The antenna is designed to be low-cost and suitable for mobile communication devices. The antenna is designed and fabricated on a low-cost FR-4 substrate having compact size 25 × 20 × 1.6 〖mm〗^3, which is a common and affordable material used in printed circuit boards. This choice of substrate aligns with the goal of creating a cost-effective antenna. Two computational tools are used to analyze the antenna's performance. The first is a Computational Electromagnetic Simulator (CEMS) software based on the Finite-Difference Time-Domain (FDTD) method, and the second is CST software, which is based on the Finite Integration Technique (FIT). These tools are commonly used in antenna design and simulation to assess various parameters. The maximum gain value of the antenna is 3.56 dBi at 24 GHz. The measurement of the proposed antenna has been performed using the Keysight Network analyzer.
References
- 5G Americas. (2018, April). 5G Americas spectrum recommendations for the U.S. https://www.5gamericas.org/wpcontent/uploads/2019/07/5G_Americas_Spectrum_Recommendations_for_the_U.S_Final.pdf
- Ali, M. M. M., Haraz, O., & Alshebeili, S. (2016). Design of a dual-band printed slot antenna with utilizing a band rejection element for the 5G wireless applications. IEEE International Symposium on Antennas and Propagation, 1865–1866.
- Andrews, J. G., Buzzi, S., Choi, W., Hanly, A. E., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065-1082.
- Arumugam, S., Sangeetha, M., Charan, C., & Ns, H. (2025) Design of Grid Array Antenna for N258 Band Short Range Radar and N261 Band 5g Applications. Available at SSRN 5087214.
- Balanis, C. A. (2016). Antenna theory: analysis and design. https://books.google.com/books?hl=tr&lr=&id=iFEBCgAAQBAJ&oi=fnd&pg=PR13&dq=%E2%80%9CAntenna+Theory+Analysis+And+Design&ots=CmXrmU7wo&sig=sZx1zzC4ZxkPK7AV0OFYBQqnygQ
- Bano, M., Rastogi, A. K., & Sharma, S. (2014). Design and simulation of microstrip patch antenna using different substrates. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 3(11). ISSN 2278–1323.
- Chen, Y., Liu, Y., Zhang, Y., Yue, Z., & Jia, Y. (2019, October). A 24GHz millimeter wave microstrip antenna array for automotive radar. In 2019 International Symposium on Antennas and Propagation (ISAP) (pp. 1-2). IEEE.
- Christina, G., Rajeswari, A., & Mathivanan, S. (2017). Real-time analysis of a 24 GHz planar microstrip antenna for vehicular communications. Wireless Personal Communications, 97(1), 1129–1139. https://doi.org/10.1007/s11277-017-4557-9
- CST Microwave Studio (Version 2008) [Computer software]. (2008). Computer Simulation Technology.
- Demir, V., & Elsherbeni, A. Z. (2021). Computational electromagnetic simulator (Software package version 4).
- Elsherbeni, A. Z., & Demir, V. (2016). The finite-difference time-domain method for electromagnetics with MATLAB simulations (2nd ed.). SciTech Publishing, an imprint of IET.
- Federal Communications Commission. (2020, October). America's 5G future. https://www.fcc.gov/5G
- Goyal, R. K., & Shankar Modani, U. (2018a). A Compact Microstrip Patch Antenna at 28 GHz for 5G wireless Applications. 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering, ICRAIE 2018. https://doi.org/10.1109/ICRAIE.2018.8710417
- Haraz, O. M., Ali, M. M. M., Alshebeili, S., & Sebak, A. (2015). Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1532–1533.
- Kaburcuk, F., Kalinay, G., Chen, Y., Elsherbeni, A. Z., & Demir, V. (2021). A dual-band and low-cost microstrip patch antenna for 5g mobile communications. Applied Computational Electromagnetics Society Journal (ACES), 824-829.
- Kim, G., & Kim, S. (2021). Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmWave antenna module on FR4 substrate. IEEE Access, 9, 64306–64316. https://doi.org/10.1109/ACCESS.2021.3075495
- Kuzuoglu, M., & Mittra, R. (1996). Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave and Guided Wave Letters, 6(12), 447-449.
- Marzouk, H. M., Ahmed, M. I., & Shaalan, A. A. (2019). A novel dual-band 28/38 GHz slotted microstrip MIMO antenna for 5G mobile applications. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 607–608.
- Mohamed, B. T., & Himdi, M. (2019). Design of parallel-series microstrip patch antenna array at mmWave for future 5G applications. 7th Mediterranean Congress of Telecommunications (CMT), 1-4.
- Mollik, D., Islam, R., Anwar, A. B., Purnendu, P. K. S., Shanto, M. A. H., & Ahmad, M. (2022). Design of 24 GHz ISM band microstrip patch antenna for 5G communication. In 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1–6). Toronto, ON, Canada. https://doi.org/10.1109/IEMTRONICS55184.2022.9795716
- Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Networks, 21(8), 2657-2676.
- Özpınar, H., & Akşimşek, H. S. (2020). Design of 24-28 GHz band 5G antenna based on symmetrically located circular gaps. European Journal of Science and Technology, (Special Issue), 408–413. https://doi.org/10.31590/ejosat.843864
- Sandi, E., & Marani, T. (2020, July). Design of multiband MIMO antenna for 5G millimeterwave application. In IOP conference series: materials science and engineering (Vol. 852, No. 1, p. 012154). IOP Publishing.
- Qualcomm. (2019, November). Global update on 5G spectrum. https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf
- Ramli, N., Noor, S. K., Khalifa, T., & Abd Rahman, N. H. (2020). Design and performance analysis of different dielectric substrate based microstrip patch antenna for 5G applications. International Journal of Advanced Computer Science and Applications, 11(8).
- Türk Telekom. (2018). 5G+ Bilgi Notu Beyaz Kitap.
- Venkateshkumar, U., Kiruthiga, S., Mihitha, H., Maheswari, K., & Nithiyasri, M. (2020). Multiband patch antenna design for 5G applications. Fourth International Conference on Computing Methodologies and Communication (ICCMC), 528-534.
- Yang, Y., Xu, J., Shi, G., & Wang, C.-X. (2017). 5G wireless systems simulation and evaluation techniques. Springer.
- Yu, C.-A., Chin, K.-S., & Lu, R. (2019). 24-GHz wide-beam patch antenna array laterally loaded with parasitic strips. In 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) (pp. 1–3). https://doi.org/10.1109/CSQRWC.2019.8799203
- Zhang, Y., Chen, Y., Liu, Y., & Lu, Y. (2018, July). Millimeter wave microstrip antenna array for automotive collision avoidance radar. In 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES) (pp. 1-2). IEEE.
- ZHu, J., & Liu, J. (2025). Design of microstrip antenna integrating 24 GHz and 77 GHz compact high-gain arrays. Sensors, 25(2), 481. h
24 GHz’de Geniş Bantlı ve Düşük Maliyetli Mikroşerit Slot Anten Tasarımı ve Analizi
Year 2025,
Volume: 15 Issue: 2, 459 - 469, 01.06.2025
Gürkan Kalınay
,
Fatih Kaburcuk
,
Mehmet Onur Kök
Abstract
Bu çalışmada, beşinci nesil (5G) mobil iletişim uygulamaları için düşük maliyetli bir mikroşerit slot anteninin tasarımına, sayısal analizine ve üretimine odaklanılmıştır. Bu araştırmanın temel amacı 5G frekans bandında 24 GHz frekansında çalışan bir mikroşerit slot anteninin incelenmesidir. Bu frekans bandı, yüksek hızlı kablosuz iletişim için çeşitli frekans bantlarını kullanan 5G iletişim aralığının oldukça içerisindedir. Anten düşük maliyetli ve mobil iletişim cihazlarına uygun olacak şekilde tasarlanmıştır. Anten, baskılı devre kartlarında yaygın ve uygun fiyatlı olarak kullanılan ve 25 × 20 × 1.6 〖mm〗^3 kompakt boyutuna sahip bir FR-4 alt tabaka üzerine tasarlanmış ve üretilmiştir. Bu alt tabaka seçimi, uygun maliyetli bir anten oluşturma hedefiyle uyumludur. Antenin performansını analiz etmek için iki hesaplama aracı kullanıldı. Bunlardan ilki, Sonlu Fark Zaman Alanı (FDTD) yöntemini temel alan Hesaplamalı Elektromanyetik Simülatör (CEMS) yazılımı, ikincisi ise Sonlu Entegrasyon Tekniği (FIT) tabanlı CST yazılımıdır. Bu araçlar, çeşitli parametreleri değerlendirmek için anten tasarımında ve simülasyonunda yaygın olarak kullanılmaktadır. 24 GHz’de önerilen antenin maksimum kazanç değeri 3.56 dBi'dir. Önerilen antenin ölçümleri Keysight Network Analizörü kullanılarak yapılmıştır.
References
- 5G Americas. (2018, April). 5G Americas spectrum recommendations for the U.S. https://www.5gamericas.org/wpcontent/uploads/2019/07/5G_Americas_Spectrum_Recommendations_for_the_U.S_Final.pdf
- Ali, M. M. M., Haraz, O., & Alshebeili, S. (2016). Design of a dual-band printed slot antenna with utilizing a band rejection element for the 5G wireless applications. IEEE International Symposium on Antennas and Propagation, 1865–1866.
- Andrews, J. G., Buzzi, S., Choi, W., Hanly, A. E., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065-1082.
- Arumugam, S., Sangeetha, M., Charan, C., & Ns, H. (2025) Design of Grid Array Antenna for N258 Band Short Range Radar and N261 Band 5g Applications. Available at SSRN 5087214.
- Balanis, C. A. (2016). Antenna theory: analysis and design. https://books.google.com/books?hl=tr&lr=&id=iFEBCgAAQBAJ&oi=fnd&pg=PR13&dq=%E2%80%9CAntenna+Theory+Analysis+And+Design&ots=CmXrmU7wo&sig=sZx1zzC4ZxkPK7AV0OFYBQqnygQ
- Bano, M., Rastogi, A. K., & Sharma, S. (2014). Design and simulation of microstrip patch antenna using different substrates. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 3(11). ISSN 2278–1323.
- Chen, Y., Liu, Y., Zhang, Y., Yue, Z., & Jia, Y. (2019, October). A 24GHz millimeter wave microstrip antenna array for automotive radar. In 2019 International Symposium on Antennas and Propagation (ISAP) (pp. 1-2). IEEE.
- Christina, G., Rajeswari, A., & Mathivanan, S. (2017). Real-time analysis of a 24 GHz planar microstrip antenna for vehicular communications. Wireless Personal Communications, 97(1), 1129–1139. https://doi.org/10.1007/s11277-017-4557-9
- CST Microwave Studio (Version 2008) [Computer software]. (2008). Computer Simulation Technology.
- Demir, V., & Elsherbeni, A. Z. (2021). Computational electromagnetic simulator (Software package version 4).
- Elsherbeni, A. Z., & Demir, V. (2016). The finite-difference time-domain method for electromagnetics with MATLAB simulations (2nd ed.). SciTech Publishing, an imprint of IET.
- Federal Communications Commission. (2020, October). America's 5G future. https://www.fcc.gov/5G
- Goyal, R. K., & Shankar Modani, U. (2018a). A Compact Microstrip Patch Antenna at 28 GHz for 5G wireless Applications. 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering, ICRAIE 2018. https://doi.org/10.1109/ICRAIE.2018.8710417
- Haraz, O. M., Ali, M. M. M., Alshebeili, S., & Sebak, A. (2015). Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1532–1533.
- Kaburcuk, F., Kalinay, G., Chen, Y., Elsherbeni, A. Z., & Demir, V. (2021). A dual-band and low-cost microstrip patch antenna for 5g mobile communications. Applied Computational Electromagnetics Society Journal (ACES), 824-829.
- Kim, G., & Kim, S. (2021). Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmWave antenna module on FR4 substrate. IEEE Access, 9, 64306–64316. https://doi.org/10.1109/ACCESS.2021.3075495
- Kuzuoglu, M., & Mittra, R. (1996). Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave and Guided Wave Letters, 6(12), 447-449.
- Marzouk, H. M., Ahmed, M. I., & Shaalan, A. A. (2019). A novel dual-band 28/38 GHz slotted microstrip MIMO antenna for 5G mobile applications. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 607–608.
- Mohamed, B. T., & Himdi, M. (2019). Design of parallel-series microstrip patch antenna array at mmWave for future 5G applications. 7th Mediterranean Congress of Telecommunications (CMT), 1-4.
- Mollik, D., Islam, R., Anwar, A. B., Purnendu, P. K. S., Shanto, M. A. H., & Ahmad, M. (2022). Design of 24 GHz ISM band microstrip patch antenna for 5G communication. In 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1–6). Toronto, ON, Canada. https://doi.org/10.1109/IEMTRONICS55184.2022.9795716
- Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Networks, 21(8), 2657-2676.
- Özpınar, H., & Akşimşek, H. S. (2020). Design of 24-28 GHz band 5G antenna based on symmetrically located circular gaps. European Journal of Science and Technology, (Special Issue), 408–413. https://doi.org/10.31590/ejosat.843864
- Sandi, E., & Marani, T. (2020, July). Design of multiband MIMO antenna for 5G millimeterwave application. In IOP conference series: materials science and engineering (Vol. 852, No. 1, p. 012154). IOP Publishing.
- Qualcomm. (2019, November). Global update on 5G spectrum. https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf
- Ramli, N., Noor, S. K., Khalifa, T., & Abd Rahman, N. H. (2020). Design and performance analysis of different dielectric substrate based microstrip patch antenna for 5G applications. International Journal of Advanced Computer Science and Applications, 11(8).
- Türk Telekom. (2018). 5G+ Bilgi Notu Beyaz Kitap.
- Venkateshkumar, U., Kiruthiga, S., Mihitha, H., Maheswari, K., & Nithiyasri, M. (2020). Multiband patch antenna design for 5G applications. Fourth International Conference on Computing Methodologies and Communication (ICCMC), 528-534.
- Yang, Y., Xu, J., Shi, G., & Wang, C.-X. (2017). 5G wireless systems simulation and evaluation techniques. Springer.
- Yu, C.-A., Chin, K.-S., & Lu, R. (2019). 24-GHz wide-beam patch antenna array laterally loaded with parasitic strips. In 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) (pp. 1–3). https://doi.org/10.1109/CSQRWC.2019.8799203
- Zhang, Y., Chen, Y., Liu, Y., & Lu, Y. (2018, July). Millimeter wave microstrip antenna array for automotive collision avoidance radar. In 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES) (pp. 1-2). IEEE.
- ZHu, J., & Liu, J. (2025). Design of microstrip antenna integrating 24 GHz and 77 GHz compact high-gain arrays. Sensors, 25(2), 481. h